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Abstract 

In recent years, microstrip antennas have become a popular research subject with the increasing use of mobile 
technologies. With the development of neural networks, the design and analysis of microstrip antennas are carried 
out quickly with high accuracy. However, optimizing the weight matrices and bias vectors of deep neural learning 
models is an important challenge for engineering problems. This study presents a deep neural network-based 
(DNN-based) neural model to estimate the gain and scattering parameter (S11) of C-shaped compact microstrip 
antennas (CCMAs). For this purpose, the S11 and gain values of 324 CCMAs with different physical and electrical 
properties were obtained using full-wave electromagnetic simulation software based on the finite integration 
technique (FIT). The data related to 324 CCMAs were used for the training and testing process. The improved 
manta ray foraging optimization (MRFO) algorithm based on the Lévy-flight (LF) mechanism was used to 
optimize the connection weights matrices and bias vectors. The MRFO-optimized model has estimation success 
for training and testing data as 0.925 and 0.922, in terms of R2 score, respectively. The estimated resonant 
frequencies using the trained model are compared with the studies in the literature, and an average percentage 
error (APE) of 0.933% is obtained.  

Keywords: C-shaped microstrip antenna, deep neural networks, manta ray foraging optimization, lévy 
flight technique, S-parameter estimation, gain estimation 

1. Introduction 

With the rapid development of technology, small-sized wireless and portable devices such as navigation 
devices, headphones, cameras, and mobile phones and have found a wider area of use in daily life. 
Microstrip antennas (MA) [1, 2] are essential components of the systems such as wireless 
communication, spacecraft, aircraft, radars, satellite communication, and guided missiles. MAs have 
superior advantages, including ease in production, small in size, integrated use with electronic circuit 
boards, and solid-state devices [2–6]. Recent advances in mobile communication technology have 
increased the need for MAs operating at lower frequency bands. Due to its nature, the reduction in the 
physical dimensions of the antenna causes an increase in the resonant frequency of the antenna. 
However, the resonant frequency of conventional-shaped MAs such as circular, triangular, and 
rectangular can be reduced by modifying the structures [2, 5]. Compact MAs (CMAs) are formed by 
modifying the geometries of conventional-shaped MAs [2, 7]. Although theoretical methods, including 
the transmission-line model (TLM) [8] and cavity model [9], are used to analyze conventional-shaped 
MAs, these methods have various difficulties for CMAs due to their complex structure and non-linear 
behavior. Therefore, the analysis of CMAs is generally carried out using full-wave electromagnetic 
solvers based on numerical methods such as finite-difference time-domain (FDTD) [10, 11], finite 
element method (FEM) [12], finite integration technique (FIT) [13, 14], and method of moments (MoM) 
[15, 16]. In recent years, researchers have vigorously challenged the accurate calculation of the resonant 
frequency of CMAs. While most studies focus on designing and optimizing CMA structures [3, 17–20] 
and obtaining mathematical models for determining the resonant frequencies of the antennas [5, 7, 21–
24], there are also studies on computing the resonant frequencies or other characteristic parameters using 
neural network models [25–34]. In most recent studies, resonant frequency estimation was made in two 
ways: the closed-form expression approach and the neural model approach. Akdagli et al. [7] have 
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proposed a closed-form resonant length expression to compute the dominant operating frequency of C-
shaped compact microstrip antennas (CCMAs). To optimize the mathematical model, the authors have 
designed and simulated 144 CCMAs with various physical and electrical properties and utilized the 
artificial bee colony (ABC) algorithm [35–37]. In [23], mathematical expressions for resonant lengths 
of C-shaped and H-shaped CMAs are presented. Toktas et al. made simulations for certain parameter 
ranges, and the unknown variables of the expressions were determined employing the ABC algorithm 
[35–37]. Biswas and Dam [24] have introduced a closed-form mathematical model to calculate the probe 
reactance. In their study [24], an equilateral triangular patch antenna was fabricated, and the calculated 
resonant frequencies were compared with the measured and simulated resonant frequencies. A further 
equilateral triangle-shaped compact microstrip antenna study has been carried out by Kapusuz et al. 
[31]. In [31], the authors presented an artificial neural network (ANN) to determine the resonant 
frequency of equilateral triangular patch antennas for different TMmnp modes. Can et al. have proposed 
a multilayer perceptron (MLP) neural network (NN) model to calculate the operating frequency of 
coaxial-fed pin-loaded rectangular microstrip patch antennas [32]. The proposed MLPNN model [32] 
uses the physical and electrical properties of the antenna as input and estimates the upper and lower 
operating frequency of the antenna. Abbassi et al. [38] have designed a CMA operating at a frequency 
of 2.4 GHz and used a NN model to predict the S11 and gain parameters. Neebha and Nesasudha [34] 
have designed a CMA for C-band applications using an ANN model. Four antenna-related parameters 
were used as the network input, and two physical parameters were estimated [34]. Singh et al. [33] 
studied on a coaxial-fed E-shaped CMA (ECMA) operating at the 2.4 GHz frequency. In [33], to analyze 
the performances of the neural network models, the x- and y- coordinates of the coaxial feed were used 
as input, and resonant frequency, S11 value, VSWR value, and input impedance parameters were chosen 
as output. Sami et al. have proposed an ANN model to estimate the resonant frequency and quality factor 
of a circular microstrip antenna in the TM11 mode [25]. The authors have used isotropic substrate and 
uniaxially anisotropic substrate in MA design [25]. In another study, a neural model for the synthesis 
and analysis of rectangular MAs using uniaxially anisotropic substrates was developed by Barkat et al. 
[26]. The patch dimensions were used for synthesis, and the resonant frequency and bandwidth 
parameters were used for analysis [26]. In [30], Kaur and Sivia have proposed a miniaturized hybrid 
fractal antenna based on Giuseppe Peano and Cantor set fractals for biomedical systems. While the 
firefly algorithm (FA) [36, 39] was used to optimize the feeding point of the antenna [30], ANN was 
employed in the calculation of the two resonant frequencies. In a recently published study [29], a deep 
neural network-based (DNN-based) model consisting of five layers, three of which are hidden layers, 
has been proposed by Ustun et al. to calculate the resonant frequency of ECMAs. The authors simulated 
144 ECMAs and trained the neural model using the simulated data [29]. As mentioned above, several 
studies on the calculation or estimation of the resonance frequency of MAs have been done in the 
literature, but there is still insufficient study for the S11 and gain estimation. Studies on neural networks 
in the literature generally focused on estimating the resonance frequencies of antennas and their gains 
at this frequency. However, in this study, the estimation of S11 and gain values of the antenna not at a 
single frequency but in a certain frequency range was studied. S11 is a critical parameter that indicates 
whether the antenna carries the desired radiation performance in a frequency range and whether 
impedance matching is achieved in this range. The gain is also an important parameter as it takes the 
losses into account, representing the transmitted power in any direction with regard to an isotropic 
antenna. Hence, this study is focused on obtaining the S11 and gain curves of CCMAs designed. It is 
seen from the literature that the computer-aided design (CAD) tools and machine learning-based models 
are of great importance in guiding the antenna design process.   

