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Abstract 

Thanks to social media, people are now able to leave guiding comments quickly about their favorite restaurants, 
movies, etc. This has paved the way for the field of sentiment analysis, which brings together various disciplines. 
In this study, Yelp restaurant reviews and IMDB movie reviews dataset were used together with the data collected 
from Twitter. Word2Vec (W2V), Global Vector (GloVe) and Bidirectional Encoder Representation (BERT) word 
embedding methods, Term Frequency-Reverse Document Frequency (TF-IDF), and the Bag-of-Words (BOW) 
were used on these datasets. Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), 
Recurrent Neural Network (RNN), Support Vector Machine (SVM), and Naive Bayes (NB) were used in the 
sentiment analysis models. Accuracy, F-measure (F), Sensitivity (Sens), Precision (Pre), and Receiver Operating 
Characteristics (ROC) were used in the evaluation of the model performance. The Accuracy rates of the models 
created by the Machine Learning (ML) and Deep Learning (DL) methods using the IMDB dataset were in the 
range of 81%-90% and 84%-94%, respectively. These rates were in the range of 80%-86% and 81%-89% for the 
Yelp dataset, and in the range of 75%-79% and 85%-98% for the Twitter dataset. The models that incorporated 
the BERT word embedding method have the best performance, compared to the other models with ML and DL. 
Therefore, BERT method is recommended for this type of analysis in future studies. 

Keywords: sentiment analysis, deep learning, machine learning, text representation, word embedding. 

1. Introduction 

In parallel with the advances in technology, visual and print communication channels have shifted 
towards social media. Social events such as movies, restaurants, concerts are now publicized through 
articles published on social media or websites, instead of recommendations on newspapers and 
magazines, thanks to the Internet technologies. 

The fact that social media is an indispensable tool for people and that they constantly express their 
opinions about social issues, economy, health, products, and brands paves the way for sentiment 
analysis. Sentiment analysis is carried out using natural language processing, an important part of 
artificial intelligence. In the sentiment analysis studies, underlying sentiments in textual expressions are 
identified. This analysis is used to see whether the sentiment of the texts shared by people is positive, 
negative, or neutral. Sentiment analysis are used by companies to see whether they receive a positive 
feedback [1]. 

The purpose of the text classification is to assign single or multiple tags to a text string. Conventional 
approaches for text classification, and the classification in the feature extraction step of BOW, usually 
utilizes the TF-IDF probabilities. With the advances in natural language processing, BERT, Word2Vec, 
and GloVe have started to be widely used in feature extraction. However, these methods often ignore 
the contextual information or word order in texts and they have data flexibility issues, which affect 
classification accuracy. NB, support vector machines, decision trees, networks such as CNN and LSTM 
based RNN are used in recent ML algorithms. 

In this study, architectures that increase the classification performance in ML and DL models was 
investigated by applying the traditional text representation method and word embedding methods, which 
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are widely used in sentiment analysis studies. The model with the best result was proposed as the 
recommended framework. 

In the study, five different datasets were obtained using traditional text representation methods of TF-
IDF, BOW, and the word embedding methods BERT, Word2Vec, and GloVe were used on three 
different datasets. After obtaining these datasets, sentiment analysis, which is one of the natural language 
processing tasks, was carried out by using ML algorithms of support vector machine and Naive Bayes 
classifier algorithms, and by using the DL methods of CNN, RNN, and LSTM. Accuracy, F, Sens, Pre, 
and ROC performance criteria were used in the evaluation of the models created by ML and DL. 

As a contribution to the literature, hybrid classifier models of DL and ML were created by using word 
representation methods for meaning, context, and syntax on public data sources and datasets collected 
by the researchers. 

As shown in the related studies section, classifier models created by ML such as SVM, ANN, and NB, 
CNN, RNN, LSTM DL are popular and have good performances in sentiment analysis studies. As 
another contribution, this study evaluates the performance of these algorithms by comparing them with 
traditional frequency-based text representation (TF-IDF, BOW) and prediction based text representation 
(W2V, GloVe, BERT) methods. 

