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Abstract: In this study, we define new vector fields along a Frenet curve with nonvanishing curvatures

in 4-dimensional Minkowski space R4
1 . By using these vector fields we obtain some new planes and curves.

We show that these planes play the role of the Darboux vector. We characterized that, osculating curves

of the first kind and rectifying curves in Minkowski space R4
1 can be given as space curves whose position

vectors always lie in a two-dimensional subspace.

Keywords: Rectifying curve, Frenet curve, Darboux vector.

1. Introduction

The classical differential geometry of curves has been studied by several authors. İlarslan and

Boyacıoğlu studied position vectors of a timelike and a null helice in R3
1 [5]. İlarslan and Nesovic

gave the necessary and sufficient conditions for null curves in E4
1 to be osculating curves in terms

of their curvature functions [6].

İlarslan, Nesovic and Petrovic-Torgasev characterized rectifying curves in R3
1 [7]. Ali and

Önder characterized rectifying spacelike curves with curvature functions in Minkowski spacetime

[1]. Keleş, Perktaş and Kılıç studied Biharmonic Curves in LP-Sasakian manifolds [8].

Vector fields have always been used for characterizing differential geometry of curves and

surfaces in 3-dimensional and higher dimensional spaces. Natural vector fields in space, Frenet vec-

tor fields along curves and the Darboux vector field of a curve in 3-dimensional and 4-dimensional

spaces are well known. These vector fields determine most geometric properties of curves and

spaces. Frenet vector fields along a curve constitute an orthonormal frame. This frame is called

the Frenet frame and it includes all the information about the curve. The rate of change of

the Frenet frame is given by Frenet formulas. These formulas can be rewritten as vector prod-

ucts by means of the Darboux vector field which determines the instantaneous axis of rotation
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of Frenet frame. Therefore, the Darboux vector field plays an important role for space curves in

3-dimensional and 4-dimensional spaces.

In the literature, we can find a generalized Darboux vector in En and as a special case

in E4 [2]. Izumiya and Takeuchi [4] defined new special curves in Euclidean 3-space which they

called slant helices and conical geodesic curves. Yaylı, Gök and Hacısalihoğlu [12] gave some

relations between non-helical extended rectifying curves and their Darboux vector fields using any

orthonormal frame along the curves.

Along a space curve with nonvanishing curvatures in E4 Düldül introduced four special

vector fields. Later, by using the introduced vector fields, he defined some new planes and curves.

Düldül showed that the determined new planes play the role of the Darboux vector [3].

This paper is organized as follows: In the second section we give basic notions for curves

and vector fields along Frenet curves. We give main results, theorems and corollaries for new kind

Frenet curves in the third section.

2. Preliminaries

The Minkowski space R4
1 is the standart vector space equipped with an indefinite flat metric g

given by

g = dx2
1 + dx2

2 + dx2
3 − dx2

4 (1)

where (x1, x2, x3, x4) is a rectangular coordinate system of R4
1 . A vector v in R4

1 is called a

spacelike, timelike or null (lightlike) if respectively hold g(v, v) > 0 , g(v, v) < 0 or g(v, v) = 0 and

v ≠ 0 . The norm of a vector v is given by ∥v∥ =
√
∣g(v, v)∣ . Two vectors v and w are said to be

orthogonal if g(v,w) = 0 [7].

An arbitrary curve α ∶ I → R4
1 can locally be spacelike, timelike or null if respectively all of

its velocity vectors α′(s) are spacelike, timelike or null.

Let {T (s),N(s),B1(s),B2(s)} be the moving Frenet frame along the curve α(s) in R4
1 .

Then the vector fields T,N,B1,B2 are the tangent, the principal normal, the first binormal and

the second binormal vector fields, respectively.

Let α be a spacelike curve in R4
1 , parametrized by arc length function of s . The following

cases occur for the spacelike curve α [10].