In this study, a DNN-based neural model is proposed to estimate the S11 and gain parameter of CCMAs 
for a frequency range. CCMAs with a specific value range of physical and electrical parameters were 
designed and simulated using a full-wave electromagnetic solver based on FIT. The obtained S11 and 
the gain values for the desired frequency range were used to build a data set. The neural model was 
trained by utilizing the improved manta ray foraging optimization (MRFO) algorithm [40] based on the 
Lévy-flight (LF) mechanism [36, 41]. The estimated values were compared with the studies in the 
literature. 
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This paper is divided into six sections. In the first section, the definition of the problem is given by doing 
a literature review. The covers the antenna design and simulation are covered in the second section, and 
the third section introduces the manta ray foraging optimization algorithm and Lévy-flight mechanism. 
The neural model structure and the training process are included in the fourth section, while the 
numerical results and comparisons are given in the fifth section. In the last section, discussions about 
the study are mentioned. 

2. Design and Simulation of the C-shaped Compact Microstrip Antennas 

A C-shaped compact microstrip antenna (CCMA) consists of a dielectric substrate and two thin copper 
planes placed on either side of this substrate, as shown in Figure 1. The C-shape was formed by removing 
a portion having the dimensions of l x w from the right side of the radiating copper to make the shape 
of the plane similar to the letter-C. While the radiating C-shaped copper plane was placed on top of the 
substrate having a dielectric constant εr and thickness h, the ground plane covered the bottom. Coaxial 
feeding was chosen as the feeding technique for the convenience of performing parametric simulation 
studies. A 50-Ω probe was used to feed the CCMA at the point of (0.1L, 0.1W) for all CCMA designs. 

