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Abstract – In this paper, it has been proven that it would be more accurate to accept Euler, Riemann-

Liouville, Caputo, and Grünwald-Letnikov methods as curve fitting or amplitude shifting methods 

without derivative definition. Since these derivative methods do not cause to shift extremum points of 

corresponding relations/functions to zero (the roots of relations/functions which are derived by taking 

fractional order derivative such as Euler, Riemann-Liouville, Caputo, and Grünwald-Letnikov 

methods). 
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1.Introduction 

The classical derivative was defined in time of Newton and Leipniz, and their derivative 

definitions and approaches were regarded as integer order derivative. There is non-integer order 

(fractional order) derivative definitions / approaches such as Euler, Riemann-Liouville, Grünwald-

Letnikov and Caputo fractional order derivatives. Due to this case, this study focused on Euler, 

Riemann-Liouville, Grünwald-Letnikov and Caputo fractional order derivatives. 

Isaac Newton defined the fundamentals of classical mechanics and these studies were collected in 

“Philosophiæ Naturalis Principia Mathematica”. The main focus of this study is to define the rates of 

changes of functions (Newton, 1687). The first important and detailed work in differential calculus 

and differential geometry was done in (L’Hôpital, 1696; L’Hôpital, 1715). 

The derivative of any function can be symbolized as follow like Leipniz, Lacroix, Newton 

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥), 𝑛 ∈ 𝑁, 𝑥 ∈ 𝑅 

mhich means that it symbolizes nth derivative of function f(x). Newtonian derivative can be regarded 

as integer order derivative (Fig.1), so, there should be non-integer order derivative.  

Derivative

Integration

 
Figure 1. Integer order derivative. 
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Some researchers considered the order of derivative as non-integer such as Euler, Riemann-Liouville, 

Grünwald-Letnikov and Caputo. The definitions of fractional order derivatives such as Euler, 

Riemann-Liouville, Grünwald-Letnikov and Caputo are given as follows: 

 

Euler fractional order derivative (Das, 2011): 
𝑑𝛼

𝑑𝑥𝛼 𝑓(𝑥) =
Γ(n+1)

Γ(𝑛+1−𝛼)
𝑥𝑛−𝛼 where 𝑛𝜖ℕ, 𝛼𝜖ℝ, f(x)=xn. 

 

Riemann-Liouville fractional order derivative (Das, 2011): 

 

𝐷𝑥𝑎
𝛼

𝑓(𝑥) =
1

Γ(𝑛 − 𝛼)
(

𝑑

𝑑𝑥
)

𝑛

∫
𝑓(𝑡)

(𝑥 − 𝑡)𝛼−𝑛+1
𝑑𝑡

𝑥

𝑎

, (𝑛 − 1) ≤ 𝛼 < 𝑛 

 

Caputo fractional order derivative(Das, 2011): 

𝐷𝑥𝑎
𝐶 𝛼

𝑓(𝑥) =
1

Γ(𝑛 − 𝛼)
∫

𝑓(𝑡)

(𝑥 − 𝑡)𝛼−𝑛+1
𝑑𝑡

𝑥

𝑎

, (𝑛 − 1) ≤ 𝛼 < 𝑛 

 

Grünwald-Letnikov fractional order derivative (Das, 2011): 

𝐷𝑥𝑎
𝛼

𝑓(𝑥) =
𝑙𝑖𝑚

ℎ → 0
1

ℎ𝛼
∑ (−1)𝑖 (

𝛼
𝑖

) 𝑓(𝑥 − 𝑖ℎ)
[

𝑡−𝑎

ℎ
]

𝑖=0
, where [

𝑡−𝑎

ℎ
] ∈ ℤ 

 

The aim of this study is to try to explain that most of the definitions of fractional derivatives given 

in the literature (except Karcı's definition) are not valid based on the concept of derivative. 
 

2. Validities of Fractional Order Derivatives’ Definitions 

There are some important axioms or postulates about integers or countable number of steps. The 

peano’s axioms (postulates) are good examples for this concept (Hatcher, 1982). The Peano’s axioms 

were written from (Hatcher, 1982), and Peano’s axioms can be written in two different ways: 

 

Peano’s Axiom (Peano postulates): S is a set whose properties are: 

a) S has a distinguished element which is called `1'. 

b) There exists a distinguished set map :SS. 

c)  is one-to-one (injective). 

d) There does not exist an element sS such that (s) = 1.  

e) 1S 

f) Assume RS such that if rR, then (r)S ((r) is successor of r). Finally, R = S. 