In the second section, sentiment analysis studies with ML and DL are discussed. In the third section, 
under the methodology subtitle, datasets used in the study, word representation and embedding methods, 
ML, and DL algorithms are discussed. The fourth section explains the proposed framework in the study. 
In the fifth section, the experiments made with the created models and their results are presented. Finally, 
the sixth section draws the conclusions. The flowchart of the study is shown in Figure 1. 

 

 
Figure 1 The flowchart of study 



Sakarya University Journal of Computer and Information Sciences 
 

Başarslan et al. 
 

37 
 

2. Related Works 

Sentiment analysis studies with various datasets in different languages are introduced in this section. In 
their sentiment analysis study, Pang et al. have created a pre-classification vector space model on the 
movie comments present in the Internet Movie Database archive, and conducted a sentiment analysis 
via classifying algorithms, such as NB, Maximum Entropy (ME), and SVM. Of the classification 
algorithms, they achieved the best performance with SVM, by 82.9% accuracy, using unigrams on the 
dataset [2]. 

In their study on movie reviews, Kaynar et al. used NB, Multilayered Artificial Neural Network (ANN), 
and SVM. They also used TF-IDF for feature extraction. SVM has yielded better results in terms of 
accuracy, compared to other methods [3]. 

Hamoud et al. have used the BOW, TF, and TF-IDF for the classification of political tweets on the 
Twitter data. They used SVM and NB classification algorithms. According to the results, BOW-enabled 
SVM provides the highest accuracy and F-measure [4]. 

Symeonidis et al. used Linear SVC, Bernoulli NB, Logistic Regression (LR), and CNN, which are four 
popular ML algorithms. They achieved the best results by CNN in terms of accuracy [5]. 

A deep-learning-based approach using convolutional neural network (CNN) and word2vec on Twitter 
dataset to detect opportunities for improving the quality of their products or services through sentiment 
analysis has also been proposed in [6]. The study has obtained encouraging results with 88.7% precision, 
88.7% recall, and 88.7% F-measure. 

Zheng et al. have proposed a model based on the hybrid bidirectional RNN in their study conducted 
with various datasets such as Sogou, Yelp and Douban Movies. The accuracy rates of the method they 
proposed varies between 73.46% and 96.81% [7]. 

Huq et al. have used feature extraction with n-grams on Twitter data and then applied SVM and K-
Nearest Neighbor algorithms on the dataset. According to their experiments, accuracy values were 
between 58.39% and 79.99% [9]. 

Amolik et al. have classified tweets correctly by using Feature-Vector, NB, and SVM classifier 
algorithms. Despite its lower recall and accuracy, NB had better sensitivity compared to SVM [10]. 

Liao et al. have created a simple CNN model with W2V on the data collected from Twitter, and have 
used this model for comparison against SVM and NB. As a result, CNN has shown to have higher 
classification performance in terms of accuracy compared to other models [11]. 

Li et al. have achieved a classification accuracy in the range of 52.23-55.93% in their experiments with 
DL architectures, such as CNN, LSTM, MemNET, AttNet, applied to three different datasets of Online 
debates, Restaurants, and laptop reviews [12]. 

Li et al. have proposed an improved version of the Sliced RNN and have compared this model against 
various DL models in a sentiment study. According to the results, their proposed model had the highest 
accuracy by 73.36% [13]. 

Zhao et al. obtained the highest accuracy rate of 87.9% in the models they created with CNN and LSTM 
DL algorithms on the Amazon product reviews dataset [14]. 

Al-Smadi et al. have shown better results in the models they created with the DL RNN and ML SVM 
algorithms, on the data of Arabic hotel reviews. They obtained an accuracy rate of 87% with RNN and 
95.4% with SVM [15]. 

In their study, Tang, Qin et al. have achieved an accuracy of 80.95% on the restaurant views dataset 
with the DL algorithm, while they achieved an accuracy of 72.37% in laptop views [16]. 