Case I: Let the vector N be spacelike and B1 be timelike. In this case there exists only

71



Müslüm Aykut Akgün / FCMS

one Frenet frame {T,N,B1,B2} for which α(s) is a spacelike curve with Frenet equations

∇TT = k1N

∇TN = −k1T + k2B1 (2)

∇TB1 = k2N + k3B2

∇TB2 = k3B1

where T , N , B1 and B2 are mutually orthogonal vectors satisfying the equations

g(N,N) = g(T,T ) = g(B2,B2) = 1, g(B1,B1) = −1 (3)

Case II: Let the vector N be timelike. In this case there exists only one Frenet frame

{T,N,B1,B2} for which α(s) is a spacelike curve with Frenet equations

∇TT = k1N

∇TN = k1T + k2B1 (4)

∇TB1 = k2N + k3B2

∇TB2 = −k3B1

where T , N , B1 and B2 are mutually orthogonal vectors satisfying the equations

g(T,T ) = g(B1,B1) = g(B2,B2) = 1, g(N,N) = −1 (5)

Recall that the functions k1 = k1(s) , k2 = k2(s) and k3 = k3(s) are called the first, the second

and the third curvature of the spacelike curve α(s) , respectively and we will assume throughout

this work that all the three curvatures satisfy ki(s) ≠ 0 , 1 ≤ i ≤ 3 .

Definition 2.1 [7] Let γ be a Frenet curve in R4
1 . γ is called as a rectifying curve if its position

vector lies always in the orthogonal complement of its principal normal vector field.

Definition 2.2 [9] Let γ be a Frenet curve in R4
1 . γ is called as an oscullating curve of first kind

if its position vector lies always in the orthogonal complement of its first binormal vector field.

Definition 2.3 [11] Let (e1, e2, e3, e4) be the standart basis of R4
1 . The vector

X ⊗ Y ⊗Z =

RRRRRRRRRRRRRRRRRR

e1 e2 e3 −e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

RRRRRRRRRRRRRRRRRR

(6)

is called the ternary product of the vectors X = ∑4
i=1 xiei , Y = ∑4

i=1 yiei and Z = ∑4
i=1 ziei .
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3. Main Results

In this section, we define some new special vector fields along a regular curve in R4
1 . By using

these vector fields we obtain some characterizations for new Frenet curves. Moreover, we use these

characterizations on these curves to be rectifying curves and osculating curve of the first kind.

Let γ be a unit speed curve as given in the Case I and {T,N,B1,B2} be the Frenet frame

along the curve γ where the curvatures k1, k2, k3 are non-zero everywhere. Now we can define

following vector fields along γ :

D1 = B2

D2 = k2T + k1B1 (7)

D3 = k3N + k2B2

D4 = −T

where {D1,D2,D3,D4} is linearly independent along γ . Furthermore, we see that the spaces

{D1,D2} , {D2,D3} and {D3,D4} are ortogonal spaces. We call that Sp{D1,D2} , Sp{D2,D3}

and Sp{D3,D4} as D1D2 -plane, D2D3 -plane and D3D4 -plane, respectively. So, we obtain the

new Frenet equations as

∇TT = D1 ⊗D2 ⊗ T

∇TN = D1 ⊗D2 ⊗N (8)

∇TB1 = D3 ⊗D4 ⊗B1

∇TB2 = D3 ⊗D4 ⊗B2.

We see that the vector fields T and N rotate around the D1D2 -plane, and the vector fields B1

and B2 rotate around the D3D4 -plane. These two planes play the role that the Darboux vector d

plays in 3-dimensional space. If the position vector of a space curve always lie in its D1D2 -plane

(D2D3 -plane, D3D4 -plane), then we call such a curve as D1D2 -curve (D2D3 -curve, D3D4 -curve).

From the above literature we can give the following theorems for such curves.

