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Abstract 

The Internet of Things (IoT) concept is widely used today. As IoT becomes more widely adopted, the number of 

devices communicating wirelessly (using various communication standards) grows. Due to resource constraints, 

customized security measures are not possible on IoT devices. As a result, security is becoming increasingly 

important in IoT. It is proposed in this study to use the physical layer features (PLF) of wireless signals as an 

effective method of increasing IoT security. According to the literature, radio frequency fingerprinting (RFF) 

techniques are used as an additional layer of security for wireless devices. To prevent spoofing or spoofing attacks, 

unique fingerprints appear to be used to identify wireless devices for security purposes (due to manufacturing 

defects in the devices' analog components). To overcome the difficulties in RFF, different parts of the transmitted 

signals (transient/preamble/steady-state) are used. This review provides an overview of the most recent RFF 

technique developments. It discusses various solution methods as well as the challenges that researchers face when 

developing effective RFFs. It takes a step towards the discovery of the wireless world in this context by drawing 

attention to the existence of software-defined radios (SDR) for signal capture. It also demonstrates how and what 

features can be extracted from captured RF signals from various wireless communication devices. All of these 

approaches' methodologies, classification algorithms, and feature classification are explained. In addition, this 

study discusses how deep learning, neural networks, and machine learning algorithms, in addition to traditional 

classifiers, can be used. Furthermore, the review gives researchers easy access to sample datasets in this field. 
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Nomenclature Acronyms 

AI/ML: artificial intelligence/machine learning MLE: maximum likelihood estimates 

AWGN: additive white gaussian noise NLP: natural language processing 

BRCD: Bayesian ramp change detector OFDM: orthogonal frequency division multiplexing 

BSCD: Bayesian step change detector PCs: phase characteristics 

CFO: carrier frequency offset PCA: principal component analysis 

CNN: convolutional neural network PD: phase detector 

CSIR: channel state information at the receiver PLF: physical layer features 

DCTF: differential constellation trace figure PLS: partial least squares 

DSP: digital signal processing PSD: power spectral density 

DWT: discrete wavelet transform RF: radio frequency 

ELM: extreme learning machine RFF: radio frequency fingerprinting 

EMD: empirical mode decomposition RFID: radio frequency identification 

FE: feature extraction RSS: radio received signal strength 

FFT: fast fourier transform  SDR: software defined radio 

GSM: global system for mobile SFO: sampling frequency offset 

GLRTD: generalized likelihood ratio test detector SNR: signal-to-noise ratio 

HF: high frequency SPoTS: starting point of transient signal 

HHT: Hilbert-Huang transform STSP: short training sequence preamble  

IoT: internet of things SVM: support vector machine 

LTSP: long training sequence preamble TS: transient signals 

MCPD: mean change point detector URH: universal radio hacker 

MDA: multiple discrimination analysis VFDTD: variance fractal dimension threshold detector  
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1. Introduction  

Kevin Ashton coined the term IoT in a presentation (where the benefits of RFID technology to the 

company and its use were suggested) prepared for the Procter & Gamble Company in 1999. In general 

terms, it is possible to define the IoT as a system of devices that communicate with each other and form 

an intelligent network by connecting and sharing information, thanks to various communication 

protocols. Digital Agenda, published by the European Union, is an emerging technology and market 

that enables objects and applications to communicate between themselves, produce data and share this 

data. This structure is defined as “an ecosystem of smart applications and services that make people's 

lives easier and raise their living standards”. The European Technology Platform, on the other hand, 

defined it as “a common network established between things/objects that can be physical and virtual, 

also have pre-defined functions and work in smart environments, and this network exchanges 

information with other networks and users”. Today, one of the areas where technological developments 

are applied the fastest is objects. Both the vital convenience and benefits brought by technological 

innovations, and the rapid increase in the use of people by adapting to technology very quickly, 

communication with objects is the most current issue. With spread of smart devices, social structures 

have changed, and the phenomenon of "Information Society" has been fully formed. In the past, the 

information was based only on the information that people gave voluntarily, and the accuracy of the 

data received was often discussed. However, at this point, data is now collected with smart devices 

independently of the declaration of individuals, and the accuracy level increases. In this way, reliable 

knowledge will also increase with smart objects. Development of IoT concept and technology; changes 

the social structure by facilitating life, raising living standards, increasing productivity and contributing 

to economies. Like all good things, when it is not taken care of, its bad points are serious. The key point 

is information security. Information security problems related to smart objects, why the issue of security 

is really important and the precautions that can be taken are emphasized. In 2013, Russia's state channel 

Rossiya 24 claimed that the hacker irons produced in China and imported to the country contained a 

special wireless internet control chip, thus spying on the personal computers of the users by organizing 

a cyber-attack. Although this news may seem like exaggerated news or fake news at first, its accuracy 

has been determined in the examinations [1, 2].  

It will be seen in real life from science fiction movies that the car we use is the target of attackers and 

causes accidents, smart alarm and lock systems are broken and cyber thefts occur, infiltrating wearable 

objects, detecting discomfort from body activities and the emergence of cyber murders. If we give an 

example from our house in a narrower area; if all objects in a house are managed from a single center; 

it is possible to seize that system with a cyber-attack, to start a fire by playing with the oven settings, to 

steal by turning off alarm system and opening the door, to copy all personal data on the computer or to 

violate the privacy of private life by watching the house from camera system. Information security 

violations that may occur in smart devices have a chance to be prevented by certain controls to be made 

by both the manufacturer and the user. Considering the most common security vulnerabilities in smart 

devices, it can be determined that "Web Interface Configuration, Authentication/Authorization, Network 

Services, Encrypted Transport, Privacy, Mobile Applications, Cloud, Security Configurations, Software 

and Physical Security" checkpoints should be made [2]. The security policy defines all the rules, 

regulations and procedures that must be followed to ensure system security and can be applied to many 

different areas. Some policies to prevent risks can be categorized as follows: 

Remote Access Policy: It is the standardization of who can connect to the system, when and how, and 

what kind of devices can be connected to this system remotely.  

Information Privacy Policy: It is the definition of which methods will be used to protect information 

depending on the level of sensitivity. Generally, more sensitive information has a higher level of 

security.  

Computer Security Policy: Defines which computers users will use. This policy defines who will use 

certain computers and which programs will be used to protect a computer or whether a particular storage 

device will be used.  

Physical Security Policy: Defines how physical assets are secured.  
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Password Policy: Determines how long a password should be changed, what type of passwords to use, 

and the criteria for defining password security levels. 