In the study of Chen et al. on Chinese Twitter data with RNN-based models, an accuracy of 73.89% was 
obtained [17]. 
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Altrabsheh et al. used NB, SVM, ME, and Random Forest (RF) algorithms in sentiment analysis with 
unigram, bigram, trigram-based text representations on the tweets about courses such as mathematics, 
database, engineering, molecular biology, chemistry, and physics. Models created with SVM and text 
representations had better performance compared to the other models [18]. 

H. Ghulam et al. have created models with LSTM, RF, NB in a sentiment analysis study on Roman 
Urdu tweets. Models created with LSTM had better performance compared to the other models [19]. 

J. Singh et al. have combined sentiment analysis and morphological assessment in Punjabi language, 
using DL. The accuracy rate of the model, created using DL and morphological text classification with 
275 suicide cases in Punjab, was 95.45% [20]. 

As seen above, mostly traditional word representation methods were used in previous studies. In this 
study, the performances of traditional machine learning and deep learning classification algorithms were 
investigated also by using different text representation and word embedding techniques.  

As seen above, DL algorithms such as RNN, LSTM, CNN, and ML algorithms such as NB and SVM 
are so popular in sentiment analysis studies. In addition, different word embedding methods such as 
BERT, W2V, GloVe, TF-IDF and BOW have also been used in various studies. 

3. Methodology 

In this section, the datasets, word embedding techniques, ML and DL algorithms, and details of the 
proposed system are discussed. 

3.1 Datasets 

Three different datasets were used in the study. These datasets include the IMDB movie review dataset, 
which is often used in sentiment analysis studies, Yelp hotel and restaurant comments, and Twitter API. 

Yelp (restaurant reviews) dataset consists of 598,000 reviews of various restaurants. 560,000 of the 
reviews were reserved for training and 38,000 for testing [21]. Dataset attributes and descriptions of 
these features are presented in Table 1. 

Table 1 Yelp Dataset 
Attribute Description 

Text Review from yelp 
Sentiment class Positive, negative 

IMDB (movie reviews) dataset consists of 50,000 positive and negative movie reviews [22]. In this 
dataset, 50,000 reviews were split into 25,000 testing and 25,000 training data. Dataset attributes and 
descriptions of these features are presented in Table 2. 

Table 2 IMDB Dataset 
Attribute Decsription 

Text Review from IMDB 
Sentiment class Positive, negative 

4500 health-related Twitter data were collected using the Twitter API. The pre-processing and sentiment 
analysis of these data were carried out using the Python programming language. The collected tweets 
were labeled as 1680 neutral, 1220 positive, 1600 negative tweets. The neutral-tagged tweets were the 
drug ads, and their attribute information is presented in Table 3. Tweets marked as negative seem to 
belong to those with various diseases. On the other hand, the positive ones are the tweets indicating that 
diseases such as cancer have successfully treated. 
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Table 3 Twitter Dataset 
Attribute Description 

id Order of tweet data frame 
text tweet 

created_at Date and time the Tweet was 
posted 

retweeted Tweet rerun status (bool) 
retweet_count Number of retweets 

user_screen_name Username 
user_followers_count Number of followers 

user_location Followers location 
hashtags Tweet tag 

sentiment_score Sentiment score 
sentiment_class positive, negative, neutral 

Since the datasets were scraped from the web, some HTML (Hyper Text Markup Language) codes were 
also present in the datasets. Therefore, it was necessary to clear these texts by removing HTML tags. 
The numbers, punctuation, and stop words were removed. Although BERT gives successful results in 
splitting compound names made with word representation dashes, other methods have problems. A set 
of NLTK (Natural Language Tool Kit) stop words was used to remove stop words. Since BERT 
embedding was trained on Wikipedia data, we allowed numbers and some of the punctuations like [, / 
() : ; '] and compound nouns with a hyphen, which may cause a more reliable embedding to remain in 
the text. Moreover, we saved [! ? .] to detect the end of the sentence for a later purpose (generate BERT 
for each sentence). Stemming and lemmatization according to POS (Part of Speech) tags of words were 
used for BOW and TF-IDF embedding. Finally, we replaced white spaces with only one space. 