Theorem 3.1 Let γ be a spacelike Frenet curve parametrized by the arc length parameter s in

R4
1 . If γ is a D1D2 -curve in R4

1 , then it satisfies one of the following forms

γ(s) = 1

k2(s)
(s + c)D2 (9)

where c is a constant and k1(s) = 0 or

γ(s) = c1D1 +
1

k2(s)
(s + c2)D2 (10)
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where c1, c2 are constants and k1(s) = k3(s) = 0 .

Proof Let γ be a D1D2 -curve with nonvanishing curvatures in R4
1 . From the definition of

D1D2 -curve, we have

γ(s) = v(s)D1(s) +w(s)D2(s) (11)

for some differentiable functions v(s) and w(s) . If we differentiate (11) according to s and use

the Frenet equations of the curve γ , then we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(w(s)k2(s))′ = 1
2w(s)k1(s)k2(s) = 0

(w(s)k1(s))′ + v(s)k3(s) = 0
v′(s) +w(s)k1(s)k3(s) = 0.

(12)

From the first equation of (12), we find w(s) = s+c
k2(s) and if we use the second equation, then we

have k1(s) = 0 . Then from the third equation, we have v(s) = 0 or k3(s) = 0 . If v(s) = 0 , then

the position vector of the curve γ(s) can be defined as

γ(s) = 1

k2(s)
(s + c)D2 (13)

where c is a constant. If k3(s) = 0 , then the position vector of the curve γ(s) can be defined as

γ(s) = c1D1 +
1

k2(s)
(s + c2)D2 (14)

where c1, c2 are constants. ◻

Corollary 3.2 Let γ be a spacelike Frenet curve parametrized by the arc length parameter s in R4
1

with non-zero curvature functions. Then γ(s) is a D1D2 -curve if and only if γ(s) is a rectifying

curve in R4
1 .

Corollary 3.3 If we consider Definition 2.1, the position vector of a rectifying curve in R4
1 always

lies in the subspace Sp{T,B1,B2} . However from Corollary 3.2 a rectifying curve in R4
1 can be

considered as a space curve whose position vector lies always in a two-dimensional subspace which

we called D1D2 -plane.

Theorem 3.4 Let γ be a spacelike Frenet curve parametrized by the arc length parameter s in

R4
1 . γ is a D3D4 -curve in R4

1 if and only if the non-zero curvature functions k1, k2, k3 satisfy

the equation

c [ 1

k1(s)
(k3(s)
k2(s)

)
′

]
′

+ ck1(s)k3(s)
k2(s)

− 1 = 0 (15)

where c is a constant.
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Proof Let γ be a D3D4 -curve with nonvanishing curvatures in R4
1 . From the definition of

D3D4 -curve, we have

γ(s) = λ(s)D3(s) + µ(s)D4(s) (16)

for some differentiable functions λ(s) and µ(s) . If we differentiate (16) according to s and use

the Frenet equations of the curve γ , then we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ(s)k1(s)k3(s) − µ′(s) = 1
(λ(s)k2(s))′ = 0

(λ(s)k3(s))′ + µ(s)k1(s) = 0.
(17)

From the second equation of (17), we find λ(s) = c
k2(s) and if we use the third equation, then we

obtain µ(s) = − c
k1(s) (

k3(s)
k2(s))

′
. Then the position vector of the curve γ(s) can be defined as

γ(s) = c

k2(s)
D3(s) −

c

k1(s)
(k3(s)
k2(s)

)
′

D4(s). (18)

If we use λ(s) and µ(s) in the first equation of (17), then we get (15).

Conversely, we assume that (15) holds. Let us consider the vector given

Z(s) = γ(s) − c

k2(s)
D3(s) +

c

k1(s)
(k3(s)
k2(s)

)
′

D4(s). (19)

Differentiating vector Z and considering the equation of (15), we obtain

dZ

ds
= 0. (20)

Thus Z is a constant vector and so, the curve γ(s) is congruent to a D3D4 -curve. ◻

Corollary 3.5 Let γ be a spacelike Frenet curve parametrized by the arc length parameter s in

R4
1 with non-zero curvature functions. Then γ(s) is a D3D4 -curve if and only if γ(s) is an

oscullating curve of the first kind in R4
1 .

