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Abstract 

In power systems, the constant frequency, constant voltage, and the power output are desired and determine 

the quality of the generated electrical energy. Therefore, frequency control is crucial in power systems. The 

parameters of conventional controllers used in power generation plants are determined according to the 

system's characteristics at the stage of installation, they cannot adapt to the changing system dynamics as the 

lifespan of power plants increases. Thus, studies on the automatic adaptation of controller parameters to the 

continuously changing system dynamics are needed.  In this study, conventional PI and PID controllers 

applied to the power system for frequency control of a hydroelectric power plant were examined 

comparatively with Fuzzy Gain Scheduled PI (FGPI) controller and Adaptive Neuro-Fuzzy Inference System-

based PI (ANFIS-PI) and PID (ANFIS-PID) controllers in the simulation environment. The obtained results 

demonstrated that Adaptive Neuro-Fuzzy Inference System-based controllers were quite successful compared 

to the others. 
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Uyarlanabilir Nöro-Bulanık Çıkarım Sistemi Tabanlı Modern Kontrolörlerle Bir Hidroelektrik 

Santralinde Frekans Kontrolü 

Öz 

Güç sistemlerinde, tüketicinin beklentisi olan sabit frekans, sabit gerilim ve istenen değerdeki güç üretilen 

elektrik enerjisinin kalitesini belirler. Bu sebeple güç sistemlerinde frekans kontrolü oldukça önemlidir. Enerji 

üretim santrallerinde kullanılan klasik kontrolörlerin parametreleri kurulum aşamasındaki sistem özelliklerine 

göre belirlendiği için santral ömürleri arttıkça değişen sistem dinamiklerine uyum gösterememektedir. Bu 

istenmeyen durumu önleyebilmek için kontrolör parametrelerinin sürekli değişen sistem dinamiklerine 

kendiliğinden uyum gösterebilecek şekilde çalışmalara ihtiyaç duyulmaktadır. Bu noktadan hareketle enerji 

santrallerinde kullanılan kontrolörlerin ve parametrelerinin belirlenmesi konusunda yapılan bu çalışmada, bir 

hidroelektrik santralinin frekans kontrolü için güç sistemine uygulanan klasik PI ile PID kontrolörler, Fuzzy 

Gain Scheduled PI (FGPI) kontrolör ve Adaptive Neuro-Fuzzy Inference System tabanlı PI (ANFIS-PI) ile 

PID (ANFIS-PID) kontrolörler simülasyon ortamında karşılaştırmalı olarak incelenmiştir. Elde edilen 

sonuçlar Adaptive Neuro-Fuzzy Inference System tabanlı kontrolörlerin diğerlerine göre oldukça başarılı 

olduğunu göstermiştir. 

 

Anahtar Kelimeler: Güç Sistemleri, Frekans Kontrolü, Hidroelektrik Güç Santrali, FGPI, ANFIS-PI, 

ANFIS-PID 

 

1. Introduction 

Electric power generation has become more critical with increasing demand from both 

domestic and industrial consumers. The control of electric power plants has also become more 

important due to the fact that sudden changes in consumer demand, malfunctions in some 
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networks and even deteriorations occurring in the system frequency can lead to severe 

damage to both the consumer and the energy supplier. Therefore, fluctuations in the system 

frequency should be kept within specified limits. Besides all these, the production cost of 

electricity increases, and also the economic life of the equipment inside the plant decreases 

due to fluctuations in the amplitude of the output signal. These are both inefficient and 

undesirable. The load-frequency controllers (LFC) can minimize the transient deviations by 

maintaining the real frequency and the desired output power of the system (Kocaarslan and 

Çam, 2002; Gheisarnejad and Khooban, 2019). 