The review's chronology continues as follows. First and foremost, what is an RF fingerprint, where it is 

used, the importance of using modern software defined radios instead of the antenna and oscilloscope 

used in the literature to capture the RF signal, which parts of the signal are used in determining the 

feature, effective algorithms in FE, what features are used in this area, and what classification algorithm 

is used and provides a general idea of how successful its methods have been. Furthermore, the extensive 

literature review and sample data sets are expected to shed light on the scientists who will work in this 

field. 

2. Radio Frequency Fingerprinting and Data Acquisition 

RFF is a technique that's used to identify the radio signals emitted by various devices. In monitoring 

radars, RFF is widely used in the military field.  It's also used to authenticate wireless connections. 

The process of extracting the radio signal's unique features involves firstly identifying the source code. 

The code then passes these features to a classifier. The data acquisition subsystem of a wireless device 

is used to acquire and digitize a radio signal. It is typically built into a device to minimize signal 

degradation due to noise [3].  

In SDR, the software acts as the front end while the hardware provides the signal processing engine. 

The software that will allow this interaction is called GNU Radio. It is possible to create a "flow graph" 

which is a collection of interconnected signal processing blocks, by appropriately combining the blocks 

(to which algorithms and functions can be implemented) in GNU Radio. URH was created with 

theoretically oriented researchers in mind who want to focus on protocol logic rather than diving deep 

into HF and DSP. URH can perform spectrum analysis, signal recording, and protocol sniffing [4]. 

SigDigger, like GNU Radio and URH, is another software that can be used in the field of signal capture. 

SigDigger (digital signal analyzer written in Qt5 by BatchDrake for Unix systems) collaborates with 

three projects: Sigutils (DSP library that distributes the load using multi-core CPUs), Suscan (real-time 

signal analysis library), and SuWidgets. 

Signal acquisition can be done either actively or passively. In the active mode, a radio signal is captured  

from a wireless device to be used for identification, and signal collection is used for sampling [5]. In 

passive mode, while the device communicate with other devices, radio signal get caught from it. As an 

example, mobile phones in GSM communication with passive reception base stations can be defined 

[6].  

2.1 Software Defined Radios 

SDRs is used in the literature for radio communication. Unlike hardware-based solutions, SDR is a 

software-defined radio technology based on radio and wireless communication protocols. Figure 1 

provides a general perspective of the wireless world with SDR. Thanks to its reprogrammable feature, 

it meets the needs without the need for extra equipment. In this way, it strengthens the possibility of 

working on multi-functional and multi-band radio and wireless devices [7]. SDR is a major innovation 

development that develops a reconfigurable wireless communication system that replaces the traditional 

hardware communication devices implementation [8] SDR, it would be difficult and extra costly to 

install hardware from scratch or add new hardware to the existing system for minor design changes [9]. 

SDR allows the same hardware platform to be reused for many communications equipment with 

different protocols, reducing time to service and development cost to the end user [10]. The report in 

[7], it was expected SDR market is being worth more than $29 billion for the year 2021. Global Industry 

Analysts, Inc. reports the following SDR market tendencies: (i) growing military interest in developing 

countries in communication/information and large-scale distribution systems; (ii) rising requisition for 

public safety and disaster preparedness applications; and (iii) the need for developing of virtual base 

stations. It is evaluated that SDRs with their physically small size and low power consumption are 

convenient to design and implement of systems of the future [11-13], vehicle-to-vehicle communication 
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systems [11], Global Navigation Satellite System sensors [12] and IoT applications [13], [14]. HackRF 

One is a low cost SDR. It is critical to know which frequency band range the communicating devices 

operate in when using the HackRF One (low cost) device for signal capture. The HackRF package 

includes the ANT500 (telescopic antenna). The frequency band range of many communication protocols 

can be used with HackRF, which operates in the 1MHz-6GHz range. GNU Radio can be used to create 

a programming interface [15]. 

 
Figure 1 Exploring the Wireless World with SDR. 

2.2 RF Fingerprints and Datasets 

The RF spectrum given in Figure 2, which is part of the natural electromagnetic radiation spectrum, is 

between 3 kHz and 300 GHz frequency values. The spectrum used by wireless systems such as cell 

phones, radio and television broadcasts is in the critical frequency range. This spectrum covers 

frequencies in the [225 MHz to 3.7 GHz] range. 

 
Figure 2 Dedicated Spectrum Uses and Federal Spectrum Uses with a Significant Value [16]. 
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Sound perceivers identify the speaker by using unique variations and some aspects of the sound. RFF 

can mimic human speech in this regard. RFF uses the signal's time/frequency domain properties to 

automatically identify various radio and wireless devices. Almost all current and upcoming wireless 

communication standards employ OFDM [17]. 

What features of the signal are commonly extracted and what conclusions are drawn described below. 

In RF fingerprint capture, [18] uses SDR platform. Scrambling seed (from Descrambler), SFO (from 

Channel Estimator), CFO, and frame transient are the main features extracted (from OFDM 

Synchronizer). According to the article's conclusion, the results show that it is possible to identify Wi-

Fi devices. And [19] conducted RFF on ZigBee devices using the SDR platform. In that study, DCTF, 

CFO, modulation shift, and I-Q shift properties were obtained. PSD coefficients are used in [20]. 

Because of the high performance of high-end receivers, it is emphasized when defining the RFF that 

identification accuracy is strictly related to the receiver. The identification accuracy of PSD coefficients 

and SNR is examined [21]. [22] used PSD as RFF for device identification. The identification 

performance degrades as the distance increases due to the multipath channel effect. The LTSP is 

subtracted from the time-domain signal received. The PSD is computed after the FFT. CFOs can also 

be calculated using a combination of different inputs. 

In the literature, a number of learning datasets (protocol classifiers) for wireless communication have 

been published. Due to the acceleration in education, healthcare, e-commerce, computer vision and NLP 

in AI/ML and the lack of a common standard for organizing datasets, they are not yet integrated with a 

standard framework. Practitioners may be unable to access datasets because they are unaware of their 

existence [39]. Table 1 presents a summary excerpt from each explicitly available RF fingerprint 

datasets to educate those in this field. 

Table 1 Summary Table of RFF Datasets 

Made-up/ 

real-life 

Freq. 

