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Abstract: The method is of great importance in systems that include machine learning and classification steps. As a result, 

academics are constantly working to improve the process. However, the data pertaining to the methodology's performance is 

equally as valuable as the methodology's creation. While the data is utilized to show the result of the modeling process, it is 

critical to consider the proper labeling of the data, the technique of acquisition, and the volume. Obtaining data in certain 

sectors, particularly medical fields, can be costly and time consuming. Thus, data augmenting via classical and synthetic 

methods has recently gained popularity. Our study uses synthetic data augmentation since it is newer, more efficient, and 

produces the desired effect. Our study's goal is to classify a data collection of lung sounds into four groups using data 

augmenting. Obtaining and standardizing the wavelet scatter transformation of each cycle of lung sounds, splitting the 

transformed data into test and training, augmenting and classifying the training data. In the augmenting stage, we utilized ELM-

AE, then ELM-W-AE, with six wavelet functions (Gaussian, Morlet, Mexican, Shannon, Meyer, Ggw) added. The SVM and 

EBT classifiers improved performance by 4% and 3% in ELM-W-AE compared to the original structure. 

 
Key words: Lung sound, wavelet scatter, data augmentation, ELM-Auto Encoder. 

 
ELM- Dalgacık-AE Kullanılarak Veri Çoğullama Tabanlı Bir Akciğer Sesleri Sınıflama Sistemi 

 

Öz: Makine öğrenmesi ve sınıflandırma adımlarını içeren sistemlerde yöntem büyük önem arz etmektedir. Bu sebeple 

araştırmacılar genellikle yöntemin iyileştirilmesi üzerinde çalışmalar yapmaktadır. Ancak metodolojinin geliştirilmesi kadar 

performansını etkileyen veri de bir o kadar değerlidir. Veri, modelleme sürecinde sonucu gözler önüne serebilmek için 

kullanılırken; verinin doğru etiketlenmesi, elde edilme yöntemi ve hacmi dikkat edilmesi gereken diğer önemli noktalardır. 

Medikal alanlar başta olmak üzere bazı alanlarda veri elde etmek maliyetli ve zor olabilmektedir. Bu sebeple klasik ve sentetik 

yöntemlerle veri çoğullama yaklaşımları son zamanlarda popüler olmaya başlamıştır. Sentetik veri çoğullama teknikleri daha 

yeni, verimli ve istenebilen sonuca yönelik olduğundan çalışmamızda tercih edilmiştir. Çalışmamızın amacı akciğer seslerine 

ait veri setini dört kategoride sınıflandırırken seçtiğimiz veri çoğullama yönteminin başarımını göstermektir. Önerdiğimiz 

yöntemin adımları şu şekildedir: akciğer seslerine ait her bir saykılın Dalgacık saçılım dönüşümünü elde edilmesi ve 

normalizasyonu, dönüşümden elde edilen verinin test ve eğitim olarak bölünmesi, eğitim için ayrılan verinin çoğullanması ve 

sınıflandırılmasıdır. Veri çoğullama aşamasında Aşırı Öğrenme Makinesi Oto Kodlayıcı (ELM-AE) ve sonrasında bu modele 

altı farklı dalgacık fonksiyonun (Gaussian, Morlet, Mexican, Shannon, Meyer, Ggw) eklenmesiyle ELM-W-AE yapısını 

kullandık. Orijinal yapıya kıyasla sınıflandırmada kullanılan SVM ve EBT sınıflandırıcıları için ELM-W-AE’de sırasıyla 

yaklaşık %4 ve %3 oranında başarım artışı gözlemledik.  