 

 
Figure 1 Three-dimensional representation of the coaxial-fed CCMA 

 
In MA designs, the h parameter is generally chosen to be much smaller than the free-space wavelength 
(λ0), as shown in Figure 1. In this case, the fringing field along the patch edges is minimal, while the 
electric field is almost normal along the patch surface [2]. Thus, as long as h << λ0, transverse magnetic 
(TM) field configurations are considered for MAs, whereas with increasing operating frequency, 
different field configurations may arise [2]. For TMmnp mode, the resonant frequency of a conventional 
rectangular MA (RMA) is calculated by Equation 1 [2]. 
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In Equation 1, the indices of the radiation mode, dielectric constant, magnetic permeability, and the 
velocity of the electromagnetic wave in free space are represented by (m, n, p), εr, µr, and v0, respectively. 
The µr variable defines the ferromagnetism level and can be taken as one for substrates used for the 
production of the MAs. Thus, in determining the resonant frequency of RMAs, the parameters L, W, h, 
and εr play essential roles. Since the mode of the lowest order resonant frequency is defined as the 
dominant mode, the mode orders are determined by placing the resonant frequencies in ascending order. 
When the condition L>W>h is satisfied, the lowest order resonance frequency for dominant mode TM010 
is obtained as given in Equation 2 [2]. 
 

(𝑓𝑓𝑟𝑟)010 =
𝑣𝑣0

2𝐿𝐿√𝜀𝜀𝑟𝑟
 (2) 

 

Considering Equation 2, the boundaries of the physical parameters of CCMAs were chosen so that the 
resonance frequency remained within the simulated frequency band range in the dominant mode. For 
CCMAs, l and w parameters were critical as they had caused electrical extension along the L- and W- 
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axes. The outer dimensions of L x W, the slot dimensions of l x w, the substrate thickness of h, and the 
dielectric constant of the substrate εr were considered for CCMAs. The L and l represented the lengths, 
while the widths were represented by W and w parameters. For the sake of simplicity, the impact of the 
feeding point on the S11 and gain parameters was neglected. The physical and electrical parameters of 
the CCMA, S11, and gain values for a specific frequency range were compulsory for training and testing 
the neural model. It was also important to choose a sufficient solution space for the proposed model to 
be trained. In order to achieve better results, the values should be chosen from a wide range of solutions, 
but simulating the entire solution area may take a long time. In this study, the values were chosen in a 
sufficiently wide range to ensure simplicity in simulation and training time. In order to sufficiently 
represent the solution space for the proposed model, the values of the thickness (h) and dielectric 
constant (εr) of the substrate, and the outer and inner dimensions of the radiating plane were chosen as 
shown in Table 1.  
 

Table 1 Physical and electrical parameters and values of designed CCMAs 
L W l w h εr Number of Simulations 

30 20 3, 11, 20 3, 9, 15 

1.6, 3, 4.5 2.33, 4.28, 6.15 

81 

45 30 4, 17, 30 4, 13, 22 81 

60 40 5, 22, 40 5, 17, 30 81 

75 50 6, 28, 50 6, 21, 37 81 

Total Number of Simulations 324 

L, W, l, w and h parameters are in mm. 

 
The values of l, w, h, and εr parameters shown in Table 1 were chosen to have 81 CCMA designs for 
each L x W pair. The height (h) and dielectric constant (εr) values were selected from the standard values 
provided by the substrate manufacturers. Depending on the technique-specific parameters of the FIT-
based solver, each simulation session took approximately 5.1 minutes on a computer having an Intel 
Core i7-9750H processor and 32 GB RAM. After the simulation process, the gain and S11 values were 
extracted from the results to generate a data set. Afterward, a seven-layered DNN-based neural model 
was modeled by seven inputs and two outputs. Statistical calculations, including as coefficient of 
determination (R2) score, mean absolute error (MAE) and mean squared error (MSE), were carried out 
using the gain and S11 values to measure training and testing performances. The followed topology is 
shown in Figure 2. 
 