 

The Peano’s axiom demonstrates that all step in this axiom should be an integer number, not a real 

number, successive events can be symbolized by using integer or natural numbers, not real numbers, 

i.e. the successive number of 0.1 is unknown. Peano’s axioms (postulates) are very nice examples for 

this case; it is not a correct method in mathematics to accept integers order for derivative until the 

point where it works for you, and to accept order of derivative as real numbers after that point because 

it works for you. The same reasoning can be done for mathematical induction, since it requires steps. 

The mathematical induction is an applications of modus ponens successively many times. By using 

this idea, it can be verified that some fractional order derivative definitions have deficiencies (not 

sound and complete). 

 

Euler Fractional Order Derivative: Assume that f(x)=xn, and its derivatives are 
𝑑

𝑑𝑥
𝑓(𝑥) = 𝑛𝑥𝑛−1 

𝑑2

𝑑𝑥2
𝑓(𝑥) = 𝑛(𝑛 − 1)𝑥𝑛−2 
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𝑑3

𝑑𝑥3
𝑓(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)𝑥𝑛−3 

𝑑4

𝑑𝑥4
𝑓(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑥𝑛−4 

…………… 

𝑑𝑘

𝑑𝑥𝑘
𝑓(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑥𝑛−𝑘 

kth step of derivative is regarded as a real number and fractional order derivative is defined as follow 
𝑑𝛼

𝑑𝑥𝛼
𝑓(𝑥) = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑥𝑛−𝛼 

 

and coefficient of xn- is regarded as Gamma function such as (n+1)=n!, since the order of derivative 

is integer order up to kth step, and kth step order is regarded as real; this is not meaningful assumption 

in mathematics, since the concepts handled in mathematics should be based on concrete acceptances 

and evidences. At the first step, if the order of derivative is real and this case goes on until kth step, the 

orders of derivative are 1, 2, 3, …, k. The derivatives up to kth step can be listed as follows  

 
𝑑𝛼1

𝑑𝑥𝛼1
𝑓(𝑥) = 𝑛𝑥𝑛−𝛼1 

𝑑𝛼2

𝑑𝑥𝛼2
(

𝑑𝛼1

𝑑𝑥𝛼1
𝑓(𝑥)) = 𝑛(𝑛 − 𝛼1)𝑥𝑛−(𝛼1+𝛼2) 

𝑑𝛼3

𝑑𝑥𝛼3
(

𝑑𝛼2

𝑑𝑥𝛼2
(

𝑑𝛼1

𝑑𝑥𝛼1
𝑓(𝑥))) = 𝑛(𝑛 − 𝛼1)(𝑛 − 𝛼2)𝑥𝑛−(𝛼1+𝛼2+𝛼3) 

𝑑𝛼4

𝑑𝑥𝛼4
(

𝑑𝛼3

𝑑𝑥𝛼3
(

𝑑𝛼2

𝑑𝑥𝛼2
(

𝑑𝛼1

𝑑𝑥𝛼1
𝑓(𝑥)))) = 𝑛(𝑛 − 𝛼1)(𝑛 − (𝛼1 + 𝛼2))(𝑛 − (𝛼1 + 𝛼2 + 𝛼3))𝑥𝑛−∑ 𝛼𝑖

4
𝑖=1  

……………… 

𝑑𝛼𝑘

𝑑𝑥𝛼𝑘
(…

𝑑𝛼4

𝑑𝑥𝛼4
(

𝑑𝛼3

𝑑𝑥𝛼3
(

𝑑𝛼2

𝑑𝑥𝛼2
(

𝑑𝛼1

𝑑𝑥𝛼1
𝑓(𝑥)))) … ) = 𝑛 ∏ (𝑛 − ∑ 𝛼𝑗

𝑖

𝑗=1

)

𝑘

𝑖=1

𝑥𝑛−∑ 𝛼𝑖
𝑘
𝑖=1  

 

At the kth step, the term 𝑥𝑛−𝑘 turns into 𝑥𝑛−∑ 𝛼𝑖
𝑘
𝑖=1 , and the coefficient of this term is not Gamma 

function; it is 𝑛 ∏ (𝑛 − ∑ 𝛼𝑗
𝑖
𝑗=1 )𝑘

𝑖=1 . Both of these cases are the deficiencies of this method and they 

are the result of arbitrary assumption. 