 

Anahtar kelimeler: Akciğer sesleri, dalgacık saçılımı, veri çoğullama, ELM-Oto Kodlayıcı 
 

1. Introduction 

 

Data is a critical structure that plays a critical part in the modelling phase and enables us to monitor the 

outcome through system testing. While the volume and consistency of data collected throughout the process of 

artificial intelligence impact the end, it also results in noticeable variances in the result step. However, approaches 

such as Convolutional Neural Network (CNN) and (Long Short-term Memory) LSTM, which have lately gained 

popularity, have been shown to improve performance as the amount of huge data in the system increases. When 

the studies are examined, it is clear that the approaches prioritize modeling over data-driven approaches, and that 

when the anticipated performance response is not obtained, the modeling is revised [1]. Data collection procedures 

in a variety of fields, including engineering, medicine, and education, can be time consuming and costly. Recent 

studies on data augmenting technologies come to mind at this time. Along with traditional data augmentation 

techniques, new study topics have been identified for synthetic data augmentation techniques such as (Generative 

Adversarial Network (GAN), AE (Auto Encoder) and Variational Auto Encoder (VAE) [2-5]. It has been 
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demonstrated that better performance may be obtained by augmenting medical images and sounds when creating 

decision support systems for time and cost savings [6-9]. 

Synthetic data augmenting is a more sophisticated and recent technique than traditional data augmenting. 

There is research on the synthesis of AE using the Extreme Learning Machine (ELM) approach, one of the favored 

methods for producing synthetic data [3, 7]. AE has become popular due to its efficiency compared to other data 

duplication methods [2, 10]. On the other hand, the ELM paired with AE called ELM-AE is a single hidden layer 

feedforward neural network and has been shown to be a high-performing model in numerous investigations. The 

ELM-AE structure can be modified by altering the number of cells and activation functions in the hidden layer. 

The issue of data quantity, which is particularly acute in deep architectures, was attempted to be investigated in 

the categorization of lung disorders, the focus of this work. 

Since lung disorders are the third leading cause of death worldwide, identification and follow-up are critical 

[11]. Following the Covid-19 outbreak, a rise in lung illnesses has been observed [12]. As a result, professionals 

should develop new approaches for characterizing these disorders. It is well established that lung sounds and their 

features significantly influence the development of pulmonary disease [13]. Auscultation can be used to discern 

between these sounds, which are roughly classified as normal and pathological [14]. However, classical 

auscultation is not without faults, since it is highly dependent on the physician's skill, hearing capacity, expertise, 

and experience [14, 15, 16]. 

The non-stationarity of lung sound waves is the primary element that challenges classic technique analysis 

[17]. Lung sounds are deemed normal when they range between 100 and 1000Hz and lack prominent peaks on the 

signal [18]. However, in the case of unusual (adventitious) breath sounds, the situation is reversed. These noises 

contain additional sounds in addition to the typical sounds, and they are classified as continuous-discrete [19]. 

Wheeze refers to continuous sounds produced by the lungs; crackle refers to isolated sounds produced by the lungs. 

Wheeze sounds, which contain a tonal structure, feature periodic waveforms with a frequency more than or equal 

to 100Hz and duration greater than or equal to 100ms [18, 20]. Crackle, on the other hand, has a more complex 

structure in terms of frequency content, although it runs in less than 20ms [21]. The diagnosis of asthma, 

pneumonia, and bronchitis is guided by wheeze sounds, whereas crackling sounds are usually encountered in 

cardiovascular illnesses [22]. Automatic recognition studies have risen to prominence in expert systems assessing 

the amounts mentioned above, assisting in disease diagnosis and guiding disease interpretation. 

When studies were analyzed, it was discovered that lung sounds were classified and substantial results were 

discovered [23, 24, 25]. The time-frequency domain features of normal and abnormal sounds have been the focus 

of studies analyzing normal and abnormal noises [26]. In numerous research, Mel frequency cepstral coefficients 

(MFCC) and estimated entropy have been used [27]. Additionally, recent research using empirical mode 

decomposition (EMD) and intrinsic mode functions (IMFs) demonstrate these methods' superior efficacy in 

classifying lung sounds as normal-adventive [23, 25]. 