Around the world, the vast majority of electrical energy is observed to be produced in fossil 

fuel power plants such as thermal power plants, natural gas cycle power plants, nuclear power 

plants, and medical waste power plants. The damages and risks created by these power plants 

for the protection of the natural environment are known. Considering this situation, using 

hydroelectric power plants instead of fossil fuel power plants in energy generation is a 

necessity. The ability of hydroelectric power plants to produce energy without using fuel both 

contributes to the protection of the environment and increases the continuity and efficiency of 

the produced energy (Qian and Jianqiang, 2013; Tabakh, 2020). Energy generation must first 

be based on clean energy sources to meet the ever-increasing demand for energy with a 

sufficiently redundant supply. The fact that it is a renewable resource, has a minimal 

environmental impact, does not cause environmental pollution, has low operating and 

maintenance costs, and most importantly, is a national resource that supplies reliable energy 

dramatically increase the importance of hydroelectric energy (Eke,2004; Sevilgen and Erdem, 

2014). 

To date, various studies have been conducted on the control of hydroelectric power plants. In 

the study conducted by Shahgholian in 2017, a power system stabilizer application was 

proposed for load-frequency control in hydroelectric power plants (Shahgholian, 2017). 

Rinaldi et al. used the sliding mode observers method for an energy network consisting of 

thermal and hydroelectric power plants in the study they conducted in 2018 (Rinaldi et al., 

2018). The study conducted by Aurelien et al.  in 2019 used the PID Controller, Internal 

Model Control, and Robust Structure Theory methods for frequency control in a hydroelectric 

power plant (Aurelien et al., 2019). Simani et al.  used fuzzy logic control techniques for load-

frequency control in two area systems consisting of wind turbines and hydroelectric power 

plants in the study they conducted in 2019 (Simani et al., 2019). A fuzzy logic-based self-

tuning PID controllers was utilized and optimized by GA for the load frequency control 

(Ahmadi et al., 2020). The bat algorithm was presented (Yuniahastuti et al., 2016) to tune the 

controller Capacitive Energy Storage. To optimize the controller parameters in an isolated 

hydropower system, the cuttle-fish method was developed (Khari et al.,2020).Unfortunately, 

conventional controllers are still used in the existing hydroelectric power plants, and since 

their parameters are determined according to the features of the system at the stage of initial 

installation, they cannot adapt to the changing system dynamics as the lifespan of power 

plants increases. This situation causes efficiency loss in power plants and their serving below 

available capacities.  In order to prevent this undesired situation nowadays when energy loss 

is unacceptable, it is necessary to design controllers used in power generation plants with 

modern controllers in order to provide their self-adaptation to the continually changing system 

dynamics, or it is necessary to replace old controllers with modern controllers (Electricity 

Generation Company, 2019). 

In this study, the conventional controllers such as, PI and PID controllers have been replaced 

with FGPI controller, ANFIS-PI and ANFIS-PID controllers in the frequency control 
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application of a hydroelectric power plant model which had not been applied in a single area 

hydroelectric power plant previously and the obtained results were examined. 

2. Modeling of a Hydroelectric Power Plant 

To provide quality (constant frequency, desired voltage, and power) service to the consumer 

of electric energy, the power system must remain constant and reliable against disruption in a 

very wide range. Electric power systems are  complex and dynamic systems. Since 

hydroelectric power plants in the power system are open only to small load changes during 

their regular operation, a linearized model of the plant can be used in the analysis. The 

modeling of a hydroelectric power plant has been examined in two parts as the turbine model 

and generator model (Tabakh, 2020; Eke, 2004). 

2.1 Turbine model 

The hydroelectric power generation system displays a high grade and nonlinear behavior. 

Appropriate mathematical models are tools necessary for the simulation of such systems. 

When modeling a hydraulic turbine, two assumptions are addressed in particular. The first 

assumption is the neglect of the compressibility of water; the second assumption is the elastic 

water load effects (Vournas and Zaharakis, 1993). In the analysis of turbine dynamics, the 

effects of water load are also added. Mainly these effects make the penstock model between 

the dam and the turbine inlet difficult. Furthermore, the turbine-penstock mathematical model 

can be examined as linear and nonlinear models. The obtained models are essential for turbine 

control. In this study, research was conducted on the linearized model (Eke,2004). 