(GHz) 

Waveform Emmitter Emmitter 

Count 

Receiver Dataset Ref. Dataset 

Format 

real-life 2.4 bluetooth smartphones 86 TDS7404 

Tektronix  

[23] .txt 

real-life 2.4 out of 

standard 

drone far 

controller 

17 

 

MSOS604A 

Keysight  

[24] .mat 

real-life 1.09 ADS-B aircraft 100 BladeRF [25] .mat 

real-life 1.09 ADS-B aircraft >140 B210 

(USRP) 

[26] .mat 

made-up 2.45 Wi-Fi 2 X310 16 B210 

(USRP)  

[27] SigMF 

made-up 2.4065 out of 

standard 

M100 Dji 7 X310 

(USRP)  

[27] SigMF 

made-up 2.685 Wi-Fi 2, 

LTE, 5G 

X310 4 B210 [27] SigMF 

made-up 2.432 Wi-Fi 2/3 X310, N210 20  N210 

(USRP) 

[28] SigMF 

2.3 Classification of Features  

The PLF are obtained by using the waveforms of the captured RF signals. It is categorized as position-

dependent features and radio metrics that is position-independent features.  

Position-independent Features: Due to defects in its analog components and manufacturing process, 

each transmitter has a separate RFF [29]. Device flaws are used to detect fingerprints used to identify 

devices. Some of these flaws include channel width, oxide thickness, and channel doping [30].  The 

primary goal of FE is to obtain an RFF profile that can be used to distinguish one transmitter from 

another. Previously, researchers [31] constructed an RFF using PSD and normalized PSD coefficients. 

Hall et al. [32] employs distinctive properties such as phase, amplitude, phase angle, and frequency. 

They use the DWT to extract these properties. The power amplifiers are the final component of the 

transmitter board. It is not easy for attackers to directly damage amplifiers with software. Power 

amplifier defects are also used in PL identification. Non-linear properties of power amplifiers can be 
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modeled using the Volterra series [33]. Passive Radiometric Device Identification System (PARADIS) 

was proposed by [34]. It makes use of frame size and phase errors, as well as I/Q origin offset and sync 

correlation. [35] uses transmitter phase shift and carrier frequency differences as fingerprints. It 

identifies devices with a second-order cyclic feature (SOCF). FE in radiometric techniques can be 

divided into transient and steady-state properties [34]. Transient-based methods [36] are adaptable but 

difficult to implement. It is based on time and frequency. I/Q instances are used as features in steady-

state methods. Modulation-based methods have a better structure, but first the modulation scheme must 

be understood. 

Position-dependent Features: The primary goals of RFF techniques (RFFTs) are to locate the device 

emitting the signal and the device from which signal originates [37]. RSS is an essential feature used in 

position-based RFFTs  [38]. RSS is directly affected by the transmit power and channel attenuation of 

the transmitter. CSIR is another feature in classification and is extremely sensitive to motion. 

Furthermore, because location-related features are extremely sensitive to environmental changes, they 

cannot be used as individual fingerprints [30]. 

3. Feature Extracting 

Transient features extracted from on/off transients or transmitted RF signal variations (envelope and 

phase shift of the transient signal) are used in device identification. The received signal is processed to 

extract stable features (such as SFO, CFO, and modulation features) [39]. A summary of studies with 

RFF in the literature is given in Table 2. 

Table 2 An Overview of RFF Research Published in the Literature. 

Based on Year

/ 

Ref. 

Parameter/ 

Method 

Devices Classification Performance 

modulation 2008 

[34] 

 

IQ offset, frequency error, 

phase and magnitude 

error, sync correlation. 

802.11 NICs SVM & k-NN 99.9% / SVM, 

97% / k-NN  

modulation 2009 

[40] 

 

spectral PCA features, 

modulation shape. 

JCOP NXP 4.1 

cards & e-

passports 

Mahalanobis 

distance 

classification acc. 

100%, 

identification acc. 

97.5% 

modulation 2017 

[41] 

 

IQ imbalance. Matlab 

simulation 

SVM >=90% 

(SNR>=15dB) 

modulation 2019 

[42] 

IQ imbalance & DC 

offset 

Phones, laptops 

& drones  

CNN 98.6% 

(dataset:[27]) 

modulation 2020 

[43] 

time-domain RF signal NI N210 & NI 

X310 

CNN Training and 

testing >= 

87.41% 

transient 2012 

[44] 

variance-based threshold. Bluetooth 

transceivers 

k-NN 

(obtaining energy 

envelope with 

STFT) 

99.9% 

transient 2009 

[45] 

variance-based threshold. IEEE 802.15.4 Mahalanobis 

distance 

>=99.5% 

transient 2014 

[46] 

phase based. GSM phones SVM 100% 

wavelet 2009 

[47] 

Dual-tree complex 

wavelet transform 

Wi-Fi 2 cards Fisher-based 

MDA 

>=98% 

(SNR>=25dB) 

wavelet 2019 

[48] 

Three-stage wavelet 

decomposition. 

micro-UAV 

controllers 

k-NN, SVM, DA, 

neural networks 

k-NN 96.3%, 

SVM 96.84% 

wavelet 2011 

[49] 

Wavelet packet 

decomposition, dynamic 

wavelet fingerprint. 

Avery-Dennison 

AD 612 & 

Runway Gen 2 

k-NN, SVM, 

LDC and QDC 

%99 
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machine 

learning 

2020 

[50] 

Time-domain RF signal Four BS in the 

POWDER 

platform 

CNN 

(augmented with 

triplet loss) 

99.98% for 10 

slices majority 

voting 

machine 

learning 

2020 

[51] 

RF signal spectrum 

(STFT method: RF signal 

to spectrum  ) 

5 transmitters 

simulation 

CNN 99.7% 

deep-

learning 

2018 

[52] 

Bispectrum 

(Specific emitter 

identification (SEI)) 

E310, B210 & 

N210 

CNN 

 

>87% 

deep-

learning 

2019 

[53] 

DCTF CC2530 ZigBee 

modules 

CNN 99.1% 

(SNR=30dB)  

deep-

learning 

2020 

[54] 

Time-domain RF signal Wi-Fi & ADS-B 

devices 

CNN Task 4F, 92.5% 

(per-transmission 

ADS-B accuracy) 

deep 

neural 

networks 

2020 

[55] 

Multiple data bursts Dji M100 UAVs CNN >99% 

transient & 

steady  

2017 

[56] 

