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Abstract 

Remaining useful life (RUL) prediction is of great significance for prognostic and health management (PHM) as 
it can achieve more reliable and effective maintenance strategies. With the advances in the field of deep learning, 
data-driven methods have provided promising prognostic prediction results. Hence, this research presents a data-
driven prognostic approach based on deep learning models for predicting the RUL of mechanical systems 
effectively. Multiple separable convolution layers, a bidirectional Long Short-Term Memory (LSTM) layer, and 
fully-connected layers (FCL) are included in the proposed network, named the SC-BLSTM, to accomplish more 
accurate prognostic prediction from the raw degradation data acquired by different sensors. The proposed SC-
BLSTM approach aims to learn complex and nonlinear features from the input data and capture temporal 
dependencies from the learned features. The presented approach in this research is tested and verified on the 
degradation data of turbofan engines (C-MAPSS dataset) from NASA. The result demonstrated that the SC-
BLSTM is able to achieve more effective RUL prediction compared with some existing prognostic models. 

Keywords: Remaining useful life, deep learning, separable convolutions, bidirectional LSTM, prognostics 

1. Introduction 

Prognostics and Health Management (PHM) is crucially significant for providing productivity and 
availability of modern mechanical systems. While conventional procedures like corrective maintenance 
and preventive maintenance have limited ability to decrease the overall cost and avoid unexpected 
failures, PHM provides the requirements related to more effective maintenance decision-making [1]. 
The fundamental objectives of PHM technology consist of avoiding unexpected system failures, 
minimizing the overall costs, and enhancing the reliability of the entire system. The remaining useful 
life (RUL) prediction of machinery has recently attracted more and more attention in PHM technologies, 
which is one of the most critical and challenging tasks [2]. 

Generally, prognostic approaches such as RUL estimation can be grouped into three categorized: model-
based, data-driven, and hybrid methods [3]. Model-based techniques typically use historical degradation 
information to develop a mathematical model. They are less capable of predicting RUL effectively in 
complicated and noisy environments [4]. Conversely, data-driven methods aim to capture the 
degradation processing of complex mechanical systems using the past degradation data. With the recent 
advancements of sensor technology, data-driven models have been extensively utilized to estimate RUL 
effectively in the literature. Khazaee et al. [5] developed a new data-driven approach based on the 
artificial neural network (ANN) for RUL prediction of mechanical systems. Wang and Mamo [6] 
combined the gradient boosted regression (GBR) method and the artificial bee colony (ABC) algorithm 
to estimate the degradation progression of prismatic cells. As the last group, hybrid methods, which 
consist of the integration of model-based and data-driven methods, focus on taking advantage of the 
strengths of these models. Xue et al. [7] developed a prognostic approach that integrates unscented 
kalman filter and support vector regression (SVR) tuned by a genetic algorithm for RUL prediction. In 
this article, a novel data-driven technique is proposed for accurate and effective RUL estimation of 
mechanical systems. 

Recently, several prognostic approaches based on deep neural networks have been extensively 
introduced in order to capture complex and nonlinear patterns from degradation data, and these 
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approaches have significantly increased the efficiency and reliability of RUL prediction. Convolutional 
neural network (CNN) [8], long-short term memory (LSTM) [9], gated recurrent unit (GRU) [10], and 
some hybrid methods [11], [12] have been implemented to take advantage of their superiority. For 
instance, Chen et al. [13] built an encoder-decoder structure consisting of CNN, bidirectional GRU, and 
attention mechanism for bearing RUL prediction. Wang et al. [14] utilized multiple separable CNN and 
fully-connected layers (FCL) to extract high-level features from raw degradation data with the aim of 
estimating the RUL of machinery. A deep learning-based prognostic method with partial observations 
addressed by Li et al. [15] was applied to realize more accurate and effective RUL estimation using an 
image dataset of cutting wheel. 

Li et al. [16] presented a multi-scale deep CNN structure to learn complex features from turbofan engine 
degradation data, and their approach provided an effective RUL prediction performance. A hybrid deep 
learning framework that combines LSTM network and fully-connected layer introduced by Xia et al. 
[17] was handled to achieve RUL prediction of mechanical systems effectively. Yang et al. [18] 
presented a deep learning-based approach, which is combined CNN, attention mechanism and multiple 
bidirectional GRU, to investigate the interpretability of the neural network. Besides, an ensemble 
approach including CNN and bidirectional LSTM with multiple time windows developed by Tangbin 
Xia et al. [19] was utilized to learn the degradation trend of machinery.  