 
Figure 2 The topology of the processes used in the study 
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3. Overview of the Manta Ray Foraging Optimization (MRFO) Algorithm 

The intelligent behavior of living beings has become an exciting research subject for researchers in 
recent years [35–37, 39, 40, 42]. One of the most recently introduced bio-inspired metaheuristic 
optimization techniques is the Manta Ray Foraging Optimization (MRFO) algorithm [40], which 
searches near-optimum solutions to complex engineering problems by imitating the intelligent foraging 
behaviors of manta rays. Manta rays are creatures that feed on plankton in the ocean and are highly 
skilled in finding abundant plankton resources. Manta rays can travel on their own as well as with groups 
of up to 50 members, but foraging is usually done in groups. Manta rays use three different mechanisms 
during the foraging phase, including chain foraging, cyclone foraging, and somersault foraging. 

3.1 Chain Foraging 

Chain foraging strategy is one of the foraging strategies of manta rays to explore resources that contain 
abundant plankton [40]. In this group based foraging strategy, manta rays are lined up head-to-tail 
towards the high dense plankton source. Thanks to chain sequencing, manta rays obtain the highest 
efficiency from the current position by allowing plankton missed by previous individuals to be caught 
by the next individuals in the population. The foremost manta ray travels freely to the high-density 
source of plankton, while other individuals follow those in front of them. The concentration level of 
plankton determines the position quality. In the MRFO algorithm [40], the positions of the individuals 
are updated by using Equation 3 according to the chain foraging strategy. Equation 3a is used to revise 
the position of the first individual in the population, while Equation 3b is used to update the remaining 
positions [40]. 
 

𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = �
𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) + 𝑟𝑟 ∙ �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� + 𝛼𝛼 ∙ �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� 𝑖𝑖 = 1 (𝑎𝑎)

𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) + 𝑟𝑟 ∙ �𝑥𝑥𝑖𝑖−1𝑑𝑑 (𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� + 𝛼𝛼 ∙ �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� 𝑖𝑖 = 2, … ,𝑁𝑁 (𝑏𝑏)
 (3) 

𝛼𝛼 = 2 ∙ 𝑟𝑟 ∙ �|𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)| (4) 
In Equation 3a and 3b, the variables x, r, and α and the indices d, t, i, and best represent the position, a 
random value between (0, 1), weight coefficient, dimension, time, individual, and the highest 
concentrated position, respectively. The weight coefficient α used in Equation 3 is calculated using 
Equation 4 [40]. 

3.2 Cyclone Foraging 

When manta ray groups discover plankton-dense positions in the deep waters, they travel to these 
positions with a unique strategy, called the cyclone strategy [40]. In this strategy, the manta rays are 
lined up as in the chain foraging strategy, and then each individual follows a spiral route while following 
the previous individuals. During the cyclone foraging mechanism, the positions of the individuals in the 
population are updated using Equation 5a for the first individual and Equation 5b for the other 
individuals [40]. 
 

𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = �
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑡𝑡) + 𝑟𝑟 ∙ �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� + 𝛽𝛽 ∙ �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� 𝑖𝑖 = 1 (𝑎𝑎)
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 (5) 

𝛽𝛽 = 2 ∙ 𝑒𝑒𝑟𝑟1
𝑇𝑇−𝑏𝑏+1
𝑇𝑇 ∙ 𝑠𝑠𝑖𝑖𝑛𝑛(2𝜋𝜋𝑟𝑟1) (6) 

 
The variable β in Equation 5, and the variables T and r1 in Equation 6 represent the weight coefficient, 
the maximum number of iterations, and a random number between 0 and 1, respectively. The 
exponential and sinusoidal terms in Equation 6 form the spiral route that is the basis of the cyclone 
strategy. By using Equation 7 and Equation 8, this foraging mechanism can be extended to allow each 
individual to randomly search for a better location by reference to their own best position to improve 
the global search performance of the MRFO algorithm [40]. 
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𝑥𝑥𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑏𝑏𝑑𝑑 + 𝑟𝑟 ∙ (𝑈𝑈𝑏𝑏𝑑𝑑 − 𝐿𝐿𝑏𝑏𝑑𝑑) (7) 

𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = �
𝑥𝑥𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑𝑑𝑑 + 𝑟𝑟 ∙ �𝑥𝑥𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� + 𝛽𝛽 ∙ �𝑥𝑥𝑟𝑟𝑟𝑟𝑚𝑚𝑑𝑑𝑑𝑑 − 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� 𝑖𝑖 = 1 (𝑎𝑎)
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 (8) 

 
The lower and upper limits for the solution space of the problem are defined by the variables Lb and Ub 
in Equation 7. The rand in Equation 7 and Equation 8 represents the randomness. In this mechanism, 
the position of the first individual is updated with Equation 8a, while the positions of the other 
individuals are updated using Equation 8b [40]. 