Since linear models are obtained within the framework of the working point, they can also be 

called small-signal models. These models are inferred from the fundamental equations of 

turbine and penstock characteristics with some simplifying assumptions for approximate 

modeling (Tabakh, 2020; Tiryaki and Gün, 2019; Naghizadeh et al., 2012; Eke,2004). 

The employed model is used in the small-signal analysis and studies on control system design. 

The non-elastic water load transfer function can be obtained by linearizing the penstock-

turbine basic equations. Moreover, small changes in mechanical power depend on changes in 

the distributor opening (Tabakh, 2020; Tiryaki and Gün, 2019; Naghizadeh et al., 2012; De 

Jaeger et al., 1994; Eke,2004). These results were demonstrated in the first-order transfer 

function equation in Equation (1): 

∆Pm(s)

∆G(s)
=

1−Tws

1+
1

2
Tws

                                                  (1) 

where 𝑇𝑤 was defined as the water time constant, ∆𝑃𝑚 as the change in mechanical power of 

the turbine, and ∆G as the position of the turbine water inlet distributor. s is the Laplace 

operator. 

2.2 Generator model 

In the power system, the dynamic behaviors of generators are important. The generator 

converts mechanical power into electrical power at a suitable voltage and frequency. Since 

system frequency and active power balance are interconnected, load-frequency control is 

generally used in power systems. The generator model is also based on the frequency change 

response. In order to establish this model, motion and oscillation equations are used. 
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The electrical model of the generator of which mechanical equations are known can be found 

with the help of oscillation equations of rotational inertia. Thus, the electricity production part 

is modeled with linear differential equations that can quickly respond to small disturbances. 

The oscillation equation associates the rotor torque angle of the machine with the acceleration 

torque, and this is the difference between the shaft torque and electromagnetic torque. When a 

balance is achieved between the mechanical torque and electrical torque, the speed of the 

generator is made constant. Any imbalance between torques causes acceleration or 

deceleration in the machine. The equation of motion in a rotating body is given as follows 

(Tabakh, 2020; Tiryaki and Gün, 2019; Kundur et al. 1994): 

Ta = M ∝= M
dω

dt
= M

d2δ

dt2 = Tm − Te             (2) 

where Ta was defined as the acceleration torque, M as the generator and turbine total moment 

of inertia, ∝ as the angular acceleration, ω as the angular velocity, δ as the generator phase 

angle, t as time, Tm as the mechanical torque, and Te as the electromagnetic torque.  The 

equation of motion is obtained as the unit value by using the electrical rotor angular velocity 

(Tabakh, 2020; Tiryaki and Gün, 2019; Kundur et al., 1994): 

𝑀
𝑑𝜔̅

𝑑𝑡
= 𝑇𝑚

̅̅ ̅̅ − 𝑇𝑒̅                                                       (3) 

Where 𝜔̅ was defined as the normalized angular velocity, 𝑇𝑚
̅̅ ̅̅  as the normalized mechanical 

torque, and 𝑇𝑒̅ as the normalized electromagnetic torque. Equation (3) should be arranged in 

terms of mechanical and electrical power instead of torque. 

The electrical power equation dependent on torque is expressed as P=ωT. By neglecting small 

oscillations around the working point and second-order terms, the following equation is 

obtained (Tabakh, 2020; Tiryaki and Gün, 2019: Kundur et al., 1994). 

∆𝑃̅ = 𝜔0̅̅ ̅̅ ∆𝑇̅ + 𝑇𝑜̅∆𝜔̅                                            (4) 

where, ∆𝑃̅ was defined as the normalized power change, 𝜔0̅̅ ̅̅  as the normalized initial angular 

velocity value, ∆𝑇̅ as the normalized torque change, 𝑇𝑜̅ as the normalized starting torque, and 

∆𝜔̅ as the normalized angular speed change. If the expressions of mechanical and electrical 

power and torque are put in Equation (4), Equation (5) is obtained (Tabakh, 2020; Tiryaki and 

Gün, 2019, Kundur et al., 1994). 