In this paper, an integrated deep learning approach, called the SC-BLSTM, including multiple separable 
CNNs, a bidirectional LSTM and fully-connected layers, is addressed to effectively accomplish the RUL 
prediction of machinery. Multiple separable CNNs with different kernel sizes are applied to obtained 
discriminative information from the raw degradation measurements collected with multiple sensors. The 
second component of the proposed network comprising a bidirectional LSTM layer is employed to 
capture high-level representations from the learned features. Finally, fully-connected layers are applied 
to estimate the RUL of machinery. Experimental results demonstrated that the SC-BLSTM approach 
performs better performance compared with the existing related models. The primary contributions of 
this research are listed as follows: 

● A data-driven based on multiple separable CNNs, bidirectional LSTM, and FCL is proposed for 
the RUL estimation of machinery so as to automatically reveal the sophisticated and nonlinear 
patterns from the degradation process. 

● The hyperparameters of the proposed method, including the dropout rate, the number of filters in 
each separable convolutional layer, the number of units and batch size, are tuned by a grid search 
algorithm. 

● Experimental consequences on the C-MAPSS dataset indicated that the presented method is 
capable of providing more effective RUL prediction compared with the existing relevant studies. 

The rest of this research is designed as follows. Section 2 gives details about the components of the 
presented approach. Section 3 explains the SC-BLSTM framework in detail. The experimental settings 
are introduced in Section 4. The experimental outcomes are offered to verify the effectiveness and 
superiority of the SC-BLSTM model. In Section 5, this paper is summarized and concluded. 

2. Technical Background 

In this section, it will be presented details of the background on the basic components of the network 
consisting of depthwise separable convolution and bidirectional LSTM. 

2.1 Depthwise separable convolution 

The depthwise separable convolution, which is also named separable convolution, aims to effectively 
extract temporal and cross-channel relationships from different sensor data. Depthwise separable 
convolutions have been widely applied in the field of image classification, as they reduce computational 
time and the number of network parameters and avoid redundant learning correlations [20]. In contrast 
to traditional convolution, depthwise separable convolution comprises two sections, including 
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depthwise convolution and pointwise convolution, as seen in Figure 1. In the first step, a single 
convolution kernel is implemented to each input channel by depthwise convolution to capture temporal 
patterns separately. The number of input channels remains the same following the operation of 
depthwise convolution. This operation can be formulated as in Equations 1. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ, 𝑥𝑥)(𝑖𝑖,   𝑗𝑗) = �𝑊𝑊(ℎ,   𝑙𝑙)

𝐻𝐻,𝐿𝐿

ℎ,𝑙𝑙

∗  𝑥𝑥(𝑖𝑖+ℎ,   𝑗𝑗+𝑙𝑙) (1) 

Where 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ represents the weight matrix of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝐻𝐻 and 𝐿𝐿 denote the height and width of the 
input data. The ∗ mark is the convolution operator. (𝑖𝑖, 𝑗𝑗) represents the coordinates of the output features. 
As the second step, pointwise convolutions apply a 1𝑥𝑥1 convolution operation by combining the outputs 
of the first step. This step aims to effectively extract the cross-channel patterns from different data [21]. 
Accordingly, pointwise convolution operation can be expressed as: 

𝑃𝑃𝐶𝐶𝑖𝑖𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑑𝑑𝑝𝑝𝑖𝑖𝑝𝑝𝑑𝑑 , 𝑥𝑥)(𝑖𝑖,   𝑗𝑗) = �𝑊𝑊𝑘𝑘

𝐾𝐾

𝑘𝑘

∗  𝑥𝑥(𝑖𝑖,   𝑗𝑗) (2) 

Where 𝑊𝑊𝑑𝑑𝑝𝑝𝑖𝑖𝑝𝑝𝑑𝑑 denote the weight matrix. 𝑘𝑘 is the size of convolution kernel. In general, the overall 
operation of depthwise separable convolution can be calculated by 