Empirical Mode 

Decomposition in SEI 

Mobile phones & 

WLAN cards 

SVM transient 

>%93 (correct 

identification 

rate) SNR>0dB 

3.1 Based on Modulation 

The received frequency domain signal is used to FE. CNN (CFO) occurs when the carrier frequency is 

out of synchronization (when the signal down-conversion at the receiver (Rx) and the signal up-

conversion at the transmitter (Tx) are inconsistent). The inter-carrier interference effect is caused by the 

CFO. OFDM performance is influenced by inter-carrier interference. SFO occurs when the sampling 

rate between the receiver and transmitter front ends is not synchronized. If the system is out of sync, the 

signal thus received may not be demodulated afterwards. The CFO is effective in synchronizing the 

system, it is calculated with the symbols LTSP and STSP. In the CFO's calculation, the literature uses 

the Moose algorithm [57] The CFO's ϵ is represented by: 

 
𝐲[𝐧 + 𝑵𝒕] = 𝐲[𝐧]𝒆

𝒋𝟐𝝅𝑵𝒕𝝐
𝑵𝒕 →

𝑭⋅𝑻
𝒀[𝒏 + 𝑵𝒕] = 𝒀[𝒏]𝒆𝟐𝝅𝝐 

 

(1) 

That is, the estimated CFO in the frequency domain: 

 
𝝐 =

𝟏

𝟐𝝅
∠(

∑  
𝑵𝒕−𝟏
𝒏=𝟎 𝑰𝒎{𝒚𝟏

∗ [𝒏]𝒚𝟐[𝒏 + 𝑵𝒕]}

∑  
𝑵𝒕−𝟏
𝒏=𝟎 𝑹𝒆{𝒚𝟏

∗ [𝒏]𝒚𝟐[𝒏 + 𝑵𝒕]}
) 

 

(2) 

Even though the CFO is calculated and compensated at the receiver, it is calculated with LSTP for 

greater accuracy. The two are combined to calculate the OFDM system's CFO. It should be noted that 

the CFO is subject to change and thus requires constant supervision. When calculating SFO, the sliding 

window method is used to find the start of the data symbol [58]: 

 𝜹 = 𝐚𝐫𝐠𝒎𝒊𝒏∑  
𝑵𝒕−𝟏+𝜹
𝒊=𝜹 𝑱𝑺𝑭𝑶  (3) 

The cost function of estimated SFO: 

 
𝑱𝑺𝑭𝑶 = |𝒚[𝒏 + 𝒊] − 𝒚[𝒏 + 𝑵 + 𝒊]|  

 

 (4) 

A is the amplitude, φ is the phase imbalance. 𝑦𝐼(𝑡) In-phase (I), 𝑦𝑄(𝑡) quadrature (Q) paths outputs. If 

�̂�(𝑡) is the ideal receive signal, the I-Q imbalance will have an effect on it: 

 �̂�(𝒕) = 𝒚𝑰(𝒕) + 𝒚𝑸(𝒕)

= 𝑹𝒆{𝒚(𝒕)} + 𝒋𝑰𝒎{𝑨𝒆𝒊𝝋𝒚(𝒕)}
 

(5) 
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I and Q are 𝑦𝐼(𝑡) = cos(𝜔0𝑡) and 𝑦�̂�(𝑡) = sin(𝜔0𝑡). 𝜔0 is the baseband signal. After RF signal is 

down-converted to baseband, the baseband signal that affects the I-Q imbalance [59] is: 

 𝒚�̂�(𝒕) = 𝜶𝐜𝐨𝐬(𝝎𝟎𝒕) + 𝜷�̂�

𝒚�̂�(𝒕) = 𝐬𝐢𝐧(𝝎𝟎𝒕 + 𝝋) + 𝜷�̂�

 (6) 

Where 𝛼 = 1/𝐴 and 𝜑 are amplitude and phase errors caused by the I-Q imbalance defined above. 

𝛽�̂�and 𝛽�̂� are the DC biases of  I and  Q paths after down-converting. Removing these biases and  

substituting by sin(𝜔0𝑡 + 𝜑)=sin(𝜔0𝑡) + cos ( 𝜑) + cos(𝜔0𝑡)sin(𝜑), the baseband signal has the 

following matrix form: 

 
[
𝒚�̂�(𝒕)

𝒚�̂�(𝒕)
] = [

𝜶 𝟎
𝐬𝐢𝐧(𝝋) 𝐜𝐨𝐬(𝝋)

] [
𝒚𝑰(𝒕)

𝒚𝑸(𝒕)
]   (7) 

𝛼 and  𝜑 can be calculated as: 

 < 𝒚𝑰(𝒕) ⋅ 𝒚𝑰(𝒕) >= 𝜶𝟐 < 𝐜𝐨𝐬𝟐(𝝎𝟎𝒕) >=
𝜶𝟐

𝟐

→ 𝜶 = √𝟐⟨𝒚𝑰(𝒕) ⋅ 𝒚𝑸(𝒕)⟩

< 𝒚𝑰(𝒕) ⋅ 𝒚𝑸(𝒕) >=
𝜶𝟐

𝟐
𝐬𝐢𝐧(𝝋)

   (8) 

 → 𝝋 = 𝐬𝐢𝐧−𝟏 ((𝜶𝟐/𝟐)⟨𝒚𝑰(𝒕) ⋅ 𝒚𝑸(𝒕)⟩) (9) 

In the literature, CFO, SFO, amplitude shift and phase shift properties are commonly extracted from 

modulation-based signals. It makes use of the IQ components (in-phase and quadratic signal data) of 

signals collected at large scales from two different wireless standards (COTS: commercial ready and 

ADS-B: used for aircraft status updates). Modulations contain information providing unique signature 

about I-Q imbalance, phase noise, and carrier frequency shift while an information signal is being 

transmited to an other device [54]. 

3.2 Based on transient 

With non-stationary characteristics, it is not easy to separate TS and channel noise from each others. In 

this section, Bayesian Step Change Detector, Bayesian Ramp Change Detector, Variance Fractal 

Dimension Threshold Detector, Phase Detector, Average Point of Change Detector, Permutation 

Entropy, and Supremacy of Energy Criteria approaches are examined. 