As indicated previously, another critical part of methodological preparation for lung sound analysis was the 

data set. In terms of the debatability of the investigations, the ICHBI 2017 dataset was assessed, which included 

studies with dual and multiple classifications [28]. When we consider the research that comprises various classes 

of normal, wheeze, crackle, and both wheeze and crackle, we see that in the study [29], the objective was to convert 

lung sound data into images using the short-term Fourier transform (STFT). Classification of signals extracted 

from spectrogram images was performed using a pre-trained CNN. The study [13] began by converting the audio 

signals in the dataset to spectrograms. Following that, a CNN model is suggested that tries to improve performance 

by parallelizing the average pooling and maximum pooling layers. Linear Discriminant Analysis (LDA) and 

Random Subspace Ensembles (RSE) were used to classify the deep features produced in this manner (71.15%). In 

[22], lung sound signals were transformed to spectrogram pictures and five-fold augmentation was achieved 

synthetically. It is stressed that the images fed into the multi-layered CNN model and the enhanced data have a 

beneficial effect on performance. The study [30] used MFCC coefficients as features and tested binary and multi-

class classification using Artificial Neural Network (ANN), Random Forest (RF) and Support Vector Machine 

(SVM). The study [20] feeds the radial-based SVM classifier with the features acquired using wavelet 

decomposition and STFT. 

This study aimed to investigate multi-class discrimination using lung sound signals. The following are the 

study's contributions to the literature: 

• In the feature extraction stage of lung sound analysis, the wavelet scatters transform method was used. 

• The ICHBI data set is augmented with the ELM-AE. 

• Comparison is accomplished through the use of numerous wavelet functions during augmenting. 
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2. Categories of Lung Sounds 

 

Fig. 1 shows the methodology that was developed. In begin, lung sound files were extracted from the 2017 

ICBHI Respiratory Sound Database [28]. Table 1 contains the cycle details for this dataset, which contains 6898 

cycles in total. These breath sounds were collected from various locations on the chest using various instruments. 

 

Table 1. Class and cycle knowledge regarding the dataset 

Class Cycles 

Crackles 1864 

Wheezes 886 

Crackles+ wheezes 506 

Normal 3642 

Number of all 6898 

 

 
 

Fig.1. Flowchart of Methodology 

2.1. Transform for Wavelet Scattering 

Wavelet techniques, which are preferred for data representation and feature extraction, are advantageous 

because they can be used in conjunction with a wide variety of classification algorithms [31]. Additionally, it is 

one of the mathematical methods used when time-frequency domain feature extraction is insufficient for more 

complex signal feature extraction [32]. The Wavelet Scattering Transform (WST) is a structure proposed by Mallat 

that enables the generation of reliable features and their use in conjunction with a deep neural network structure 

[31, 33]. The convolution, nonlinearity, and averaging steps illustrated in Fig. 2 describe the primary steps 

involved in producing the wavelet scattering transform of the time series input signal. In this case, Ψ1  denotes the 

wavelet function and 𝜑𝐽 denotes an average low-pass filter. 

 
 

Fig.2. Representation of the wavelet scattering transform process with an x input.  

WST defines a deformation-resistant representation. WST has been demonstrated to be capable of extending 

MFCC by processing modulation spectrum coefficients via wavelet convolutions and module operators [34]. 

Additionally, it has been demonstrated that WST outperforms MFCC for classification solutions with time scales 

greater than 25ms in audio representations. Using a set of wavelet decomposition and modulus operators, the 

scattering transform recovers information lost during Mel-frequency averaging. A wavelet transform is computed 

using constant-Q filter banks. A wavelet 𝜑𝐽 is a low-pass filter with  𝜑 ̌(0) equal to zero and is denoted by the 

center frequency ω in equation (1):  

Convolution 

(Wavelet Ψ1 ) 

𝒙 ∗ 𝚿𝟏 

 

Non-linearity 

(Modulus) 

|𝒙 ∗ 𝚿𝟏| 
 

Averaging 

(low-pass filter) 

|𝒙 ∗ 𝚿𝟏| ∗ 𝝋𝑱 
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𝜑𝜔(j)= ω∙𝜑(ω j), 𝜑 ̌𝜔(s)= 𝜑 ̌(
𝑠

𝜔
)                                                                                                                                             (1) 

 
The frequency of 𝜑 ̌'s center has been normalized to 1 in this case. 𝜔 = 2𝑘/𝑄 . Q denotes the octave wavelets. 

𝜑 ̌ is on a 𝑄−1-scale. 