Corollary 3.6 If we consider Definition 2.2, the position vector of an oscullating curve of the first

kind in R4
1 always lies in the subspace Sp{T,N,B2} . However from Corollary 3.5 an oscullating

curve of the first kind in R4
1 can be considered as a space curve whose position vector lies always

in a two-dimensional subspace which we called D3D4 -plane.

Corollary 3.7 If we consider the equation (15) and substitute

ν = k3(s)
k2(s)

(21)
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by using exchange variable t = ∫ k1(s)ds = h(s) , then we find

d2ν

dt2
+ ν = f(t) (22)

where f(t) = 1
ck1(h−1(t)) . The general solution of the differential equation is

ν(s) = (c1 +∫ f(t) sin tdt) cos t + (c2 −∫ f(t) cos tdt) sin t (23)

where c1, c2 are constants. Thus the solution of the equation (22) is obtained as

k3(s)
k2(s)

= (c1 −
1

c
∫ sin(∫ k1(s)ds)ds) cos(∫ k1(s)ds) (24)

+(c2 +
1

c
∫ cos(∫ k1(s)ds)ds) sin(∫ k1(s)ds).

Theorem 3.8 Let γ be a spacelike Frenet curve parametrized by the arc length parameter s in

R4
1 . γ is a D2D3 -curve in R4

1 if and only if the non-zero curvature functions k1, k2, k3 satisfy

the equation

c(k2(s)
k1(s)

)
′

+ [ ck23(s) + 2k22(s)
k2(s)k′3(s) − k′2(s)k3(s)

]k1(s)k3(s) − 1 = 0 (25)

where c is a constant.

Proof Let γ be a D2D3 -curve with nonvanishing curvatures in R4
1 . From the definition of

D2D3 -curve, we have

γ(s) = π(s)D2(s) + ρ(s)D3(s) (26)

for some differentiable functions π(s) and ρ(s) . If we differentiate (26) according to s and use

the Frenet equations of the curve γ , then we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ(s)k1(s)k3(s) + (π(s)k2(s))′ = 1
(π(s)k1(s))′ = 0

2π(s)k1(s)k2(s) − (ρ(s)k3(s))′ = 0
π(s)k1(s)k3(s) + (ρ(s)k2(s))′ = 0.

(27)

From the second equation of (27), we find π(s) = c
k1(s) and if we use the third equation, then we

obtain

ρ(s) = ck23(s) + 2k22(s)
k2(s)k′3(s) − k′2(s)k3(s)

. (28)

Then the position vector of the curve γ(s) can be defined as

γ(s) = c

k1(s)
D2(s) + (

ck23(s) + 2k22(s)
k2(s)k′3(s) − k′2(s)k3(s)

)D3(s). (29)
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If we use π(s) and ρ(s) in the first equation of (27), then we get (25).

Conversely, we assume that (25) holds. Let us consider the vector given

Y (s) = γ(s) − c

k1(s)
D2(s) − (

ck23(s) + 2k22(s)
k2(s)k′3(s) − k′2(s)k3(s)

)D3(s). (30)

Differentiating vector Y and considering the equation of (25), we obtain

dY

ds
= 0. (31)

Thus Y is a constant vector and so, the curve γ(s) is congruent to a D2D3 -curve. ◻

Now let β be a unit speed curve as given in the Case II and {T,N,B1,B2} be the Frenet

frame along the curve β where the curvatures k1, k2, k3 are non-zero everywhere. Now we can

define following vector fields along β :

D1 = B2

D2 = k2T − k1B1 (32)

D3 = k3N − k2B2

D4 = T

where {D1,D2,D3,D4} is linearly independent along β . If we use the initial literature of this

section and new Frenet equations in (8), then we obtain the following theorems:

Theorem 3.9 Let β be a spacelike Frenet curve parametrized by the arc length parameter s in

R4
1 . β is a D1D2 -curve in R4

1 if and only if the non-zero curvature functions k1, k2, k3 satisfy

the equation

[− 1

k3(s)
((s + c)k1(s)

k2(s)
)
′

]
′

− k1(s)k3(s)
k2(s)

(s + c) = 0 (33)

where c is a constant.