3.2.1 Bayesian step change detector 

Based on Higuchi's method in [65], the variance of the fractal dimension is calculated for successive 

parts of the signal. In this case, the fractal dimension variance between two consecutive sequences is 

proportional to ppDF (posteriori probability distribution function). The sample instant to which the 

maximum value calculated from the probability distribution function (pDF) belongs is found as the 

transient starting instant as in Fig 3. To do this, first, subsets of samples are rearranged: 

 

𝑿(𝒎, 𝒌): 𝑿(𝒎), 𝑿(𝒎 + 𝒌),… , 𝑿 (𝒎 + [
𝑵−𝒎

𝒌
] × 𝒌)  

 

(10) 

𝑋(𝑚, 𝑘) is the subset interval, m is the start time, and k is the interval time. Calculation the length of 

the curve 𝐿𝑚(𝑘) is, its for each subset is: 

 
𝑳𝒎(𝒌) = {(∑  

𝑵−𝒎

𝒌
𝑰=𝟏 |𝒙(𝒎 + 𝒊𝒌) − 𝒙(𝒎 + (𝒊 − 𝟏)𝒌)|)

𝑵−𝟏

[
𝑵−𝒎

𝒌
]𝒌
} /𝒌  (11) 

The mean value of k clusters is plotted, a log-log scale (𝐿𝑚(𝑘)). After the curve fitting is done, the 

fractal dimension is calculated using the slope of the curve. 
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Figure 3  Bayesian step change detection on a sample signal [60] 

The beginning of the transition (m) is detected by tracking the ppDF in Equation 12. Here, N and d are 

the number of samples in a window and the fractal dimesion repectively.  

 𝑷( {𝒎} ∣ 𝒅 ) ∝
𝟏

√𝒎(𝑵−𝒎)
[∑  𝑵

𝒊=𝟏 𝒅𝒊
𝟐 −

𝟏

𝒎
(∑  𝒎

𝒊=𝟏 𝒅𝒊)
𝟐

−(
𝟏

𝑵−𝒎
) (∑  𝑵

𝒊=𝒎+𝟏 𝒅𝒊)
𝟐
]

𝑵−𝟐

𝟐

  (12) 

3.2.2 Bayesian ramp change detector 

Ureten and Serinken [61] proposed BRCD which is a modification of the BSCD. Transient due diligence 

is performed by estimating the point at which the signal's strength gradually increases. Prior to the 

transmission of actual data, typical transmission data includes channel noise. This signal's model is  

written in Equation 13 equation in  matrix form. 

 𝒅 = 𝑮𝒃 + 𝒆 (13) 

d is sample array in Nx1 dimension, G  is a N×M matrix of the basis functions estimated for each sample 

in the time series, b  is an array in M×1 dimension consist of linear coefficients , and e  is N×1 array of  

Gaussian noise examples. For change point determination, posteriori probability density is used [61]: 

 
𝑷( {𝒎} ∣ 𝒅, 𝑰 ) ∝

[𝒅𝑻𝒅 − 𝒅𝑻𝑮(𝑮𝑻𝑮)−𝟏𝑮𝑻𝒅]−
𝑵−𝒎

𝟐

√𝐝𝐞𝐭(𝑮𝑻𝑮)
 

(14) 

𝐼 represents the pattern of the signal, the position of the starting point (SP) can be found in the matrix 𝐺 

in “as seen in Equation 15”. 

 𝑮𝑻 = [
𝟏 𝟏 𝟏 𝟏 ⋯ 𝟏 𝟏 𝟏 𝟏 ⋯ 𝟏
𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎 𝟏 𝟐 𝟑 ⋯ 𝑵 − 𝒎

] (15) 

BRCD is more useful for Wi-Fi signals because it has 3 times lower standard deviation detection error  

than that of BSCD [62]. In fact, BRCD causes gradually an increase in power, such as Wi-Fi [60]. 

3.2.3 Variance fractal dimension threshold detector 

VFDTD was proposed in [36]. It computes the fractal size of signal amplitude variance when detecting 

Wi-Fi transmitter transients. Furthermore, the VFDTD implementation is as follows [60]: 
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Calculation of fractal size of each segment of the signal given in Equation 16 where H denotes the Hurst 

index giving the correlation between ΔX(ti,Δt) and Δt. ΔX(ti,Δt) is amplitude difference between any 

two points of the signal, and Δt is sampling time that is Δt =|ti+1 – ti| . 

 𝑫(𝒕) = 𝟐 − 𝑯 (16) 

Hurst index in the equation is calculated as in Equation 17 using least squares regression. In the equation, 

(xi,yi) pair is the pair of (log(Δti),log(var(ΔX(ti,Δti))). 

 
𝟐𝑯 =

𝑵∑  𝑵
𝒊=𝟏 𝒙𝒊𝒚𝒊 − (∑  𝑵

𝒊=𝟏 𝒙𝒊)(∑  𝑵
𝒊=𝟏 𝒚𝒊)

𝑵(∑  𝑵
𝒊=𝟏 𝒙𝒊

𝟐) − (∑  𝑵
𝒊=𝟏 𝒙𝒊)

𝟐
 

(17) 

It is critical to select an appropriate time sequence and to ensure that there are enough (xi,yi) pairs. Next, 

we need to determine the SPoTS using the fractal size we have obtained, and then adjust the threshold 

τ to be the average of the fractal size of the channel noise. If a set of values is less than the threshold 

value as given in Equation 18, then n is SPoTS.  

 𝑫(𝒏), 𝑫(𝒏 + 𝟏), … ,𝑫(𝒏 + 𝟒𝟓𝟎) ≤ 𝝉 (18) 

 Figure 4 depicts the start of a wireless network card network core's temporal and fractal trajectory. The 

fractal dimension of the channel noise and crossover signal appears to differ significantly. These features 

determine the starting point's location, making it simple and quick. The threshold, on the other hand, is 

sensitive to noise and can only be determined through trial and error. 

 

Figure 4 Variance fractal dimension threshold detection on a sample signal [60]. 

3.2.4 Phase detector 

J. Hall proposed phase detection [32], which uses PCs . Tis method can be defined as follows: The 

Hilbert transform of a real signal can receive an analytical signal as in Equation 19 and 20. 

 𝑿(𝒕) = 𝑰(𝒕) + 𝒋𝑸(𝒕) 

 
(19) 

 
𝜽(𝒕) = 𝐭𝐚𝐧−𝟏 [

𝑸(𝒕)

𝑰(𝒕)
] 

 

(20) 
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𝑄(𝑡) = (𝑠𝑄
𝑎(𝑛)) and 𝐼(𝑡) =  (𝑠𝐼

𝑎(𝑛)). However, the instantaneous phase of the signal in Equation 

20, is unwrapped to remove the discontinuities caused by multiples of 2π radians. Each 

element’s AV (absolute value) in unwrapped vector is obtained as in Equation 21 in this 

method. 