 

Riemann-Liouville Fractional Order Derivative: The Riemann-Liouville fractional order 

derivative is defined as follow 

𝐷𝑥𝑎
𝛼

𝑓(𝑥) =
1

Γ(𝑛 − 𝛼)
(

𝑑

𝑑𝑥
)

𝑛

∫
𝑓(𝑡)

(𝑥 − 𝑡)𝛼−𝑛+1
𝑑𝑡

𝑥

𝑎

, (𝑛 − 1) ≤ 𝛼 < 𝑛 

The integration can be formulated as follow (=1) 

 

𝐷𝑥𝑎
−𝛼

𝑓(𝑥) =
𝑙𝑖𝑚

𝑛 → ∞
(ℎ) ∑ 𝑓(𝑥 − 𝑖ℎ)

𝑛

𝑖=0

 

=
𝑙𝑖𝑚

𝑛 → ∞
∑ 𝑓(𝑥 − 𝑖ℎ)

𝑛

𝑖=0

. ℎ  
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h

f(x)

f(x-h)

f(x-2h)

f(x-3h)

f(x-4h)

…
.

…
.

 
Figure 2. Riemann sum (Riemann integral when h0) 

 

Fig.2 illustrates this case (Riemann Integral), if ℎ = ∆𝑥 =
𝑥−𝑎

𝑛
, then 

𝐷𝑥𝑎
−1

𝑓(𝑥) = ∫ 𝑓(𝑥 − 𝑡)𝑑𝑡
𝑥−𝑎

0

 

If u=x-t then dx=-du 

𝐷𝑥𝑎
−1

𝑓(𝑥) = ∫ 𝑓(𝑢)(−𝑑𝑢)
𝑎

𝑥

 

𝐷𝑥𝑎
−1

𝑓(𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
𝑥

𝑎

 

When =2, then 

𝐷𝑥𝑎
−2

𝑓(𝑥) = ∫ (𝑥 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑥

𝑎

 

When =3, then 

𝐷𝑥𝑎
−3

𝑓(𝑥) =
1

2!
∫ (𝑥 − 𝑢)2𝑓(𝑢)𝑑𝑢

𝑥

𝑎

 

When =4, then 

𝐷𝑥𝑎
−4

𝑓(𝑥) =
1

3!
∫ (𝑥 − 𝑢)3𝑓(𝑢)𝑑𝑢

𝑥

𝑎

 

………………………… 

𝐷𝑥𝑎
−𝑛

𝑓(𝑥) =
1

(𝑛−1)!
∫ (𝑥 − 𝑢)𝑛−1𝑓(𝑢)𝑑𝑢

𝑥

𝑎
=

1

Γ(𝑛)
∫ (𝑥 − 𝑢)𝑛−1𝑓(𝑢)𝑑𝑢

𝑥

𝑎
,    when =n. 

 

When 𝛼 ∈ ℝ., this integration is called as Riemann-Liouville fractional integration 

(differintegration). All steps followed in above algebraic processes are integer, not real, the Riemann-

Liouville fractional integration was defined based in this algebraic processes. The Riemann-Liouville 

fractional order derivative is to take the derivative of this integration based on Newtonian derivative. 

That’s why, all steps follow are integer, at any arbitrary step, this cannot be turned into real; this is the 

deficiencies of method and it needs proof based on real numbers, not integer and integer-based 

assumptions. The mathematical induction, modus ponens, Peano’s axioms philosophy is also valid for 

the process of obtaining Riemann-Liouville fractional differintegration. 
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Riemann-Liouville Fractional Order Derivative: The Riemann-Liouville fractional order derivative 

is  

𝐷𝑥𝑎
𝐶 𝛼

𝑓(𝑥) =
1

Γ(𝑛 − 𝛼)
∫

𝑓(𝑡)

(𝑥 − 𝑡)𝛼−𝑛+1
𝑑𝑡

𝑥

𝑎

, (𝑛 − 1) ≤ 𝛼 < 𝑛 

The similar reasoning of Riemann-Liouville fractional order derivative can be done for Caputo 

fractional order derivative. The mathematical induction, modus ponens, Peano’s axioms philosophy is 

also valid for the process of obtaining Riemann-Liouville fractional differintegration. 