3.3 Somersault Foraging  

Another foraging strategy used by manta rays during foraging is the somersault strategy [40]. In this 
strategy, manta ray individuals try to pull the plankton towards the manta rays by making a series of 
somersaults as they circle around the position of the high-dense planktons. This mechanism is 
mathematically implemented as stated in Equation 9 for all individuals of the population [40]. 
 

𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) + 𝑆𝑆 ∙ �𝑟𝑟2 ∙ 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 − 𝑟𝑟3 ∙ 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡)� , 𝑖𝑖 = 1, … ,𝑁𝑁 (9) 
 
The variables S, r2, and r3 in Equation 9 represent the somersault coefficient and two randomly chosen 
numbers between 0 and 1, respectively. Somersault coefficient S is a coefficient that defines the 
somersault range of manta rays and can be selected as 2 [40]. 

3.4 Application of the Lévy-Flight Technique to MRFO 

The Lévy-flights method, proposed by the French mathematician Paul Lévy, is inspired by the natural 
ability that creatures in nature follow during hunting and foraging [36, 41]. When the solution quality 
in the current position cannot be increased during foraging, the new position is searched by moving 
quickly to a distant location, and this process is repeated until the best position is found [36, 41]. The 
Lévy-flights mechanism is used during the somersault foraging process as it offers easy applicability to 
the entire population in improving the best position of manta rays in the MRFO algorithm [40]. In this 
study, a randomly selected number was used as the decision value in implementing the Lévy-flights 
mechanism. The classical somersault strategy was used if the decision value had been lower than 0.5; 
otherwise, the Lévy-flight mechanism was used. By applying the Lévy-flight mechanism, the new 
positions of the individuals were calculated using Equation 10. 
 

𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = 𝐿𝐿é𝑣𝑣𝑣𝑣𝑑𝑑 ∙ �𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑 (𝑡𝑡)� , 𝑖𝑖 = 1, … ,𝑁𝑁 (10) 
 
The Lévyd parameter given in Equation 10 represents the step size of the Lévy-flight search mechanism 
and is formulated in Equation 11 [36, 41]. 
 

𝐿𝐿é𝑣𝑣𝑣𝑣𝑑𝑑 = 𝑐𝑐𝑙𝑙é𝑣𝑣𝑣𝑣
𝑟𝑟4𝑟𝑟5

|𝑟𝑟6|
1
𝜆𝜆
 (11) 

 
clévy and λ parameters given in Equation 11 are constants, and the values of the constants were chosen 
as 0.001 and 1, respectively. In Equation 11, r4, r5, and r6 are parameters that provide randomness. The 
r4 parameter is a random number in the range of [Lb, Ub], the r5 parameter is a random number chosen 
according to the Gaussian distribution in the range of [0, σ2], and the r6 parameter is a random number 
chosen according to the Gaussian distribution in the range of [0, 1] [36, 41]. As the Gamma function is 
a function defined as 𝛤𝛤(𝑥𝑥) = (𝑥𝑥 − 1)!, variance (σ2) was calculated by the expression given in Equation 
12 [36, 41]. 
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𝜎𝜎2 = �
𝛤𝛤(1 + 𝜆𝜆) ∙ 𝑠𝑠𝑖𝑖𝑛𝑛 �𝜋𝜋𝜆𝜆2 �

𝛤𝛤 �1 + 𝜆𝜆
2 � ∙ 𝜆𝜆 ∙ 2

𝜆𝜆−1
2
�

1
𝜆𝜆

 (12) 

 
Equation 12 is based only on the constant λ, and the value of λ was chosen as 1. The pseudocode for the 
MRFO algorithm [40, 42], including the Lévy-flight mechanism, is shown in Algorithm 1. 