 
𝑨𝑽 = {

𝜽(𝒕)    |𝜽(𝒕) − 𝜽(𝒕 − 𝟏)| ≤ 𝝅

𝜽(𝒕) ± 𝟐𝝅    others
 

(21) 

TV (variance of phase) is calculated for each successive portion of 𝐴𝑉 to magnify the variation between 

the noise and transient portions of the signal as in Equation 22. To do this, size of a non-overlapping 

window (s) is used. 

 𝑻𝑽(𝒊) = 𝐯𝐚𝐫(𝑨𝑽⃗⃗ ⃗⃗  ⃗(𝒅 + 𝟏), 𝑨𝑽⃗⃗ ⃗⃗ ⃗⃗  (𝒅 + 𝟐),⋯ , 𝑨𝑽⃗⃗ ⃗⃗ ⃗⃗  (𝒅 + 𝒈)) (22) 

In the previous equation, i indeks takes values interval of [1, N/s], g is  i×s, d is  g−s, and var represents 

the phase's variance. Finally, the difference in phase variance (PV) is calculated using Equation 23 in 

order to generate the fractal trajectory. 

 
𝑽𝑻 = |𝑻𝑽𝒊 − 𝑻𝑽𝒊+𝟏|, 𝒊 = 𝟏, 𝟐,⋯

𝑵 − 𝒘

𝒔
 

(23) 

It is obvious that the PV of a TS changes more slowly than the PV of noise. The onset of a TS and the 

detection of its fractal trajectory by PD are depicted in Figure 5. All in all, the onset of a transient state 

can be easily detected using this characteristic. 

 

Figure 5 Phase detection on a sample signal [60]. 

Phase properties are used in PD sensing. Because noise has little effect on phase properties. It is quick 

and simple to detect the onset of the transient by changing the phase variance fractal trajectories; thus, 

its computational power is low and its robustness is high; however, there is a threshold problem [60]. 

3.2.5 Mean change point detector 

In this method, difference between the statistics of the samples is taken as main prenciple. As can be 

seen from Figure 6, the sampling moment or index where the greatest difference is found is taken as the 

SPoTS [60].  
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The temporal vector is divided into two parts:𝑥1,𝑥2,…,𝑥i−1 , and𝑥𝑖, 𝑥𝑖+1,…,𝑥𝑁 . The average and 

statistics of each section are calculated as in following equaitons. 

 𝑺𝒊 = ∑  𝒊−𝟏
𝒏=𝟏 (𝒙𝐧 − �̅�𝒊𝟏)

𝟐 + ∑  𝑵
𝒏→𝒊 (𝒙𝒏 − �̅�𝒊𝟐)

𝟐  (24) 

�̅� is the mean of the combined partitions and the statistics (𝑆) of the real sample are expressed below: 

 𝑺 = ∑  𝑵
𝒏=𝟏 (𝒙𝒏 − �̅�)𝟐  (25) 

The point having the largest amplitude of the 𝑆 - 𝑆𝑖curve is the start point of the transient. The idea 

behind MCPD is to enlarge the difference, and then determine the where the maximum value occurs to 

be starting point of the transient [60]. 

 
Figure 6 Mean change point detection on a sample signal [60]. 

3.2.6 Permutation entropy (PE) and generalized likelihood ratio test detector  

Bandt-Pompe introduced PE, which can assess the irregularity and complexity of time series [63]. This 

method detects a TS using PE and GLRTDs. A GLRTD is used to determine the SP of the captured 

signal's PE [64]. The𝑋𝑖,(𝑖 =1,2,...,𝑁) time series are formed in an m-dimensional space as follows to 

calculate the PE: 

 𝑿𝒊 = [𝒙(𝒊), 𝒙(𝒊 + 𝒍), … , 𝒙(𝒊 + (𝒎 − 𝟏)𝒍)] (26) 

where 𝑙 is the time lag, 𝑥(𝑖) denotes the 𝑖 - th point in m-dimensional space; 1 ≤ 𝑖 ≤ 𝑁 − (𝑚 − 1)𝑙. 

The actual 𝑋𝑖 values in Equation 26 are then sorted in ascending as in Equation 27: 

 𝑿𝒊 = [𝒙(𝒊 + (𝒋𝟏 − 𝟏)𝒍) ≤ 𝒙(𝒊 + (𝒋𝟐 − 𝟏)𝒍) ≤ ⋯ ≤ 𝒙(𝒊 + (𝒋𝒎 − 𝟏)𝒍)] (27) 

When an equality occurs, sorting can be done according to their corresponding index of𝑗. That is, if 

𝑗𝑛1<𝑗𝑛2, then the order is 𝑥(𝑖 + (𝑗𝑛1 − 1)𝑙)<=𝑥(𝑖 + (𝑗𝑛2 − 1)𝑙), else the order is 𝑥(𝑖 + (𝑗𝑛2 −
1)𝑙)<=𝑥(𝑖 + (𝑗𝑛1 − 1)𝑙). A permutation pattern 𝜋 can be used to map the vector𝑋𝑖: 

 𝝅𝒊 = [𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎] (28) 

j in Equation 28 is the time index. One of the m! permutations of m different signs is 𝜋𝑖. The probability 

of finding 𝜋𝑖 is easily calculated with p(𝜋𝑖) = f(𝜋𝑖)/(𝑁 − (𝑚 −1)𝑙). In the equation f(𝜋𝑖) is the number 

of occurrences of𝜋. Finally, Shannon Entropy is used to calculate the PE [65]: 

 𝟎 ≤ 𝐇𝐩 = −∑  𝐊
𝐣=𝟏 𝐩𝐣𝐥𝐧 𝐩𝐣/𝐥𝐧(𝐦!) ≤ 𝟏  (29) 
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In Equation 29, K is the number of different signs [𝜋1, 𝜋2, . . . , 𝜋𝑁−(𝑚−1)𝑙]. SPoTS can be identified 

using PE data. Firstly, the PE trajectory of the transient can be computed using a rectangular window of 

length Lwnd that scrolls one sample at a time. A signal's PE is smaller than the noise series' PE. The 

main reason for this is the noise's irregularity. The following equation can be used to easily model the 

PE trajectory: 

 

𝑯𝑷(𝒏) = {

𝑯𝒑𝒏(𝒏)    𝟏 ≤ 𝒏 ≤ 𝒏𝟎

𝑯𝒑𝒕(𝒏)    𝒏𝟎 ≤ 𝒏 ≤ 𝒏𝟏

𝑯𝒑𝒔(𝒏)    𝒏𝟏 + 𝟏 ≤ 𝒏 ≤ 𝑵

 
(30) 

where n denotes the nth slide, 𝐻𝑝 is the corresponding PE, 𝑁 is the total of sliding, 𝑛0 is the first time 

there is a TS in the sliding window, and 𝑛1 is the last time there is a TS in the sliding window. 𝐻𝑝𝑛 is 

the probability of noise; 𝐻𝑝𝑡 is the probability of TS in the sliding window; and 𝐻𝑝𝑠 is the probability 

of stable signal. It is self-evident that 𝐻𝑝𝑛>𝐻𝑝𝑡>𝐻𝑝𝑠. 