Proof Let β be a D1D2 -curve with nonvanishing curvatures in R4
1 . From the definition of

D1D2 -curve, then we have

β(s) = v(s)D1(s) +w(s)D2(s) (34)

for some differentiable functions v(s) and w(s) . If we differentiate (34) according to s and use

the Frenet equations of the curve β , then we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(w(s)k2(s))′ = 1
(w(s)k1(s))′ + v(s)k3(s) = 0
v′(s) −w(s)k1(s)k3(s) = 0.

(35)
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From the first equation of (35), we find w(s) = s+c
k2(s) and if we use the second equation, then we

obtain v(s) = − 1
k3(s) ((s + c)

k1(s)
k2(s))

′
. Then the position vector of the curve β(s) can be defined as

β(s) = [− 1

k3(s)
((s + c)k1(s)

k2(s)
)
′

]D1(s) + [
s + c
k2(s)

]D2(s). (36)

If we use v(s) and w(s) in the third equation of (35), then we get (33).

Conversely, we assume that (33) holds. Let us consider the vector given

U(s) = β(s) + [ 1

k3(s)
((s + c)k1(s)

k2(s)
)
′

]D1(s) − [
s + c
k2(s)

]D2(s). (37)

Differentiating vector U and considering the equation of (33), we obtain

dU

ds
= 0. (38)

Thus U is a constant vector and so, the curve β(s) is congruent to a D1D2 -curve. ◻

Corollary 3.10 Let β be a spacelike Frenet curve parametrized by the arc length parameter s

in R4
1 with non-zero curvature functions. Then β(s) is a D1D2 -curve if and only if β(s) is a

rectifying curve in R4
1 .

Corollary 3.11 If we consider Definition 2.1, the position vector of a rectifying curve in R4
1

always lies in the subspace Sp{T,B1,B2} . However from Corollary 3.10 a rectifying curve in R4
1

can be considered as a space curve whose position vector lies always in a two-dimensional subspace

which we called D1D2 -plane.

Corollary 3.12 If we consider the equation (33) and substitute

ν = k1(s)
k2(s)

(s + c) (39)

by using exchange variable t = ∫ k3(s)ds , then we find

d2ν

dt2
+ ν = 0 (40)

which has the general solution ν = c1 cos t + c2 sin t where c1, c2 are constants. Thus the solution

of the equation (40) is obtained as

k1(s)
k2(s)

(s + c) = c1 cos(∫ k3(s)ds) + c2 sin(∫ k3(s)ds). (41)
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Theorem 3.13 Let β be a spacelike Frenet curve parametrized by the arc length parameter s in

R4
1 . β is a D3D4 -curve in R4

1 if and only if the non-zero curvature functions k1, k2, k3 satisfy

the equation

[ −c
k1(s)

(k3(s)
k2(s)

)
′

]
′

+ ck1(s)k3(s)
k2(s)

− 1 = 0 (42)

where c is a constant.

Proof Let β be a D3D4 -curve with nonvanishing curvatures in R4
1 . From the definition of

D3D4 -curve, then we have

β(s) = λ(s)D3(s) + µ(s)D4(s) (43)

for some differentiable functions λ(s) and µ(s) . If we differentiate (43) according to s and use

the Frenet equations of the curve β , then we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ(s)k1(s)k3(s) + µ′(s) = 1
(λ(s)k2(s))′ = 0

(λ(s)k3(s))′ + µ(s)k1(s) = 0.
(44)

From the second equation of (44), we find λ(s) = c
k2(s) and if we use the third equation, then we

obtain µ(s) = − c
k1(s) (

k3(s)
k2(s))

′
. Then the position vector of the curve β(s) can be defined as

β(s) = c

k2(s)
D3(s) −

c

k1(s)
(k3(s)
k2(s)

)
′

D4(s). (45)

If we use λ(s) and µ(s) in the third equation of (44), then we get (42).