2.2. Synthetic data augmentation 

In the study, WST was used to extract the features of the data in the ICHBI 2017 dataset. We applied data 

augmentation to these image representations containing information from four classes in the training process. 

Before we proceed with the steps, we utilized the z-score normalization (ZN), a straightforward feature-level 

transformation that can provide an effective solution for normalization. More precisely, when we speak of ZN, we 

subtract the mean of all components from each component and then divide by the standard deviation of all 

components [35]. The ELM-AE structure was investigated in the first model. The wavelet functions were then 

integrated into the designed structure to reveal the change. The abbreviation ELM-W-AE will be used to refer to 

wavelet functions. This section will detail each stage. 

ELM: Huang's ELM is described as a simple one-hidden-layer neural network model [36]. Due to the random 

initialization of the input weights and single hidden layer thresholds, and the analytical calculation of the output 

weights, the ELM has a high learning rate. {(𝑥𝑖 , 𝑦𝑖)|𝑥𝑖 = [𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑛]
𝑇

∈  𝑅𝑛 is the representation of the 

𝑦𝑖 = [𝑦𝑗1, 𝑦𝑗2, … , 𝑦𝑗𝑚]
𝑇

 ∈  𝑅𝑚}𝑗=1
𝑁  input-output structure for training pairs when the size of the training dataset is 

N, the number of input attributes is n, and the number of class labels is m. 

 
∑ 𝛽𝑖𝑓(𝑤𝑖 . 𝑥𝑗 + 𝑏𝑖) = 𝑜𝑗 , 𝑗 = 1, . . . , 𝑁𝐿

𝑖=1                                                       (2) 

 
In equation (2), L denotes the number of hidden layer neurons, 𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑚]𝑇 denotes the weight 

vector connecting the ith hidden node to the output node, f(∙) indicates the activation function, 𝑤𝑖 =
[𝜔𝑖1, 𝜔𝑖2, … , 𝜔𝑖𝑛]𝑇 denotes the weight vector of the input layer, bi denotes the hidden layer thresholds, and 

𝑤𝑖 . 𝑥𝑗 denotes the values of 𝑤𝑖  and 𝑥𝑗. It is used to denote the inner product of the output vector oj. Equation (2) 

may not always produce the desired output oj, and this new output may produce the desired output yj , as illustrated 

in (3). 

 
∑ 𝛽𝑖𝑓(𝑤𝑖 . 𝑥𝑗 + 𝑏𝑖) = 𝑦𝑗 , 𝑗 = 1, . . . , 𝑁𝐿

𝑖=1                                  (3) 

 
To optimize the performance of the Single Layer Feedforward Network (SLFN), the error should be 

∑ ‖𝑜𝑗 − 𝑦𝑗‖ = 0𝑁
𝑗=1  or less. Equation (3) can be expressed straightforwardly in the matrix form specified in 

equation (4) [1]. 
 

𝑌 = 𝐻𝛽                                                         (4) 

𝑌 = [
𝑦1

𝑇

⋮
𝑦𝑁

𝑇
]

𝑁×𝑚

, 𝛽 = [
𝛽1

𝑇

⋮
𝛽𝐿

𝑇
]

𝐿×𝑚

                                              (5) 

where Y denotes the output vector, W denotes the weights of the output layer, and H represents the output layer 

matrix in the equation (6). Calculate the output weights by solving the equation in (7). 

 

𝐻 = [
𝑓(𝑤1. 𝑥1 + 𝑏1) ⋯ 𝑓(𝑤𝐿 . 𝑥1 + 𝑏𝐿)

⋮ ⋯ ⋮
𝑓(𝑤1. 𝑥𝑁 + 𝑏1) ⋯ 𝑓(𝑤𝐿 . 𝑥𝑁 + 𝑏𝐿)

]

𝑁𝑥𝐿

                     (6) 

Here, H is the H matrix's generalized Moore-Penrose inverse.  