PE begins to decrease when there is a transient in a sliding window, and PE changes slightly for a stable 

signal in the sliding window. The PE for slides with a TS is modelled as follows: [64]: 

 
𝑯𝑷(𝒏) = {

𝑨𝟎 + 𝒘(𝒏)    𝟏 ≤ 𝒏 ≤ 𝒏𝟎

𝑨𝟎 + 𝒌 × (𝒏 − 𝒏𝟎) + 𝒘(𝒏)    𝒏𝟎 ≤ 𝒏 ≤ 𝑵𝟎
 (31) 

In Equation 31, 𝑤(𝑛) denotes Gaussian noise with zero-mean and σ standard deviation; 𝐴0 is the mean 

of 𝐻𝑝𝑛 (𝑛); 𝑘 is the decreasing slope after 𝑛0. When To is the mean PE, 𝑛0 is the first slide containing 

the TS; 𝑁0 denotes the changing point when 𝑛 ≤ 𝑁0, 𝐻𝑝𝑛(𝑛) > 𝑇0 and 𝐻𝑝𝑛 (𝑁0 + 1) ≤ 𝑇0 and is computed 

as in Equation 32 and 33. 

 
𝑻𝟎 =

𝐦𝐚𝐱(𝑯𝑷) + 𝐦𝐢𝐧(𝑯𝑷)

𝟐
 

(32) 

The binary hypothesis test can be used to solve the transient detection problem: 

 𝑯𝟎: 𝑨𝟎 + 𝒘(𝒏)

𝑯𝟏: {
𝑨𝟎 + 𝒘(𝒏) 𝟏 ≤ 𝒏 ≤ 𝒏𝟎

𝑨𝟎 + 𝒌 × (𝒏 − 𝒏𝟎) + 𝒘(𝒏) 𝒏𝟎 ≤ 𝒏 ≤ 𝑵𝟎

 
 

(33) 

 

Figure 7 For a PE Trajectory (upper) Output of GLRT Dedector (lower) [64]. 

𝐻𝑃(𝑛)′𝑠 GLRTD can be represented as: [66]: 

 
𝑳𝑮(𝒙) =

𝒑(𝒙; 𝒏𝟎, 𝑯𝟏)

𝒑(𝒙;𝑯𝟎)

=
𝒑(𝒙; 𝑨𝟏 = �̂�𝟎, 𝑨𝟐 = �̂�𝟎 + �̂� × (𝒏 − 𝒏𝟎), 𝑯𝟏)

𝒑(𝒙; 𝑨𝟏 = �̂�𝟎)

 

 

(34) 
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𝑝(𝑥; 𝑛0, 𝐻1) and 𝑝(𝑥; 𝐴1) are computed as shown below; since 𝐴0 and 𝑘 are unknown, instead of them 

their MLE can be used [67, 68]. 

 

𝒑(𝒙; 𝑨𝟏, 𝑨𝟐) =
𝟏

(𝟐𝝅𝝈𝟐)𝑵𝟎/𝟐
𝐞𝐱𝐩 [−

𝟏

𝟐𝝈𝟐
(∑  

𝒏𝟎

𝒏=𝟏

(𝒙(𝒏) − 𝑨𝟏)
𝟐) + ∑  

𝑵𝟎

𝒏=𝒏𝟎+𝟏

(𝒙(𝒏) − 𝑨𝟐)
𝟐)] 

  

𝒑(𝒙; 𝑨𝟏) =
𝟏

(𝟐𝝅𝝈𝟐)𝑵𝟎/𝟐
𝐞𝐱𝐩 [−

𝟏

𝟐𝝈𝟐
(∑  

𝑵𝟎

𝒏=𝟏

(𝒙(𝒏) − 𝑨𝟏)
𝟐)] 

 

(35) 

 

 

 

(36) 

 

To determine 𝐴0 under the two hypotheses 𝐻0 and𝐻1, let the MLE of 𝐴0 under 𝐻0 and𝐻1 be 

�̂�00and�̂�01, respectively. 

 
�̂�𝟎𝟎 = �̂�𝟎 =

𝟏

𝑵𝟎

∑  

𝑵𝟎

𝒏=𝟏

𝑯𝒑(𝒏) 
(37) 

 
�̂�𝟎𝟏 = �̂�𝟎 =

𝟏

𝒏𝟎

∑  

𝒏𝟎

𝒏=𝟏

𝑯𝒑(𝒏) 
(38) 

The least squares fitting algorithm can estimate the MLE of slope k algorithm [65] and is provided 

below: 

 
�̂� =

(𝑵𝟎 − 𝒏𝟎)∑  
𝑵𝟎−𝒏𝟎
𝒏=𝟏 𝒏𝑯𝒑(𝒏 + 𝒏𝟎) − ∑  

𝑵𝟎−𝒏𝟎
𝒏=𝟏 𝒏∑  

𝑵𝟎−𝒏𝟎
𝒏=𝟏 𝑯𝒑(𝒏 + 𝒏𝟎)

(𝑵𝟎 − 𝒏𝟎) ∑  
𝑵𝟎−𝒏𝟎
𝒏=𝟏 𝒏𝟐 − (∑  

𝑵𝟎−𝒏𝟎
𝒏=𝟏 𝒏)

𝟐
 (39) 

The GLRTD is defined using the above equations as follows [64]: 

 𝐋𝐧 (𝑳𝑮(𝑯𝒑(𝒏)))

=
𝟏

𝟐𝝈𝟐
[∑  

𝑵𝟎

𝒏=𝟏

(𝑯𝒑(𝒏) − �̂�𝟎𝟎)
𝟐
− ∑  

𝒏𝟎

𝒏=𝟏

(𝑯𝒑(𝒏) − �̂�𝟎𝟏)
𝟐

− ∑  

𝑵𝟎

𝒏=𝒏𝟎+𝟏

(𝑯𝒑(𝒏) − �̂�𝟎𝟏 − �̂� × (𝒏 − 𝒏𝟎))
𝟐

]

 

 

 

 

(40) 

The GLRTD's maximum is the estimated SPoTS 𝑛0 [64]: 

 �̂�𝟎 = 𝐚𝐫𝐠𝒎𝒂𝒙
𝒏

  [𝐋𝐧 (𝑳𝑮(𝑯𝒑(𝒏)))] (41) 

As shown in Figure 7, when the PE trajectory falls down, the GLRTD output occurs in there, which can 

be identified as the change point n0. It is reasonable to conclude that a very small number of signal 

samples in the sliding window cannot result in a noticeable decrease in the PE trajectory. 