 
Algorithm 1 Pseudocode of Manta Ray Foraging Optimization Algorithm 

1 
Initialize variables: population, maximum iteration number (Tmax), 
problem dimension, lower and upper boundaries, initial positions of 
manta rays, and objective function 

2 Compute objective function for initial positions and determine the best 
position 

3 REPEAT 
4  FOR each individual 
5   IF rand(0, 1) < 0.5 
6    IF t/Tmax <rand(0, 1) 
7     Apply Eq. (7) and Eq. (8) for cyclone foraging 
8    ELSE 
9     Apply Eq. (5) and Eq. (6) for cyclone foraging 
10    ENDIF 
11   ELSE 
12    Apply Eq. (3) and Eq. (4) for chain foraging 
13   ENDIF 
14   Compute objective function and choose the best solution 
15   IF rand(0, 1) < 0.5 
16    Apply Eq. (9) for somersault foraging 
17   ELSE 
18    Apply Eq. (10) for Lévy-flight mechanism 
19   ENDIF 

20   Compute fitness function for each manta ray and determine the best 
solution 

21  ENDFOR 
22 UNTIL (stop criterion is met) 

4. Optimizing the DNN-based Model using the Improved MRFO Algorithm 

The simulation study for 324 different CCMA designs with various physical and electrical values given 
in Table 1 was carried out utilizing a FIT-based full-wave electromagnetic solver, and the gain and S11 
values were obtained for the desired frequency range. The S11 value is defined as the reflection 
coefficient at a specific frequency, while the gain is an important parameter that includes all the losses 
of the antenna. In order to obtain the gain and S11 values, a certain number of frequencies (nf) must be 
determined between the lower frequency (fl) and the upper frequency (fu) in a particular frequency range. 
Furthermore, fl, fu, and nf were chosen as 1 GHz, 5 GHz, and 70, respectively, to limit the size of the 
data set and obtain a sufficient solution space for the model. Studies on CCMAs generally focus on the 
frequency band between 1 GHz and 10 GHz in the literature [7, 29, 33, 38], which has been influential 
in choosing the frequency range. A seven-layered DNN-based neural model was subsequently 
constructed, consisting of seven inputs and two outputs, as shown in Figure 3.  
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Figure 1 The proposed DNN-based model to predict the gain and S11 for a CCMA. 

 
As seen in Figure 3, the proposed model consists of an input layer with seven neurons, five hidden layers 
with 36 neurons for each one, and an output layer with two neurons to estimate the gain and S11. For 
each neuron in the hidden layers, the rectified linear unit activation function was used. In the training 
phase, data from 259 of the designed CCMAs was used, while the remaining data was used to test the 
model. Thus, 18144 pieces of S11 data were used for training the proposed model, while 4536 pieces of 
data were used to test the model. The training of the model can be defined as the determination of the 
weights and biases between layers of the DNN model that can estimate output values with the least error 
by using the input data set. In this study, the training of the proposed neural model was carried out using 
the improved MRFO algorithm [40] with the Lévy-flight mechanism [36, 41]. The weight matrices and 
bias vectors of the proposed neural structure constitute the problem variables of the optimization 
algorithm. In order to be used in the optimization process, the weight matrices and bias vectors were 
first transformed into a one-dimensional vector, and a single problem vector was created by combining 
these vectors. While the length of the problem vector determines the problem dimension, each vector 
element represents the problem variable to be optimized. In each iteration, the best solution computed 
by the algorithm was replaced by the weight matrices and bias vectors in the model, and predictions 
were made for the data set. Afterward, the MSE was calculated between the output values and the 
estimated values. The optimization algorithm continued the iterative process by searching for better 
solutions for the problem variables based on the mean squared error. In this study, the weight and bias 
matrices of the proposed model were optimized on an Intel I7-9750H CPU with 32 GB RAM. The 
flowchart of the optimization process is shown in Figure 4. 

5. Numerical Results and Discussion 

In this study, a seven-layered neural model with 5690 trainable parameters was proposed, and the model 
was trained during 5000 epochs with 18144 data. The training and test performances of the model were 
measured with the R2 score, MAE, and MSE given in Equation 13, Equation 14, and Equation 15, 
respectively. 
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Figure 4 The flowchart of the MRFO-based weight and bias optimization 
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𝑛𝑛
 (15) 

 
In Equation 13 through 15, the terms n, yt, yp, and yt,mean represent the number of data, the target value, 
the predicted value, and the mean of the predicted value, respectively. The best performance metrics for 
training and test processes were achieved when the seed value of the random number generator was 
chosen as 8025443. Table 2 presents the performance metrics of the proposed model. 
 