∆𝑃𝑚
̅̅̅̅ − ∆𝑃𝑒̅ = 𝜔0̅̅ ̅̅ (∆𝑇𝑚

̅̅ ̅̅ − ∆𝑇𝑒̅) + (𝑇𝑚0
̅̅ ̅̅ ̅ − 𝑇𝑒0

̅̅ ̅̅ ) ∆𝜔̅                                                           (5) 

where, ∆𝑃𝑚
̅̅̅̅  was defined as the normalized mechanical power change, ∆𝑃𝑒̅ as the normalized 

electrical power change, ∆𝑇𝑚
̅̅ ̅̅  as the normalized mechanical torque change, ∆𝑇𝑒̅ as the 

normalized electrical torque change, 𝑇𝑚0
̅̅ ̅̅ ̅ as the normalized starting mechanical torque, and 

∆𝑇𝑒̅ as the normalized starting electrical torque. In the steady state, mechanical torque is equal 

to electrical torque ( 𝑇𝑚0
̅̅ ̅̅ ̅ ≅ 𝑇𝑒0

̅̅ ̅̅  ). Accordingly, by combining Equations (3) and (5) and 

assuming that the initial conditions are zero, the relationship between mechanical power, 

electrical power, and speed change is obtained as follows (Tabakh, 2020; Tiryaki and Gün, 

2019; Kundur et al., 1994): 

∆𝑃𝑚
̅̅̅̅ − ∆𝑃𝑒̅ = 𝑀𝑠∆𝜔̅                                             (6) 
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In some cases, a more detailed generator model is required to take into account the power 

characteristics of the generator that feeds the isolated load source and of the local load. The 

most commonly used static model represents active power as the constant current and reactive 

power as the constant impedance. Loads consist of a wide variety of electrical elements, and 

since the system's short-time stability is concerned, using the static load model equations will 

be sufficient. In this case, the change in electrical power can be expressed as (Tabakh, 2020; 

Tiryaki and Gün, 2019; Kundur et al., 1994): 

∆𝑃𝑒̅ = ∆𝑃̅𝐿 + ∆𝑃𝐷
̅̅ ̅                                               (7) 

where, ∆𝑃̅𝐿 was defined as the normalized change in load, and ∆𝑃𝐷
̅̅ ̅ as the normalized change 

in electrical power due to damping. The change that occurs in power due to damping can be 

expressed as (Tabakh, 2020; Tiryaki and Gün, 2019; Kundur et al., 1994): 

∆𝑃𝐷
̅̅ ̅ = 𝐷∆𝜔̅ → 𝐷 =

∆𝑃𝐷̅̅ ̅̅

∆𝜔̅
                                    (8) 

The damping constant (D) is the percentage change that occurs in the frequency or angular 

velocity for the given percentage load change. Its typical value is around 1-2%. For example, 

if there is a frequency change of 1% in a load change of 1%, D = 1/1 = 1. Accordingly, if 

Equations (6), (7), and (8) are combined, the linearized and simplified model of a generator of 

which output is angular velocity or frequency, is obtained (Tabakh, 2020; Tiryaki and Gün, 

2019; Kundur et al., 1994): 

∆𝑃𝑚
̅̅̅̅ − ∆𝑃𝐿

̅̅ ̅ = (𝑀𝑠 + 𝐷)∆𝜔̅                              (9) 

In this study, it was assumed that there is no load change or the load is constant (∆𝑃𝐿
̅̅ ̅=0) since 

the application was performed in a hydroelectric power plant operating as a single area 

(Tabakh, 2020; Tiryaki and Gün, 2019). 

3. Controller design 

The parameters of the hydroelectric power plant consisting of the simplified and linearized 

turbine and generator blocks are given in Table 1. 

Table 1: Calculated values of the parameters of the simplified generator model. 