 

𝛽 = 𝐻†𝑌                               (7)  
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ELM-AE: The ELM-based Auto-Encoder (ELM-AE) is used to build an ELM-based multi-layer perceptron that is 

capable of learning new data representations. In contrast to ELM, which is used for classification, ELM-AE aims 

to minimize the reconstruction error associated with the input X. In other words, ELM-input AE's and output are 

both X. As a result, the objective function of ELM-AE with L2 norm is as follows [37]: 

 

min: 
1

2
‖𝛽‖2 + 𝐶

1

2
‖𝑋 − 𝐻𝛽‖2                                                      (8) 

 
where C is the factor of regularization. Then the gradient of Eq. 9 in terms of 𝛽 is, 

 

𝛽 = (
1

𝐶
+ 𝐻𝑇𝐻)

−1

𝐻𝑇𝑋                                                              (9) 

 
We obtain the optimal output weight 𝛽 by setting the gradient to zero. The representation of the new data obtained 

is shown as in the Eq. (10). 

 

𝑋𝑛𝑒𝑤 = 𝐺(𝑋𝛽𝑇)                                                                           (10) 

 
where G is the function of activation. Notably, if the total number of hidden nodes in an ELM-based MLP is equal, 

G should be a linear activation function [37].  

 

ELM-W-AE: Wavelet theory is a field of study that includes critical and constructive, including mathematics, 

physics, and engineering. The term "wavelet theory" translates as "little wave." In continuous form, the wavelet 

transform behaves similarly to a spanning elastic time-frequency window. It is classified into two types: continuous 

and discrete wavelet transforms. ELM is well-established as a superior method for learning Single Layer Feed-

Forward Networks when compared to traditional methods. However, with careful consideration of parameter 

initialization and function selection, it is possible to achieve superior performance [38]. As stated in Eq.10, G, 

Table 2 contains six kernel types suitable for use as wavelet activation functions. 

 

Table 2. Wavelet activation functions and mathematical representations used in the study 

Wavelet Kernel 

Type 
Function 

Morlet 𝜓(𝑡) = cos (1.75𝑡)𝑒(−
𝑡2

2
)
 

Gaussian 𝜓(𝑡) =
1

√2𝜋
𝑒𝑥𝑝(−

𝑡2

2
)
 

Mexican 𝑐 =
2

√3
𝜋(−

1

4
)
       𝜓(𝑡) = 𝑐(1 − 𝑡2)𝑒𝑥𝑝 (

𝑡2

2
) 

Shannon 𝜓(𝑡) =
𝑠𝑖𝑛𝜋(𝑡 − 1 2) − 𝑠𝑖𝑛2𝜋(𝑡 − 1 2)⁄⁄

𝜋(𝑡 − 1 2⁄ )
 

Meyer 𝜓(𝑡) = 35𝑡4 − 84𝑡5 + 70𝑡6 − 20𝑡7 

GGW 𝜓(𝑡) = sin(3𝑡) + sin(0.3𝑡) + sin (0.03𝑡) 

2.3. Classifiers 

The original and augmented data sets were evaluated on classifiers, and this part explains the two classifiers 

that produced the best results. 

 

SVM: Support Vector Machine (SVM) is a powerful technique for classifying data that works by creating a line 

in the plane between the members of two groups. It is favorable in that it applies to both linear and nonlinear data, 

has a high degree of precision, is capable of modeling complex decision boundaries, and works with many 

independent variables. 

Decision-making function for SVM; 𝑥𝑖  i is the data point, 𝑥∗ a test vector, 𝑎𝑖  is the Lagrangian multiplier 

associated with the training example 𝑥𝑖, 𝑦𝑖  is the class of data point i (-1 or +1), and with b being the bias value, 

they are defined as[39,40]: 
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𝑓(𝑥∗) = 𝑠𝑖𝑔𝑛[∑ 𝑎𝑖  𝑦𝑖𝜑(𝑥∗ ,𝑥𝑖  ) + 𝑏𝑁
𝑖=1 ]                         (11)     

                                                                                                   

In the expression of the Quadratic (2nd order) optimization problem, 𝜌 is the width of the separator between 

the support vector classes, w is the normal of the multi-plane (weight vector), ∥ 𝑤 ∥ w is the Euclidean 

representation of w for each {(𝑥𝑖 , 𝑦𝑖)}: 

 

It is maximized with ρ=2/ (∥w∥). If 𝑦𝑖 = 1 then; 𝑤𝑇𝑥𝑖 + 𝑏 ≥ 1. If 𝑦𝑖 = −1 is equal to 𝑤𝑇𝑥𝑖 + 𝑏 ≥ −1. 