𝑆𝑆𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ ,𝑊𝑊𝑑𝑑𝑝𝑝𝑖𝑖𝑝𝑝𝑑𝑑 , 𝑥𝑥)(𝑖𝑖,   𝑗𝑗) = 𝑃𝑃𝐶𝐶𝑖𝑖𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑑𝑑𝑝𝑝𝑖𝑖𝑝𝑝𝑑𝑑 , 𝑥𝑥)(𝑖𝑖,   𝑗𝑗) 𝑥𝑥 (𝑊𝑊𝑑𝑑𝑝𝑝𝑖𝑖𝑝𝑝𝑑𝑑 ,
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ , 𝑥𝑥)(𝑖𝑖,   𝑗𝑗)) (3) 

 

 
Figure 1 Depthwise separable convolution. 

2.2 Bidirectional LSTM 

In the SC-BLSTM model, bidirectional LSTM (BLSTM) is used to obtain temporal correlations 
between the features learned by separable CNN. BLSTM is widely employed in different time series 
prediction problems and indicates remarkable performance in RUL estimation applications [22]. The 
conventional LSTM layers consider the sequences of past information in a single direction. On the other 
hand, BLSTM consists of two different LSTM layers, which is utilized to consider past and future 
information. As is illustrated in Figure 2, the output of the BLSTM is obtained by combining the outputs 
of two layers. The overall process of BLSTM can be formulated as follows. 

ℎ�⃗ 𝑑𝑑 = 𝛿𝛿(𝑊𝑊ℎ��⃗ , ℎ���⃗ ⋅ ℎ�⃗ 𝑑𝑑−1 + 𝑊𝑊ℎ��⃗ ,𝑥𝑥 ⋅ 𝑥𝑥𝑑𝑑 + 𝑏𝑏ℎ��⃗ ) (4) 

ℎ𝑑𝑑 = 𝛿𝛿(𝑊𝑊ℎ,ℎ ⋅ ℎ𝑑𝑑+1 + 𝑊𝑊ℎ,𝑥𝑥 ⋅ 𝑥𝑥𝑑𝑑  +  𝑏𝑏ℎ) (5) 

ℎ𝑑𝑑 = 𝜃𝜃(𝑊𝑊ℎ,ℎ ⋅ ℎ𝑑𝑑 + 𝑊𝑊ℎ,ℎ��⃗ ⋅ ℎ�⃗ 𝑑𝑑) (6) 
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Where ℎ�⃗ 𝑑𝑑 denotes the forward LSTM layer, ℎ𝑑𝑑 representes the backward LSTM layer. 𝛿𝛿(∙) represents 
the LSTM operation. 𝜃𝜃(∙) denotes the activation function. 

 
Figure 2 The Structure of Bidirectional LSTM. 

3. The Proposed SC-BLSTM Model 

Figure 3 illustrates the presented SC-BLSTM approach's architecture. First, two 1D separable CNN is 
built to automatically discover superior representations from the raw sensor measurement. The size of 
input data is 𝐷𝐷𝑡𝑡 𝑥𝑥 𝑓𝑓𝐷𝐷, where 𝐷𝐷𝑡𝑡 denote the time window size and 𝑓𝑓𝐷𝐷 is the number of the predetermined 
features. In each separable CNN, the size of the kernels is different from each other. After learning the 
discriminative information by two separable CNNs, a BLSTM layer is used to effectively capture 
temporal dependencies from the extracted features. Then, a fully-connected layer is employed to map 
the learned features. In the last layer, a fully-connected layer with a single neuron is utilized as the output 
layer of the proposed network to perform RUL prediction. 

 
Figure 3 The Framework of the SC-BLSTM Model. 