3.2 Text Representation 

The representation of documents in text processing is important for successful results. In the text 
classification applications, texts are represented as vectors in the dataset. Such vector corresponds to the 
words in the document. Vector representation of documents. A document-word matrix is created. Thus, 
the words in the document are of importance. Vectors are calculated using various word weighting 
methods. TF-IDF is a weighting method widely used in text processing. In this method, the frequency 
of each word is represented by multiplying the inverse document frequency (IDF). This decreases the 
importance of highly repetitive words and increases the importance of words with fewer words. 

There are also word embedding techniques used without document representation. In this study, 
however, the following document representation methods, BOW and TF-IDF, were used. 

3.2.1 TF-IDF 

TF is the method used to calculate term weights in a document. Eq. (1) is seen. The IDF tries to find out 
the number of words in more than one document and to determine whether the word is a term or not 
(Stop Words). For this, the absolute value of the logarithm of the number of documents passed by the 
term must be divided by the number of documents. Eq. (2) is seen [23]. In Eq. (2), t is the term and j is 
the document. TF-IDF score i in document j is calculated as in Eq. (3). 

𝑻𝑻𝑻𝑻(𝒊𝒊, 𝒋𝒋) =
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒊𝒊 𝒇𝒇𝑻𝑻𝑻𝑻𝒇𝒇𝒇𝒇𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇 𝒊𝒊𝒇𝒇 𝒅𝒅𝒅𝒅𝒇𝒇𝒇𝒇𝑻𝑻𝑻𝑻𝒇𝒇𝒅𝒅 𝒋𝒋

𝑻𝑻𝒅𝒅𝒅𝒅𝑻𝑻𝑻𝑻  𝒘𝒘𝒅𝒅𝑻𝑻𝒅𝒅𝒘𝒘 𝒊𝒊𝒇𝒇 𝒅𝒅𝒅𝒅𝒇𝒇𝒇𝒇𝑻𝑻𝑻𝑻𝒇𝒇𝒅𝒅 𝒋𝒋
 (1) 

𝑰𝑰𝑰𝑰𝑻𝑻(𝒊𝒊) = 𝑻𝑻𝒅𝒅𝒍𝒍 �
𝑻𝑻𝒅𝒅𝒅𝒅𝑻𝑻𝑻𝑻 𝒅𝒅𝒅𝒅𝒇𝒇𝒇𝒇𝑻𝑻𝑻𝑻𝒇𝒇𝒅𝒅𝒘𝒘

 𝒅𝒅𝒅𝒅𝒇𝒇𝒇𝒇𝑻𝑻𝑻𝑻𝒇𝒇𝒅𝒅𝒘𝒘 𝒘𝒘𝒊𝒊𝒅𝒅𝒘𝒘 𝒅𝒅𝑻𝑻𝑻𝑻𝑻𝑻 𝒊𝒊
� (2) 

 
 

𝒋𝒋 = 𝑻𝑻𝑻𝑻(𝒊𝒊, 𝒋𝒋) ∗ 𝑰𝑰𝑰𝑰𝑻𝑻(𝒊𝒊) (3) 
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 3.2.2 BOW 

BOW is the document representation model widely used in text processing. In the BOW model, the 
word order of text documents is not preserved, but only the word counts are taken into account [24]. 
The BOW model, which shows the frequency of words in documents, was used by the classifier to create 
a learning model with a set of features. 

3.3 Word Embedding Based Text Representation 

Word2Vec, GloVe, BERT word embedding methods are explained in this section. 

3.3.1 W2V 

W2V method is a word embedding method that learns the vector representations of words using a 
training set with ANN [25] - [27]. It has two models, the Continuous Bag of Words (CBOW) and Skip-
gram, which matches close vectors with similar meaningful words in the vector space. While the CBOW 
model predicts a word in a certain context, the Skip-gram model predicts the context of a particular 
word. 

W2V extracts vector representations of words from datasets. The skip-gram and the CBOW model are 
shown in Figure 2. 