Conversely, we assume that (42) holds. Let us consider the vector given

Z(s) = β(s) − c

k2(s)
D3(s) +

c

k1(s)
(k3(s)
k2(s)

)
′

D4(s). (46)

Differentiating vector Z and considering the equation of (42), we obtain

dZ

ds
= 0. (47)

Thus Z is a constant vector and so, the curve β(s) is congruent to a D3D4 -curve. ◻

Corollary 3.14 Let β be a spacelike Frenet curve parametrized by the arc length parameter s

in R4
1 with non-zero curvature functions. Then β(s) is a D3D4 -curve if and only if β(s) is an

oscullating curve of the first kind in R4
1 .
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Corollary 3.15 If we consider Definition 2.2, the position vector of an oscullating curve of the first

kind in R4
1 always lies in the subspace Sp{T,N,B2} . However from Corollary 3.14 an oscullating

curve of the first kind in R4
1 can be considered as a space curve whose position vector lies always

in a two-dimensional subspace which we called D3D4 -plane.

Corollary 3.16 If we consider the equation (42) and substitute

ν = k3(s)
k2(s)

(48)

by using exchange variable t = ∫ k1(s)ds = h(s) , then we find

d2ν

dt2
− ν = f(t) (49)

where f(t) = −1
ck1(h−1(t)) . The general solution of the differential equation is

ν(s) = c1et + c2e−t + ck1(h−1(t)) (50)

where c1, c2 are constants. Thus the solution of the equation (49) is obtained as

k3(s)
k2(s)

= c1e∫ k1(s)ds + c2e− ∫ k1(s)ds + ck1(s). (51)

Theorem 3.17 Let β be a spacelike Frenet curve parametrized by the arc length parameter s in

R4
1 . β is a D2D3 -curve in R4

1 if and only if the non-zero curvature functions k1, k2, k3 satisfy

the equation

[−c k2(s)
k1(s)k3(s)

(k2(s)
k3(s)

)
′

]
′

+ ck1(s) − 1 = 0 (52)

where c is a constant.

Proof Let β be a D2D3 -curve with nonvanishing curvatures in R4
1 . From the definition of

D2D3 -curve, we have

β(s) = π(s)D2(s) + ρ(s)D3(s) (53)

for some differentiable functions π(s) and ρ(s) . If we differentiate (53) according to s and use

the Frenet equations of the curve β , then we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ(s)k1(s)k3(s) + (π(s)k2(s))′ = 1
(ρ(s)k3)′ = 0

−(π(s)k1(s))′ + 2ρ(s)k2(s)k3(s) = 0
(ρ(s)k2(s))′ + π(s)k1(s)k3(s) = 0.

(54)

80



Müslüm Aykut Akgün / FCMS

From the second equation of (54), we find ρ(s) = c
k3(s) and if we use the third equation, then we

obtain

π(s) = −c
k1(s)k3(s)

(k2(s)
k3(s)

)
′

. (55)

Then the position vector of the curve β(s) can be defined as

β(s) = −c
k1(s)k3(s)

(k2(s)
k3(s)

)
′

D2(s) −
c

k3(s)
D3(s). (56)

If we use π(s) and ρ(s) in the first equation of (54), then we get (52).

Conversely, we assume that (52) holds. Let us consider the vector given

Y (s) = β(s) + c

k1(s)k3(s)
(k2(s)
k3(s)

)
′

D2(s) −
c

k3(s)
D3(s). (57)

Differentiating vector Y and considering the equation of (52), we obtain

dY

ds
= 0. (58)

Thus Y is a constant vector and so, the curve β(s) is congruent to a D2D3 -curve. ◻
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