As depicted in Figure 4, the SC-BLSTM method comprises three steps; data preprocessing step, training 
step and testing step. In data preprocessing step, the raw degradation data is processed to perform 
effective prognostic prediction with the SC-BLSTM method. Training step aims to construct the 
optimized network using training dataset. Finally, the trained SC-BLSTM method is applied in testing 
step to achieve promising prognostic predictions using the testing dataset. To prevent the overfitting 
problem in the training step, the dropout operation is adopted after the BLSTM layer and the first FCL. 
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Besides, the mean square error (MSE) is applied as the loss function of the SC-BLSTM approach, which 
is formulated as follows. 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑁𝑁𝑠𝑠
�(𝐶𝐶𝑖𝑖 − 𝐷𝐷𝑖𝑖)2
𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (7) 

Where 𝑁𝑁𝑠𝑠 is the number of the samples, 𝐶𝐶𝑖𝑖 denotes the observed RUL values, and 𝐷𝐷𝑖𝑖 represents the 
predicted RUL. In the proposed approach, the Adam algorithm is adopted to optimize the weight and 
biases of the network and enhance the prediction performance. 

 
Figure 4 Implementation process of the SC-BLSTM prognostic approach. 

4. Experimental Study 

This section shows the RUL estimation performance of the proposed SC-BLSTM approach and 
comparisons with the existing works. The assessment of the prognostic prediction performance is 
performed on the popular turbofan engine C-MAPSS dataset. 

Table 1 The details of the turbofan engine dataset 
Data FD001 FD002 FD003 FD004 

Units for training 100 260 100 249 
Units for testing 100 259 100 248 
Operating conditions 1 6 1 6 
Fault modes 1 1 2 2 

4.1 C-MAPSS dataset 

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset [23] introduced by 
NASA has been extensively utilized for the evaluations of RUL prediction. The C-MAPSS dataset is 
related to the aircraft turbofan engines degradation. This dataset is categorized into four subsets with 
varying operating conditions and fault modes, as depicted in Table 1, and each subset contains a training 
dataset and a testing dataset. All subsets include measurements collected by 21 sensors, engine number, 
time step, and three operational situations. The main aim is to predict the RUL value of each turbofan 
engine unit in the testing dataset. In this research, the maximum values of the training labels are clipped 
to no more than 125 with the aim of decreasing the prediction error when the actual RUL is greater than 
125. This situation, which is a rectified RUL procedure, has been reported to remarkably enhance overall 
prognostic RUL prediction performance in the literature [17], [19]. The detailed definitions regarding 
the C-MAPSS are addressed in [23]. In this paper, FD003 and FD004 are used in experimental studies. 
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4.2 Experimental setting 

In this article, the grid search algorithm is used to tune the hyperparameters of the proposed SC-BLSTM 
model for the purpose of increasing RUL estimation accuracy. The hyperparameters that need to be 
optimized consist of the number of filters in two separable CNN, the rate of dropout, and the number of 
units in BLSTM and FCL. To refrain from a large grid search space due to the computational time, the 
number of units and filters vary from 8, 16, 24, 32, to 48. Besides, the rate of dropout varies from 0.2, 
0.3, to 0.5. Moreover, it should be noticed that 5-fold cross-validation is adopted in the training phase 
of each subset. The hyperparameters values tuned by the grid search algorithm and the other parameters 
values of the proposed network are reported in Table 2. 

In the C-MAPSS dataset, several sensors have constant measurements that do not offer valuable 
information for RUL prediction. For this reason, these sensors measurements are removed from the 
input data. In this study, it is preferred 14 sensor measurements consisting of 2, 3, 4, 7, 8, 9, 11, 12, 13, 
14, 15, 17, 20, and 21 as the raw input data. Besides, the data gathered by the different sensors are 
standardized to be in the range [0, 1] utilizing the Min-Max scaling technique by Equation 8. 

𝑥𝑥𝑖𝑖′ =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑝𝑝

𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑝𝑝
 (8) 

For the purpose of appraising the performance of the suggested SC-BLSTM method, two metrics 
comprising the root mean square error (RMSE) and the scoring function have been adopted in this paper. 
The scoring function has been widely employed by various researchers in works regarding the C-
MAPSS. These metrics are calculated as follows. 