 

 
Figure 2 W2V models 

3.3.2 GloVe 
The gloVe is an advanced method from W2V that makes embedding words in documents more efficient. 
The gloVe is regression-based and the objective function is given in Equation. (4): 

𝑱𝑱 = � 𝒇𝒇(𝑿𝑿𝒊𝒊𝒋𝒋)(𝒘𝒘𝒊𝒊
𝑻𝑻𝑽𝑽𝒋𝒋 + 𝒃𝒃𝒊𝒊 + 𝒃𝒃𝒋𝒋 − 𝑻𝑻𝒅𝒅𝒍𝒍𝑿𝑿𝒊𝒊𝒋𝒋)𝟐𝟐

𝒗𝒗

𝒊𝒊,𝒋𝒋=𝟏𝟏  
(4) 

where 𝑣𝑣 denotes the vocabulary size, w ∈ 𝑅𝑅𝑑𝑑 represents the word vectors, V represents context word 
vectors, 𝑋𝑋𝑖𝑖𝑖𝑖 is the number of times the word pair (𝑖𝑖, 𝑗𝑗) occurs together in the corpus. 𝑓𝑓�𝑋𝑋𝑖𝑖𝑖𝑖� denotes a 
weighting function and 𝑏𝑏𝑖𝑖,𝑏𝑏𝑖𝑖 are bias parameters [27]. 
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3.3.3 BERT 

BERT is a word embedding model that stands for bi-directional encoder representations. The BERT 
model is designed to condition the word in right and left contexts by pre-training the dataset in each 
layer and in both directions. Figure 3 shows the architecture of the BERT model. 

 
Figure 3 BERT model 

3.4 Machine Learning  

It has been introduced in the 1980s and has become popular in data mining. These are self-training 
systems that make better decisions by making simulations with the data and parameters given for 
learning purposes. 

3.4.1 Naïve Bayes Classifier 

The NB algorithm, named after Thomas Bayes, is based on Bayes' theorem. 

Let X = { 𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, . . , 𝑥𝑥𝑛𝑛 } is the sample set, and 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3, … ,𝐶𝐶𝑚𝑚 is the class set. The sample to be 
classified: 
 

𝑷𝑷(𝑿𝑿|𝑪𝑪𝒊𝒊) =
𝑷𝑷(𝑿𝑿|𝑪𝑪𝒊𝒊)𝑷𝑷(𝑪𝑪𝒊𝒊)

𝑷𝑷(𝑿𝑿)  

(5) 

  
As seen in Eq. (5), the probability value is calculated according to the data of the class with the highest 
probability [28]. 

3.4.2 Support Vector Machine 

SVM is a ML method that sets a boundary between any point in the training data and another furthest 
point [28]. One feature of SVM is the inherent risk minimization in statistical learning theory [29]. 



Sakarya University Journal of Computer and Information Sciences 
 

Başarslan et al. 
 

42 
 

3.5 Deep Learning 

Intelligent systems have been developed in various fields with ML algorithms in recent years. Various 
classifier algorithms are successfully used for tagging in data classification, as one of the ML methods. 
With the increase in the amount of data, however, the performance of the models decreases. Hence, 
different algorithms and methods have been developed to overcome hardware problems. One of these 
methods is the DL algorithms that emerged in line with the neural networks introduced in the 1940s 
[30]. 

Although there were some limited achievements before the early 2000s due to the limitations in the 
computing power, it was not practical to train neural networks as today [31]. 

DL is a structure consisting of an increasing number of ANN layers that function like neurons in the 
human brain. Recent years witnessed its widespread use in sentiment analysis. Of the DL algorithms, 
LSTM, CNN, and RNN algorithms were used in this study. 

3.5.1 Recurrent Neural Network 

Thanks to recent advances in technology, RNN can be used easily. RNN is a neural network model 
developed to learn existing patterns by taking advantage of sequential information [28]-[29]. In RNN, 
each output is determined by the continuous processing of the same task on each instance of the array. 
The output is determined according to previous calculations [32]. 