 

EBT: The Ensemble Bagging Tree (EBT) classifier, which is a form of community learning, is intended to boost 

success rates through collaborative classification techniques. Rather than using a single learner, a decision tree is 

constructed using many copies of the primary learner's output, and the classifier output is coupled with the voting 

method [41]. Bagging is a term that refers to a group of decision trees that is utilized in regression. Community 

techniques employ numerous models to improve prediction performance by bagging together many lousy learner 

results into a high-quality community predictor. Bagging a community of decision trees is a variance reduction 

approach used to enhance decision trees' prediction performance. The bagged community power is calculated by 

estimating out-of-bag observations for each tree and averaging them across the entire community. Each 

observation's estimated out-of-bag response is compared to its actual value. The average out-of-bag error is 

computed by comparing expected to actual responses for all observations utilized in education. The average error 

extracted from this bag is a non-negative estimator of the genuine union error [42]. 

3. Experiments and Results 

We present a series of experimental results relating to multi-class discrimination using lung sound signals in 

this study. The classification results were validated using the architectures described in Section 2.3. The effects of 

data augmentation were then analyzed using synthetic data augmentation methods. Synthetic data were generated 

using the methods described in Section 2.2. Because the Mexican kernel type performed better in the ELM-W-AE 

method during the experiments, the results were heavily weighted toward this section.  

Table 3 compares the original, ELM-AE and ELM-W-AE results according to accuracy, specificity, 

sensitivity, precision, F1, MCC, Kappa [43]. Using the WST method, features were extracted from lung sounds 

(Crackle/ Whezees /Crackle+ Whezees / Normal) taken as 6898 cycles in four classes. 6898×80 features were 

extracted as a result of feature extraction. After normalization with ZN, the obtained features were divided into 

70% training and 30% testing using hold-out cross-validation. A feature vector from the training set was 

augmented four times and formed into 5×80 dimensions using ELM-AE. A 24145×80 dimensional feature matrix 

was created using this approach for training features. The test data was not intended to be included in the 

augmented process, preventing memorization and ensuring the study's reliability. By testing synthetic lung data 

for three distinct phases, we examined the effects of data augmentation. We first evaluated the classifiers on the 

original images for the three major stages mentioned previously. In the second step, we created and analyzed 

synthetic images with the specified ELM-AE structure. The final stage involved integrating the six wavelet kernel 

listed in Table 2 into the ELM-W-AE structure and evaluating those using classifiers.  

SVM and EBT methods were used to classify augmented training data and non-augmented test data, and the 

results are summarized in Table 3. The study's summary diagram is shown in Fig. 1. When Table 3 is examined, 

it is clear that the Mexican wavelet function provides the best performance. According to the classification of the 

original data, it was observed that EBT improved performance by approximately 3% and SVM improved 

performance by approximately 4.5 %. The complexity matrices for the original and Mexican wavelet functions are 

shown in Figures 3-6 in light of these data. When wavelet functions are viewed in general, it is clear that they 

perform better than the results obtained with the original data. Given the prevalence of lung diseases, it is clear 

that this percentage increase is significant. The authors concluded that wavelet kernel functions are worth 

experimenting with for this and similar classifications. 
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Table 3. Performance comparison of wavelet functions on original, ELM-AE and ELM-W-AE structure 

 

 

 
 Fig.3. The complexity matrix of classification with 

SVM for the original data 

 

 
 Fig.4. The complexity matrix of classification with EBT 

for the original data 

 

Category Method Accuracy Sensitivity Specificity Precision F1 MCC Kappa 

Original 
EBT 69.599 52.446 85.947 68.675 0.565 0.462 0.189 

DVM 56.404 31.284 78.440 57.059 0.291 0.157 0.140 

ELM-AE 
EBT 69.212 51.318 86.324 64.475 0.544 0.439 0.179 

DVM 59.981 37.673 81.214 52.318 0.382 0.247 0.063 

E
L

M
-W

-A
E

 