𝑆𝑆𝑆𝑆𝐶𝐶𝑆𝑆𝑖𝑖𝐶𝐶𝑆𝑆 = {�𝐷𝐷𝑥𝑥𝐷𝐷 𝐷𝐷𝑥𝑥𝐷𝐷 �−
𝑑𝑑𝑖𝑖
13
�

𝑁𝑁

𝑖𝑖=1

 − 1,      𝑑𝑑𝑖𝑖 < 0 �𝐷𝐷𝑥𝑥𝐷𝐷 𝐷𝐷𝑥𝑥𝐷𝐷 �
𝑑𝑑𝑖𝑖
10
�

𝑁𝑁

𝑖𝑖=1

 − 1,          𝑑𝑑𝑖𝑖 ≥ 0 (9) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �
1
𝑁𝑁
�𝑑𝑑𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

 (10) 

Where N represents the total number of the samples and 𝑑𝑑𝑖𝑖 = 𝑅𝑅𝑅𝑅𝐿𝐿𝑖𝑖 − 𝑅𝑅𝑅𝑅𝐿𝐿𝑖𝑖′  is the prediction error for 
the 𝑖𝑖 data sample. In addition, the testing dataset is fed into the proposed SC-BLSTM approach trained 
using the training dataset to estimate the RUL of the turbofan engine, and the prediction accuracy of the 
SC-BLSTM model is acquired.  

Table 2 Parameter settings of the experimental methods 

Parameter Value (FD003 / 
FD004) Parameter Value (FD003 / 

FD004) 
Number of filters 8-48 / 16-16 Activation function Tanh / Tanh 
Kernel sizes 3-5 / 3-5 Time window size 30 / 30 
Neurons in BLSTM 48 / 8 Panding same / same 
Neurons in FCL 16/ 20 L2 regularization 1e-4 / 1e-4 
Dropout rate 0.4 / 0.3 Learning rate 0.001 / 0.001 
Batch size 100 / 100 Rearly 125 
Number of epochs 150 /150 Optimizer Adam 

 
Finally, a specific seed value is adopted to provide reproducible results from the proposed network. All 
experiments are conducted on a personal computer with Intel Core i7-9750H CPU, and 16 GB of RAM 
using the Tensorflow 2.5.0 and sci-kit learn 0.24. 

4.3 Results analysis and discussions 

In this section, the prognostic outcomes achieved by the SC-LSTM approach for RUL estimation 
utilizing the C-MAPSS dataset are analyzed and compared with the results of the existing related 
methods in the literature.  
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The RUL estimation results of the test engines according to the last recorded life cycles from the subset 
FD003 and FD004 are illustrated in Figure 5. The test engines are sorted by the actual RUL values for 
better visualization. It can be obviously observed that the prognostic prediction values of the SC-LSTM 
approach are capable of following the real RUL values of the testing engine units in FD003 and FD004 
subsets generally. In particular, it has been seen that the prediction error tends to be more in cases where 
the real RUL values of the test engines are higher. Moreover, the prognostic prediction effectiveness of 
the presented SC-BLSTM model on the FD003 sub-dataset is superior compared with the prediction 
results of the FD004 sub-dataset. The reason is that the FD004 subset consists of more operational 
situations and fault modes. Generally, it can be observed that the presented SC-BLSTM approach has 
the ability to learn the degradation progression of the mechanical systems. 

 
(a) FD003 

 
(b) FD004 

Figure 5 Comparison of prediction results for test engines sorted RUL in FD003 and FD004. 

In order to investigate the proposed SC-BLSTM prediction performance for the life-time of a turbofan 
engine unit, the life-time prediction results of four different units in FD003 and FD004 sub-datasets are 
demonstrated in Figure 6. The numbers of randomly selected units from the test engines in the FD003 
and FD004 sub-datasets are 39, 94, 40, and 68, respectively. It has been observed that the SC-BLSTM 
approach can mostly perform a remarkable RUL estimation over the degradation progression in all four 
examples. Furthermore, the developed SC-BLSTM approach tends to predict RUL values in the early 
stages to be adjacent to the rectified Rearly as illustrated in all subplots. Afterwards, it can be said that 
RUL estimates tend to decline linearly until the end of their life cycle of test engine units. In the last 
periods of the degradation processes of 39, 94, and 40 engine units, the RUL prediction errors have a 
small value. This shows that the performance of the RUL prediction improves when the testing turbofan 
engines are close to failure. The prognostic efficiency in the last periods of the mechanical systems is 
important to make effective maintenance decisions, ensure system reliability and availability, and 
decrease the overall cost. The proposed SC-BLSTM model is able to achieve more robust and effective 
prognostic prediction in the last stages. 
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Figure 6 Examples of RUL estimations for the test engines units in FD003 and FD004. 