In RNN, the resulting output is based not only on the current input, but also on the other inputs. In 
addition to the input data at time t, the results of the hidden layer at the time t-1 are used as the input of 
the hidden layer at the time t. The decision regarding the input at the time t-1 also affects the decision 
to be made at the time t. In other words, the inputs of these networks generate output by combining 
current and previous information. Eq. (6) shows the result of the hidden layer st at the time t. Eq. (6), 
shows the input 𝑥𝑥𝑡𝑡 at the time 𝑡𝑡, the hidden state 𝑆𝑆𝑡𝑡, the activation function of the f value, and the weight 
at U and W [33]: 

𝒘𝒘𝒅𝒅 = 𝒇𝒇(𝑼𝑼𝒙𝒙𝒊𝒊 + 𝑾𝑾𝒘𝒘𝒅𝒅−𝟏𝟏)
 

(6) 

3.5.2 Long Short-Term Memory 

LSTM is an RNN architecture. Unlike standard feed-forward neural networks, LSTM has feedback 
links. It consists of a cell, and three types of gates: an input gate, an output gate, and a forget gate. Based 
on the open-closed state of the gates, the cells determine the information to be preserved and the time 
to access the units [34]. 

Through these gates, the cell decides what to store, when to read, write or delete. These gates have a 
network structure and activation function. Just like neurons, they pass or stop the incoming information 
according to their weights. These weights are calculated during the learning phase of the recurrent 
network. 

3.5.3 Convolutional Neural Networks 

Although CNN is one of the deep learning algorithms used in artificial intelligence fields such as Natural 
Language processing, it is also often used in the field of Image processing. It consists of three main 
layers [35]: 

The first layer is the Convolutional Layer where a filter is used to transform the input matrix. In this 
layer, each filter maps the input matrix to a gap, and the output size depends on the size of the filter. 

The second layer is the pooling layer. It is usually placed after the convolutional layer and used to reduce 
the size of the mapped elements. 

The third layer is the fully connected layer. It is placed after the last pooling layer. The activation 
functionality in each layer is determined by the network for classification. 
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3.6 Evaluation Metrics 

The confusion matrix used in the model evaluation gives the number of correctly and incorrectly 
classified samples according to binary classification. (𝑇𝑇𝑃𝑃) represents false positive (𝐹𝐹𝑁𝑁), true positive 
(𝐹𝐹𝑃𝑃), false negative, and (𝑇𝑇𝑁𝑁) true negative numbers (Table 4) [36]. 

Table 4 Confusion Matrix 
 Predicted 

Positive Negative 
Actual Positive 𝑇𝑇𝑃𝑃 𝐹𝐹𝑁𝑁 

Negative 𝐹𝐹𝑃𝑃 𝑇𝑇𝑁𝑁 

Accuracy, Sens, Pre, F used in the study are given between Eq. (7) and Eq. (10). 

𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝑻𝑻𝑻𝑻𝒇𝒇𝒇𝒇 =
𝑻𝑻𝑷𝑷 + 𝑻𝑻𝑵𝑵

𝑻𝑻𝑷𝑷 + 𝑻𝑻𝑵𝑵 + 𝑻𝑻𝑷𝑷 + 𝑻𝑻𝑵𝑵
 

(7) 

𝑺𝑺𝑻𝑻𝒇𝒇𝒘𝒘𝒊𝒊𝒅𝒅𝒊𝒊𝒗𝒗𝒊𝒊𝒅𝒅𝒇𝒇 =
𝑻𝑻𝑷𝑷

𝑻𝑻𝑷𝑷 + 𝑻𝑻𝑵𝑵
 

(8) 

 𝑷𝑷𝑻𝑻𝑻𝑻𝒇𝒇𝒊𝒊𝒘𝒘𝒊𝒊𝒅𝒅𝒇𝒇 = 𝑻𝑻𝑷𝑷
𝑻𝑻𝑷𝑷+𝑻𝑻𝑷𝑷

 
(9) 