Symbol Name Value Unit 

𝑻𝒘 
 Turbine inlet water 

time delay 
2 sec 

𝑴 
 Angular Momentum 

of the Generator 
8 

(MW-

sec/MVAr) 

𝑫  Damping Constant 1 % 

 

The values given in Table 1 are used as simplified and linearized hydroelectric power plant 

parameters in many studies in the literature (Tabakh, 2020; Tiryaki and Gün, 2019; 

Naghizadeh et al., 2012). 

The block diagram used to control the system was developed in MATLAB R2020a 

(MATLAB, R2020a) and is presented in Figure 1. 
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Figure 1: Control block diagram of the hydroelectric power plant. 

Five controllers that are PI, PID, FGPI, ANFIS PI, and ANFIS PID have been used to control 

the power plant. 

The PI and PID controllers’ parameters that were calculated and optimized according to the 

system response curve method are presented in Table 2 (Tabakh, 2020; Yüksel, 2009).   

Table 2: The parameters of the conventional PI and PID controllers. 

Controller KP KI KD 

PI  1.2000 0.2000 * 

PID  1.6000 0.440 1.4400 

 

The FGPI controller is designed based on providing parameter changes of a PI controller with 

a fuzzy logic controller. The fuzzy logic controller works based on fuzzy rules which are 

given by the controller designer. Generally, the design has a knowledge working of the plant 

system to be controlled. 

The fuzzy logic control system comprises of two inputs. The first input is an error obtained by 

contrasting the reference input signal and output signal, while the second input is the change 

in the error with respect to time. The fuzzy logic controller comprises of three parts 

fuzzification, inference mechanism, and defuzzification. Here, the PI controller's parameters 

are applied to the system by adapting to the changing system dynamics. 

3.1 Proposed ANFIS-based controllers 

The adaptive network-based fuzzy inference system technique was first introduced by Jang in 

1993 (Jang, 1993). ANFIS is a simple data learning technique that uses fuzzy logic to convert 

inputs given via highly interconnected neural network processing elements and information 

links into the desired output (Jang, 1993).  

Basically, the ANFIS system applies the technique of artificial neural network learning rules 

to determine and set the structure and parameters of fuzzy inference systems. The system has 

the ability to learn the data given to it through fuzzy rules (Lutfy et al., 2009; Lutfy et al., 

2011). Jang developed a type of hybrid neuro-fuzzy inference expert system that works in the 

Takagi-Sugeno type fuzzy inference system (Jang, 1993).  

The architecture of ANFIS consists of five layers. Among these layers, both the first and 

fourth layers consist of adaptive neurons. However, the second, third, and fifth layers consist 

of fixed neurons. Adaptive neurons are associated with their own parameters and are updated 

appropriately with each of them in the next iteration, and the fixed nodes lack any parameters 

(Abraham, 2005; Alhanafy et al., 2010; Nazmy et al. 2010; Milosavljevic et al., 2008 ).  
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Considering two fuzzy rules based on the first-order Sugeno model: 

• Rule 1: (if x = A1) and (if y = B1), then       (f1 = p1x + q1y + r1) 

• Rule 2: (if x = A2) and (if y = B2), then      (f2 = p2x + q2y + r2) 

where, x and y are inputs, Ai and Bi are fuzzy sets. fi is the outputs within the fuzzy region, pi, 

qi and ri are design parameters determined in the training process. To implement these two 

rules, the ANFIS architecture was demonstrated in Figure 2. 

 

Figure 2: ANFIS architecture. 

Layer 1 is the fuzzification layer. The outputs of layer 1 are the fuzzy membership degree of 

the inputs and are given as follows: 

 𝑂𝑖
1 = 𝜇𝐴𝑖

(𝑥1);  𝑖 = 1,2                                    (10) 

𝑂𝑖
1 = 𝜇𝐵𝑖−2

(𝑥2);  𝑖 = 3,4                                 (11) 

where, x and y are the inputs of the layers, A and B  are a linguistic labels, and 𝜇𝐴𝑖
(𝑥)  and  

𝜇𝐵𝑖−2
(𝑦)functions can be selected as any fuzzy membership function. 