In this research, the C-MAPSS dataset utilized to evaluate the performance of techniques developed for 
prognostic analysis is discussed, and the prognostic accuracy of the SC-BLSTM is compared with the 
existing data-driven approaches. According to RMSE metric, Table 3 reports a comparison of the SC-
BLSTM with the other state-of-the-art approaches consisting of Extreme learning machine (ELM) [24], 
Multilayer Perceptron (MLP) [24], Support Vector Regression (SVR) [25], Relevance Vector 
Regression (RVR) [25], Deep belief network (DBN) [24], CNN [25], and MODBNE [24]. From Table 
3, it can be said that the presented SC-LSTM approach has provided a promising prognostic accuracy 
compared with the results of the other benchmark approaches in terms of RMSE metric. Compared to 
the MODBNE approach with the second-best RMSE values on FD003 and FD004 subsets, the proposed 
SC-BLSTM method approximately achieves an enhancement of 1.28% and 1.40%, respectively. 

Table 3 RUL prediction results of various models. 

Related Approaches RMSE 
FD003 FD004 

ELM [24] 18.90 38.43 
MLP [24] 18.47 30.96 
RVR [25] 22.37 34.34 
SVR [25] 21.05 45.35 
DBN [24] 14.71 29.88 
CNN [25] 19.82 29.16 
MODBNE [24] 12.51 28.66 
Proposed SC-BLSTM 12.35 28.26 

 

Table 4 illustrates the prediction performance of the SC-BLSTM method related to the scoring metric 
on the sub-dataset FD003 and FD004. It can be said that the prognostic prediction errors of the SC-
BLSTM approach perform generally smaller results compared with the other state-of-the-art techniques 
in terms of the scoring metric. More specifically, the SC-BLSTM approach obtains the best prediction 
performance on the subset FD003. On the other hand, it performs the second-best on the subset FD004. 
In summary, the proposed SC-BLSTM approach has achieved a promising prognostic performance in 
mechanical systems taking into consideration all experimental consequences. 

5. Conclusions 

In this article, a deep learning-based prognostics approach, named SC-BLSTM, is addressed for the 
RUL prediction of mechanical systems. The presented SC-BLSTM employs the integration of the two 
separable CNN, a BLSTM layer, and fully-connected layers to achieve more accurate and reliable RUL 
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Table 4 A comparison of the Scoring metrics obtained from different approaches. 

Related Approaches 
Scoring 

FD003 FD004 
ELM [24] 573.78 10444.35 
MLP [24] 479.85 121414.47 
RVR [25] 1431.60 26509.00 
SVR [25] 1598.30 371140.00 
DBN [24] 442.43 7954.51 
CNN [25] 1596.20 7886.40 
MODBNE [24] 421.91 6557.62 
Proposed SC-BLSTM 222.24 6849.18 

 

prediction from multivariate degradation data. Firstly, two separable CNN modules are constructed to 
automatically learn the complex and nonlinear characteristics from the raw degradation data. Then, a 
BLSTM layer is leveraged to effectively capture temporal dependencies from the inputs. Finally, the 
extracted high-level features are fed into the fully-connected layers to achieve RUL prediction. In the 
SC-BLSTM approach, the dropout procedure is applied to overcome the overfitting in the training 
processing.  

The effectiveness and superiority of the SC-BLSTM method are experimentally verified using the C-
MAPSS turbofan engine dataset. The comparison between the proposed method and the existing related 
studies reveals that the SC-BLSTM method offers promising solutions in real-life PHM applications. 
More specifically, it is observed that RMSE metrics of the SC-BLSTM method on the FD003 subset 
have improved 6.04%, 37.69%, and 1.28%, respectively, compared with the other DBN, CNN, and 
MODBNE approaches. Besides, the reduction on the FD004 subset in terms of RMSE is 5.42%, 3.09%, 
1.40%, respectively. It should be mentioned that although the SC-LSTM method performs the best RUL 
accuracy in the FD003 subset in terms of the scoring criteria, our method provides the second-best result 
in the FD004 subset. In future research, it will be focused on developing a hybrid structure based on 
transfer learning and deep learning methodologies to accomplish more effective RUL prediction of 
mechanical systems. 
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