 
𝑻𝑻 −𝑻𝑻𝑻𝑻𝑻𝑻𝒘𝒘𝒇𝒇𝑻𝑻𝑻𝑻 = 𝟐𝟐∗𝑷𝑷𝑻𝑻𝑻𝑻𝒇𝒇𝒊𝒊𝒘𝒘𝒊𝒊𝒅𝒅𝒇𝒇 ∗𝑺𝑺𝑻𝑻𝒇𝒇𝒘𝒘𝒊𝒊𝒅𝒅𝒊𝒊𝒗𝒗𝒊𝒊𝒅𝒅𝒇𝒇

𝑷𝑷𝑻𝑻𝑻𝑻𝒇𝒇𝒊𝒊𝒘𝒘𝒊𝒊𝒅𝒅𝒇𝒇 +𝑺𝑺𝑻𝑻𝒇𝒇𝒘𝒘𝒊𝒊𝒅𝒅𝒊𝒊𝒗𝒗𝒊𝒊𝒅𝒅𝒇𝒇
 

(10) 

  

In order to partition the dataset as training and testing, 10-fold cross-validation method is used in the 
experiments. The original dataset is randomly partitioned into 10 equal sized partitions. Each time, one 
of the partitions is used for testing and the others are used for training. The process is repeated ten times 
and the average results across all steps are calculated. 

4. Proposed Framework 

The image of the proposed model for sentiment analysis on the publicly available and privately collected 
datasets is shown in Figure 4. Text processing such as the stop-word elimination was performed in all 
datasets. On the collected Twitter data, hashtags and URLs were removed. 

 
Figure 4 The proposed framework 
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As shown in Figure 4, the model created by the combination of the BERT word embedding 
representation method and the LSTM DL algorithm was compared to the models created by other word 
representation and learning algorithms. 

The results of the proposed method are shown as bold and red in all tables. Besides, the text 
representation and word embedding method that gives the best results in each classification algorithm 
categories are shown as bold. 

As shown in Table 5-7, SVM, one of the ML algorithms, gave a better performance in all performance 
criteria compared to NB, followed by the word representation and embedding methods. In DL 
algorithms, word embedding, and representation methods, the LSTM classifier model used after the 

Table 5 Performance of Classification Algorithms on IMDB Review Dataset with Word Embedding and Text 
Representations 

Classifier 
Algorithms 

Text Representations Accuracy Pre Sens F ROC 

SVM BOW 81% 81% 83% 82% 88% 

TF-IDF 83% 84% 84% 84% 90% 

W2V 84% 84% 86% 85% 92% 

GloVe 89% 88% 90% 88% 91% 

Bert  90% 90% 91% 90% 91% 

NB BOW 81% 82% 81% 81% 89% 

TF-IDF 82% 82% 83% 82% 90% 

W2V 83% 84% 85% 84% 92% 

GloVe 86% 86% 86% 86% 84% 

Bert  87% 86% 87% 88% 90% 

CNN BOW 84% 82% 81% 81% 89% 

TF-IDF 85% 82% 83% 82% 90% 

W2V 87% 84% 85% 84% 92% 

GloVe 88% 86% 86% 86% 84% 

Bert 93% 86% 87% 88% 90% 

RNN BOW 85% 82% 81% 81% 89% 

TF-IDF 85% 82% 83% 82% 90% 

W2V 88% 84% 85% 84% 92% 

GloVe 90% 86% 86% 86% 84% 

Bert 92% 90% 88% 88% 90% 

LSTM BOW 86% 82% 81% 81% 89% 

TF-IDF 86% 82% 83% 82% 90% 

W2V 89% 84% 85% 84% 92% 

GloVe 91% 86% 86% 86% 84% 

Bert 94% 94% 93% 89% 94% 
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BERT word embedding method was found to perform better than other DL methods. Similarly, 
performances of the word representation methods with ML and DL algorithms were obtained for the 
classifier models created with BERT, GloVe, Word2Vec, TF-IDF, BOW, respectively. The results also 
confirmed that the GloVe is the improved version of W2V. 

In addition, the results showed that the models with BERT word embedding method, used both with 
ML and DL, have better performance than the others. This reveals that the BERT is more successful 
than other text representation methods. 