The output of layer 2 is a fixed node labeled M, which is the product of all incoming signals. 

The outputs of this layer can be represented as follows: 

 𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖

(𝑥) × 𝜇𝐵𝑖
(𝑥); 𝑖 = 1,2             (12) 

Layer 3 is the normalization layer and is a fixed node labeled N. 

𝑂𝑖
3 = 𝑤1̅̅̅̅ =

𝑤𝑖

𝑤1+𝑤2 
 ; 𝑖 = 1,2                            (13) 

where 𝑤1̅̅̅̅   represents the normalized output of layer 3. 

Layer 4 is the defuzzification layer. The output of each node in this layer is the product of 

normalized strength and a first-order polynomial. 

𝑂𝑖
4 = 𝑤𝑖̅̅ ̅𝑓𝑖 =  𝑤𝑖̅̅ ̅. (𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖) ; 𝑖 = 1,2       (14) 
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where (pi, qi , ri ) rule is the set out output parameters for i, and fi is the i order polynomial. 

Layer 5 is the summation neuron and is a fixed node that calculates the output as the sum of 

all incoming signals. 

𝑂𝑖
5 = 𝑦 = ∑ 𝑤𝑖̅̅ ̅. 𝑓𝑖𝑖=1 =

∑ 𝑤𝑖𝑓𝑖𝑖=1

𝑤𝑖
   ;   𝑖 = 1,2       (15) 

The flow chart of ANFIS is given in Figure 3. 

 

Figure 3:Flow chart of the ANFIS structure. 

The block diagram for the ANFIS-PID is given in Figure 4, the same diagram can be used for 

the ANFIS-PI controller by just setting the derivative coefficient (Kd) to zero. 

 

 Figure 4:Block diagram of the ANFIS controller. 

In Figure 4, the hydroelectric power plant is dynamic and conventional PI/PID controller 

alone cannot track dynamic changes of the plant. Therefore, ANFIS PI/PID controller can be 
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able to track the changes in the output of the plant and provide appropriate control signals 

(Tabakh, 2020). 

3.2 Data collection 

In order to collect the data of the ANFIS-PI controller used in this study, the time-varying KP 

and KI parameters of the conventional PI controller were taken as the system input. The time-

varying total output of the same controller was taken as the system output. 

1 second was chosen as the sampling time to receive the data. A total of 65 data were used. 

About 75% of the data was used for the training of the created Sugeno-based ANFIS model, 

and the rest was used for testing the accuracy of the system (Tabakh, 2020). 

Likewise, similar method was used to collect the data of the ANFIS-PID controller. 72 data 

were used, and.  75%  of the data was used for the training of the ANFIS model, and the rest 

was used for validating (Tabakh, 2020). 

3.3 Training 

Training is a learning process of the developed model. The model is trained until the results 

are achieved with minimum errors. Choosing the appropriate dataset is very important for 

proper training and verification. 

The number of epochs selected for the training of ANFIS-PI and ANFIS-PID controllers was 

determined as optimal 200. The minimum test error can be obtained in the first test. For the 

correct dataset, the test error decreases as training proceeds to a jump point. Excessive 

adaptation occurs when training exceeds this point. Optimization methods are used to learn 

about training data. During the learning process, the parameters of memberships are updated. 

There are two methods in MATLAB for ANFIS parameter optimization: The hybrid 

optimization method, a combination of least-squares and backpropagation gradient descent 

methods, and the backpropagation optimization method. As a result of the trials done for this 

study, the hybrid method was chosen as the most suitable method for the model. Error 

tolerance is used as the training stop criterion related to error size. Training will cease after 

the training data error remains within this tolerance. The conditions of ANFIS-PI and ANFIS-

PID controllers' training errors according to the number of iterations are presented in Figure 5. 

 

(a) ANFIS-PI 
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(b) ANFIS-PID 

Figure 5: Training errors. 