Table 1 Performance metrics of the proposed model for training, test, and the entire data 

Metrics Train Test Entire 
Length of Data Set 18144 4536 22680 
R2 score 0.925 0.922 0.950 
MAE 0.620 0.581 0.612 
MSE 3.862 2.446 3.579 

 
The performance metrics given in Table 2 were calculated for 70 frequency points using the physical 
and electrical properties of each antenna. From the table, it can be seen that the performance metrics of 
the proposed model for the test data are slightly better than the training data. For the current data set, 
the R2 score was found to be quite close to 1, while MAE and MSE metrics were quite acceptable. 
According to the results, it is noted that the proposed model is not over-fitted. Therefore it can be 
expected to predict near-accurate results for data not included in the solution space. The comparison of 
the desired and predicted S11 curves of randomly chosen four different CCMAs operating between 1 
GHz and 5 GHz is illustrated in Figure 5. 
 
 

  
(a) (b) 

  
(c) (d) 

Figure 5 The simulated and estimated S11 curves for the randomly chosen four CCMAs, Antenna (a) #1, (b) 
#2, (c) #3, (d) #4 (detailed in Table 3) 
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Table 2 Values of the physical and electrical parameters for the randomly chosen antennas for S11 curves 

 Values for antennas 
Properties #1 #2 #3 #4 
L (mm) 30 45 60 75 
W (mm) 20 30 40 50 
l (mm) 3 17 40 28 
w (mm) 9 13 30 21 
h (mm) 3 4.5 1.6 4.5 
εr 4.28 2.33 6.15 2.33 
R2 0.993 0.997 0.954 0.982 

 
For randomly chosen four CCMAs having different outer dimensions L x W, the predicted S11 values 
between 1 GHz and 5 GHz frequencies were obtained using the model, and the target and estimated S11 
values were compared in Figure 5 (a) – (d). The S11 curves illustrated in Figure 5 (a) and (b) demonstrate 
great harmony between the estimated S11 values and the target ones. As can be seen from Figure 5 (b) 
and (d), the increase in the values of the physical parameters causes acceptable discrepancies between 
the estimated and simulated values. In Figure 5 (c), the estimated values are consistent with the 
simulated values, but it is seen that the errors have increased slightly. The comparative curves for 
simulated and estimated gain values for four randomly chosen CCMAs are given in Figure 6. 
 

Table 3 Values of the physical and electrical parameters for the randomly chosen antennas for gain curves 

 Values for antennas 
Properties #1 #2 #3 #4 
L (mm) 30 45 60 75 
W (mm) 20 30 40 50 
l (mm) 3 17 40 28 
w (mm) 9 13 30 21 
h (mm) 3 4.5 1.6 4.5 
εr 4.28 2.33 6.15 2.33 
R2 0.982 0.968 0.995 0.996 

 

  
(a) (b) 

  
(c) (d) 

Figure 6 The simulated and estimated gain curves for the randomly chosen four CCMAs, Antenna (a) #1, (b) 
#2, (c) #3, (d) #4  (detailed in Table 4) 
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As shown in Figure 6, the model made relatively more errors for the estimation of the gain values than 
the S11 values. Due to the use of a single model with two outputs and the limited number of data, 
acceptable mismatches occurred between the estimated data and the simulation data. As seen in Figure 
5 and Figure 6, while the harmony is high at low frequencies, the discrepancy between the estimated 
data and the simulation data increases as the frequency increases. As mentioned in the literature review, 
most of the studies related to CCMAs have focused on optimizing the antenna designs for specific 
applications and obtaining mathematical models that usually provide the resonant frequency [3, 5, 6, 
17–34]. Although this study is not directly related to the estimation of resonant frequencies of CCMAs, 
the resonant frequencies in dominant mode (TM010) were indirectly estimated by the interpretation of 
the S11 curves, and the comparison between the results obtained in this study and the results in the 
literature [7, 23] is shown in Table 5. Comparisons of resonant frequencies are made based on the 
simulation results presented by [5]. 
 