 

Grünwald-Letnikov fractional order derivative: The Grünwald-Letnikov fractional order derivative 

was obtained with similar manner like Riemann-Liouvile and Caputo fractional order derivatives. 

𝐷𝑥𝑎
𝛼

𝑓(𝑥) =
𝑙𝑖𝑚

ℎ → 0
1

ℎ𝛼
∑ (−1)𝑖 (

𝛼
𝑖

) 𝑓(𝑥 − 𝑖ℎ)
[

𝑡−𝑎

ℎ
]

𝑖=0
, where [

𝑡−𝑎

ℎ
] ∈ ℤ 

The definition for derivative is 

𝑑

𝑑𝑥
𝑓(𝑥) =

𝑙𝑖𝑚
ℎ → 0

𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ
 

𝑑2

𝑑𝑥2
𝑓(𝑥) =

𝑙𝑖𝑚
ℎ → 0

𝑓′(𝑥) − 𝑓′(𝑥 − ℎ)

ℎ
=

𝑙𝑖𝑚
ℎ → 0

𝑓(𝑥) − 𝑓(𝑥 − ℎ)
ℎ

−
𝑓(𝑥 − ℎ) − 𝑓(𝑥 − 2ℎ)

ℎ
ℎ

 

𝑑2

𝑑𝑥2
𝑓(𝑥) =

𝑙𝑖𝑚
ℎ → 0

1

ℎ2
(𝑓(𝑥) − 2𝑓(𝑥 − ℎ) + 𝑓(𝑥 − 2ℎ)) 

 

𝑑3

𝑑𝑥3
𝑓(𝑥) =

𝑙𝑖𝑚
ℎ → 0

𝑓′′(𝑥) − 𝑓′′(𝑥 − ℎ)

ℎ
=

𝑙𝑖𝑚
ℎ → 0

𝑓′(𝑥) − 𝑓′(𝑥 − ℎ)
ℎ

−
𝑓′(𝑥 − ℎ) − 𝑓′(𝑥 − 2ℎ)

ℎ
ℎ

 

𝑑3

𝑑𝑥3
𝑓(𝑥) =

𝑙𝑖𝑚
ℎ → 0

1

ℎ3
(𝑓(𝑥) − 3𝑓(𝑥 − ℎ) + 3𝑓(𝑥 − 2ℎ) + 𝑓(𝑥 − 3ℎ)) 

……………………… 

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥) =

𝑙𝑖𝑚
ℎ → 0

(
1

ℎ
)

𝑛

(∑(−1)𝑖 (
𝑛
𝑖

) 𝑓(𝑥 − 𝑖ℎ)

𝑛

𝑖=0

) 

 

Grünwald-Letnikov fractional order derivative was defined by assumption of derivative order as 

real number. This is same as Euler, Riemann-Liouville and Caputo fractional derivatives. This is also 

some deficiencies of Grünwald-Letnikov fractional order derivative. 

 

4. Conclusions 

Peano’s postulates are valid for natural numbers, mathematical induction is also valid for integer. 

Modus ponens is the origin of mathematical induction, so, the rules valid for Peano’s postulates, 

mathematical induction, modus ponens do not necessarily apply to real numbers and do not 

necessarily valid for real numbers. The definition of fractional order derivative given in (Karci, 2013a; 

Karci, 2013b; Karci, 2015a; Karci, 2015b; Karcı and Karcı, 2020) is valid, and it is not based on 

integer-based algebraic processes. The applications of this definition can be found in (Karcı, 2016; 

Karcı, 2017). 

Euler, Riemann-Liouville, Caputo and Grünwald-Letnikov methods which are fractional order 

derivative definitions, are not actually derivative definitions, except that the step number is accepted as 

a real number in Newtonian derivative definition after some derivation steps. The handicaps of these 

methods are to accept derivation order as real number after some derivation steps and assume the 

coefficient as Gamma function. 
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