In Figure 5 (a) and (b),  three membership functions were used for each input of the ANFIS-

PI controller, and the average test error (Mean Squared Error-MSE) for the ANFIS PI and 

ANFIS PID  were found to be 0.0013753, and 0.00076873, respectively (Tabakh, 2020).   

3.4 Validation 

The validation dataset is used to test the generalization capacity of the fuzzy inference model 

produced by ANFIS and to validate the model. This validation is performed by applying the 

inspection data to the model and then observing how well the model responds to these data. 

Figure 6  demonstrated the error graphs of the validation data used for the ANFIS-PI and 

ANFIS-PID controllers. 

 

(a) ANFIS-PI 
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(b) ANFIS-PID   

Figure 6: Validation errors. 

In Figure 6 (a) and (b) , the average test error (Mean Squared Error-MSE) for the validation 

dataset of the ANFIS PI and ANFIS PID  were found to be 0.0015078 and 0.0008374 

respectively (Tabakh, 2020). 

4. Results and discussion 

The production of electricity by hydroelectric power plants depends on precipitation 

conditions, its total energy contribution changes every year, but approximately 16% of 

electrical energy (Zayoud, 2016) is produced from water worldwide. The size of the energy 

produced increases the importance of controlling these power plants. The simulation results 

for the control of the power plants using conventional controllers, FGPI, ANFIS PI and 

ANFIS PID controllers are shown in Figure 7 and Table 3.  A 5% band was used to make a 

comparison. 

  

Figure 7: Simulation results. 
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Table 3: Simulation results. 

 

 
ANFIS-PID  ANFIS-PI FGPI PI 

 

PID 

Settling 

Time 

(seconds 

9.2 11.5 21.03 21.76 

 

28 

 

Overshoot 

(%) 

1.2 0 9.4 11.2 

 

35.04 

 

One can see that in Figure 7 and Table 3, ANFIS-based controllers yield much better results 

than other controllers. At this point, the fact that the PI controller gave results much better 

than the PID controller and close to the FGPI controller proved the accuracy of its being 

generally preferred in hydroelectric power plants. It should be noted that while all the three 

controllers have settling time longer than 20 seconds, the PID controller has the longest 

settling time. 

Among ANFIS-based controllers that give the fastest results, the ANFIS-PID controller is 

observed to be 2.3 seconds ahead of the ANFIS-PI controller in terms of settling time. 

However, the overshoot value of the ANFIS-PI controller is 0, while the ANFIS-PID 

controller has an overshoot value of 1.2%.  In frequency control applications, systems with 

quick response are more preferred. 

5. Conclusion 

As can be understood from the simulation results, when ANFIS-based controllers are used, 

the system gives more good results than other controllers in terms of both settling time and 

overshoot value. Accordingly, the use of modern control techniques such as ANFIS-based 

controllers instead of conventional controllers in the frequency control of such hydroelectric 

power plants seems to be appropriate. 

The parameters of conventional controllers, which are generally preferred in the installation 

phase of existing hydroelectric power plants, are determined according to the features of the 

power plant's initial establishment conditions. However, as the power plant lifespan increases, 

these parameters cannot adapt to changing system dynamics. Since this situation causes loss 

of efficiency in power plants, energy losses is unacceptable, it is necessary to design 

controllers for hydroelectric power plants with modern controllers in order to provide their 

self-adaptation to the continuously changing system dynamics. 

Modern control methods such as Adaptive Neuro-Fuzzy Inference System based ANFIS-PI 

and ANFIS-PID controllers, have been applied in a hydroelectric power plant control, the 

effectiveness of the control system increases the efficiency of the power plant, and its 

depreciation decreases. Considering that these improvements were made for a single 

hydroelectric power plant and that 16% of the energy needs worldwide is met with this type 

of power plants. Furthermore, an advantage will be provided to the consumer with a decrease 

in electricity production costs. Most importantly, the production of energy from fossil fuels, 
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which are increasingly depleted and which pollute the environment and create danger, will be 

reduced in this way. 
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