Table 5 Comparative results and percentage errors on resonant frequencies 

# 

Slot 
dimensions 

(mm) 

Resonant frequencies (GHz) 
Percentage errors (%) Simulated Estimated  Calculated 

l w [5] This 
Study [22] [6] [5] This 

Study [22] [6] [5] 
#1 #2 #3 #1 #2 #3 

1 5 5 1.562 1.559 1.562 1.657 1.502 1.630 – 0.192 0.000 6.082 3.841 4.353 – 
2 10 10 1.445 1.452 1.426 1.497 1.398 1.408 – 0.484 1.315 3.599 3.253 2.561 – 
3 15 15 1.286 1.271 1.280 1.334 1.309 1.241 – 1.166 0.467 3.732 1.788 3.499 – 
4 20 20 1.130 1.102 1.136 1.178 1.231 1.111 1.002 2.478 0.531 4.248 8.938 1.681 11.327 
5 25 25 0.991 0.998 1.000 1.035 1.164 1.008 0.928 0.706 0.908 4.440 17.457 1.715 6.357 
6 40 30 0.899 0.892 0.890 0.924 – 0.893 0.856 0.779 1.001 2.781 – 0.667 4.783 
7 5 30 0.929 0.916 0.931 0.963 – 1.029 0.904 1.399 0.215 3.660 – 10.764 2.691 
8 10 30 0.887 0.881 0.911 0.938 – – 0.896 0.676 2.706 5.750 – – 1.015 
9 2 30 0.964 0.959 0.946 0.982 – – 0.910 0.519 1.867 1.867 – – 5.602 

Average percentage errors (APE) 0.933 1.001 4.018 7.055 3.606 5.296 
L=60 mm, W = 40 mm, h = 1.59 mm, εr = 2.33 
– Not available. 
 
The physical dimensions of antennas between #1 – #8 in Table 5 are within the range of dimensions, 
while #9 is outside the range. The dominant resonant frequencies estimated using the proposed model, 
however, were entirely in line with the literature, and the percentage error (PE) values were calculated 
to be considerably small. For literature data, the average PE (APE) value was calculated as 0.933% for 
the estimated resonant frequencies. Afterward, a CCMA with outer dimensions 30 x 20 mm2 and slot 
dimensions 3 x 7 mm2 was fabricated using Rogers RT/duroid 5870 substrate with a thickness of 1.57 
mm [23]. The antenna was fed from the bottom-left concerning the L-axis using a 90-degree SMA 
connector.  The S11 of the CCMA was measured by using Agilent E5071B ENA RF Series Network 
Analyzer. The estimated S11 curve using the proposed model was compared with the simulated and 
measured values of the fabricated antenna, and the comparative curves are shown in Figure 7. 
 

 
Figure 7 Comparison of the S11 curves for the CCMA (εr = 2.33) 
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While the S11 curve obtained in the simulation and the estimated S11 curve obtained by the model are in 
harmony, the measured S11 curve of the fabricated CCMA is similar in shape but shifts slightly to the 
left of the frequency axis, as shown in Figure 7. Since the model is trained using the data set obtained 
from the simulation, it yielded a similar result to the data obtained by the simulation, though with slight 
inaccuracy. The training data set needs to be expanded, and the number of layers in the model needs to 
be increased in order to achieve better results. However, since the study aimed to ensure that the training 
data set is precisely learned by the model, the result shown in Figure 7 is given only for the purpose of 
benchmarking. 

6. Conclusion 

Recent studies in the literature have focused on estimating the characteristics of microstrip antennas, 
such as resonant frequencies and gains, using machine learning methods. This study was focused on the 
estimation of S11 and gain values in a certain frequency range instead of estimating the resonant 
frequencies of microstrip antennas. For this purpose, a DNN-based neural model was proposed and 
optimized using the MRFO algorithm. The gain and S11 values of CCMAs, operating within the 
frequency range from 1 GHz to 5 GHz, were obtained for specific physical and electrical properties to 
build the data set. The weight matrices and bias vectors of the proposed model were optimized using 
this data set. R2 score that shows the success of the model for training and test data was obtained as 
0.925 and 0.922, respectively. Besides, the average percentage error (APE) for the prediction of resonant 
frequency between the obtained data with the literature data was calculated as 0.933%. It is seen that 
extending the data set by making more antenna designs having various physical and electrical 
characteristics and by making more simulations for smaller frequency steps in the wider frequency band 
will increase the performance of the model. The results show that DNN-based models can be utilized 
successfully in estimating the gain and S11 values of CCMAs. The proposed model gives fast and 
practical results, and it can be used as a computer-aided design (CAD) tool by antenna designers and 
researchers. 
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