Table 6 Performance of Classification Algorithms on Yelp Review Dataset with Word Embedding and Text 
Representations 

Classifier 
Algorithms 

Text 
Representations 

Accuracy Pre Sens F ROC 

SVM BOW 81% 80% 81% 81% 81% 

TF-IDF 81% 82% 81% 81% 82% 

W2V 83% 84% 85% 84% 83% 

GloVe 84% 84% 86% 85% 86% 

Bert  86% 87% 83% 86% 90% 

NB BOW 74% 73% 73% 74% 78% 

TF-IDF 76% 77% 77% 77% 85% 

W2V 78% 78% 78% 81% 86% 

GloVe 79% 79% 78% 79% 88% 

Bert  81% 83% 81% 80% 91% 

CNN BOW 81% 82% 81% 81% 89% 

TF-IDF 82% 82% 83% 82% 90% 

W2V 84% 84% 85% 84% 92% 

GloVe 86% 86% 86% 86% 94% 

Bert 87% 86% 87% 88% 95% 

RNN BOW 82% 82% 81% 82% 86% 

TF-IDF 83% 83% 84% 83% 88% 

W2V 85% 84% 85% 85% 91% 

GloVe 87% 86% 86% 86% 92% 

Bert 88% 86% 87% 88% 94% 

LSTM BOW 83% 77% 75% 76% 82% 

TF-IDF 84% 78% 76% 75% 83% 

W2V 84% 82% 81% 81% 85% 

GloVe 85% 82% 83% 82% 87% 

Bert 89% 84% 85% 84% 91% 
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Table 7 Performance of Classification Algorithms on Twitter Dataset with Word Embedding and Text 
Representations 

Classifier 
Algorithms 

Text 
Representations 

Accuracy Pre Sens F ROC 

SVM BOW 80% 78% 77% 80% 89% 

TF-IDF 83% 83% 82% 81% 86% 

W2V 89% 88% 86% 87% 90% 

GloVe 89% 88% 86% 88% 90% 

Bert  89% 87% 89% 87% 93% 

NB BOW 70% 72% 73% 74% 75% 

TF-IDF 72% 73% 73% 76% 78% 

W2V 72% 76% 75% 76% 79% 

GloVe 75% 77% 75% 76% 80% 

Bert  79% 78% 76% 77% 82% 

CNN BOW 84% 82% 81% 81% 89% 

TF-IDF 85% 82% 83% 82% 90% 

W2V 87% 84% 85% 84% 92% 

GloVe 88% 86% 86% 86% 84% 

Bert 93% 86% 87% 86% 90% 

RNN BOW 85% 82% 81% 81% 89% 

TF-IDF 85% 82% 83% 82% 90% 

W2V 88% 84% 85% 84% 92% 

GloVe 90% 86% 86% 86% 84% 

Bert 94% 86% 87% 86% 90% 

LSTM BOW 87% 86% 87% 84% 85% 

TF-IDF 89% 89% 87% 86% 88% 

W2V 91% 94% 91% 94% 95% 

GloVe 96% 96% 96% 96% 96% 

Bert 98% 98% 99% 99% 98% 

5. Conclusion And Discussion 

This study was conducted on the public and privately collected data to compare the word representation 
and embedding methods for sentiment analysis tasks with ML and DL algorithms. The Accuracy, Pre, 
Sens, F, and ROC were used as performance metrics. 

In the study, learning algorithms CNN, LSTM, RNN from DL; SVM, NB from ML were used for 
classifying the sentiments. Word embedding methods BERT, GloVe, Word2Vec, and traditional word 
representation methods TF-IDF, BOW were also used.  
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According to the results of the experiments, the model created with Bert and LSTM has shown 
the best performance among the model combinations created on all datasets. Besides, the models 
that incorporated the BERT word embedding method have the best performance, among the other text 
representations and word embedding method.  

In future studies, methods such as ElMo that yield successful results in sentiment analysis studies and 
the performance of the transformers such as RoBERta and DistilBERT in neural networks such as LSTM 
and RNN are planned. 
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