Gaussian 
EBT 70.130 54.357 86.514 67.645 0.581 0.474 0.203 

DVM 59.884 37.400 80.966 51.589 0.381 0.245 0.065 

Morlet 
EBT 71.242 54.828 86.884 68.990 0.587 0.488 0.233 

DVM 59.836 37.306 80.940 51.414 0.380 0.243 0.066 

Mexican 
EBT 72.692 56.318 87.617 71.514 0.605 0.513 0.272 

DVM 60.609 38.969 81.200 56.848 0.407 0.277 0.048 

Shannon 
EBT 69.357 50.862 85.915 65.721 0.544 0.441 0.183 

DVM 55.582 30.319 78.003 47.320 0.280 0.137 0.156 

Meyer 
EBT 

DVM 

70.420 53.705 86.807 65.667 0.569 0.465 0.211 

59.401 36.948 80.721 50.565 0.376 0.236 0.076 

Ggw 
EBT 70.904 55.978 87.052 68.783 0.597 0.493 0.224 

DVM 60.029 37.652 81.267 50.712 0.381 0.244 0.062 
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 Fig.5. The complexity matrix of classification with 

SVM for data multiplexed with Mexican structure 

 
 Fig.6. Complexity matrix of classification with SVM for 

multiplexed with Mexican structure  
 

3.1. Comparison with other studies 

As mentioned previously, we performed classification using synthetic amplification. The ELM-W-AE 

construct outperformed synthetic augmentation with ELM-AE alone. We compared our classification results for 

synthetic augmentation to the state-of-the-art studies using our best result, ELM-Mexican-AE. We chose it as a 

comparison because the studies we chose used the same dataset and classes. Table 4 compares the performance of 

the aforementioned studies in terms of preprocessing, feature extraction, classification, and classification accuracy. 

 

Table 4. Comparison of lung sounds with four classes (Normal, crackles, wheezes, crackles+wheezes) with 

other studies 

 

4.  Conclusion 
The purpose of this study was to distinguish four classes based on voice recordings from the ICBHI 2017 

respiratory dataset: normal, wheezing, wheezing, wheezing, and wheezing. Experiments were conducted in stages 

Reference Pre-process 
Feature Extraction and 

Method 
Classification Acc. 

Ref[19] 

resample to 4 KHz for 

standardization of all signals, 

12th order Butterworth band 

pass filter 

STFT, Q-factor wavelet SVM %54.15 

Ref[22] 

Band-pass filter in the 

frequency range 150-250 Hz, 

FFT 

Spectrogram CNN %64.50 

Ref[29] - Deep Feature with CNN model SVM %65.50 

Ref[44] 

Butterworth band pass filter, a 

non-linear resonance based 

wavelet decomposition 

13 first mel-frequency cepstral 

coefficients 
SVM %49.86 

Ref[45] 
resample to 4 KHz for 

standarization of all signals 

13 MFCCs coefficients STF and 

LTF parametres 

SVM 

ANN 

RF 

%72.1 

%68.7 

%68.7 

The first 

proposed 

method 

ZN  WST, ELM-AE 
SVM 

EBT 

%69.21 

%59.98 

The second 

proposed 

method 

ZN WST, ELM-W-AE 
SVM 

EBT 

%72.69 

%60.61 
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to evaluate the proposed method's classification performance. To begin, in contrast to previous research, audio 

signals are subjected to the wavelet scatter process for feature extraction. To offer a suitable classification 

approach, we first calculated and compared the classification accuracies of the original and augmented data. The 

train feature parts were augmented fivefold, including the original images with ELM-W-AE. SVM and EBT were 

used to classify the test features that were not included in the augmenting process and the augmented train features. 

Simultaneously, this classification process has been validated without the use of augmenting. The system was first 

compared to other architectures in terms of incremental and non-incremental classifiers. Both cases demonstrated 

unequivocally that the proposed incremental method performed better. The proposed architecture indicates that it 

is capable of providing a solution for disease detection while introducing a novel feature and experimental stage 

for the analysis of multi-class lung sounds. 
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