3.2.7 Superiority of energy criterion 

This technique, which is widely used to predict the arrival time of signals in a variety of applications, is 

also a pioneer in detecting acoustic and electromagnetic partial discharges. The basic idea behind 

emergy criterion (EC) is to characterize the arrival of a signal by a change in energy content.  A sampled 

signal's (x) energy (𝐸𝑖) is the sum of its amplitude values. [69], [70]. 

 𝑬𝒊 = ∑  𝒊
𝒌=𝟎 𝒙𝒌

𝟐, 𝒊 = 𝟏,… ,𝑵   (42) 

The length of the signal is represented by N. As follows, the signal is isolated from the noise component: 

 𝑬𝒊
′ = 𝑬𝒊 − 𝒊𝜹 = ∑  𝒊

𝒌=𝟎 (𝒙𝒌
𝟐 − 𝒊𝜹)  (43) 

δ  in Equation 43, defined as in Equation 44. 
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 𝜹 =
𝑬𝑵

𝝑⋅𝑵
  (44) 

The ϑ factor lessens the delay effect of δ. As a result, the parameters that δ influence are the total energy 

of the signal (𝑬𝑵) and the ϑ factor. Two methods can be used to use the EC technique for transient SP 

detection: the EC (EC-a) method based on 𝒂(𝒏) features and the EC (EC- Ø) method based on AV(𝒏) 
features. 

When using the EC-a method to calculate (𝑬𝒊
′), we first use the 𝒂(𝒏) features of the analytical signal 

found in Equation 45. 

 
𝒂(𝒏) = √(𝒔𝑰

𝒂(𝒏))𝟐 + (𝒔𝑸
𝒂(𝒏))

𝟐
  

(45) 

The energy curve's global minimum is then defined. The sample corresponding to the global minimum 

is used to determine the starting point of the transient. However, within a flat region, there may be 

several local minimums. In this case, the transition SP can be determined by selecting the region's first 

local minimum. It should be noted that the 𝜹 factor chosen has a significant influence on the energy 

curve as seen in Equation 44. The value of the 𝛿 factor under noise-free conditions is 𝜹 = [1, 2,..., 100] 

[70]. When considering different SNR levels, the 𝛿 factor value should be determined empirically. In 

this context, they discovered that when 𝜹 = 30 for the given data set, the detection accuracy increases 

significantly [71]. 

Figure 8 illustrated the energy curve computed using EC-a for δ = 1, 2, 30 and the discovered starting 

points. 

 

Figure 8 Illustration the energy curve obtained by EC-a method (lower) and the determined trainsient starting 

point (upper) [71]. 

The EC- a method is based on using AV(n) in Equation 46. 

 
𝑨𝑽(𝒏) = {

∅(𝒏)    |∅(𝒏) − ∅(𝒏 − 𝟏)| ≤ 𝝅

∅(𝒏) ± 𝟐𝝅    otherwise
 

(46) 

The basic logic is to generate another random signal with roughly equal variance by using the random 

change in the noise portion of the signal's unwrapped IP features. In the noise part of the signal, a 

monotonically increasing energy curve is expected to be obtained using this signal. The starting point is 

the global maximum point of the curve. As a result, the method begins by calculating the absolute 

differences between each mean window of the signal's unwrapped instantaneous PCs. After 

calculating𝐸𝑖
′, the maximum of the curve is shown in Figure 9(a). In the unwrapped instantaneous PCs 
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of the signal, the example corresponding to the window index providing the global maximum of the 

curve is defined in Figure 9(b). Figure 9(c) shows the determination of the starting point.  

 

Figure 9 (a) Energy curve generated by the EC- Ø  method, (b) instantaneus phase signal,  (c) the determined of 

the starting point [71]. 

The transient-based signal characteristic recognition algorithms available in the literature are 

summarized in Table 3. 

Table 3 Summary Table Transient Detection Algorithms. 

Algorithms 

Ref. 

Pros Cons Complexity Success Rate Signal/SNR 

BSCD [72] no threshold needed, 

high detection rate 

(hiDeR) (with 

suitable 

amplitude/without 

leading response). 

weak detection 

(with small 

amplitude) for TS, 

need a long time, 

complicated 

calculation. 

O(n3) % 80-85  

 

Wi-Fi 1  

transceiver 

Radio/NA 

BRCD [73] no threshold needed, 

outperforming 

BSCD. 

works well in 

signal models with 

linear power 

increases, complex 

calculation. 

N/A % 95  

 

Wi-Fi 1  

transceiver 

 

Wi-Fi 1/NA 

VFDTD 

[74] 

hiDeR  threshold needed, 

highly sensitive to 

noise, need long 

time, complicated 

calculation. 

O(n2) N/A Radio/NA 

PD [75] fast and simple less susceptible to 

noise, practically 

define a starting 

point, poor 

detection rate in 

low SNR. 

O(n) % 85-90  

 

Wi-Fi 1  

transceiver 

 

Bluetooth/NA 

MCPD [76] no threshold needed,  

high detection, 

simple 

takes long time to 

compute. 

O(n) % 90-92.5  

 

8 different 

transmitters 

Wi-Fi/6-30dB 
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PE & 

GLRT [64] 

no threshold needed, 

hiDeR, 

detection of the start 

point is extremely 

accurate. 

complicated 

calculation. 

N/A N/A GSM/0-25dB 

EC [71] more effective 

different SNR levels 

N/A O(n) N/A Wi-Fi/-3-25db 

3.3 Based on Steady-State 

The unrivaled features extracted from the modulated signals are the focus of some steady-state studies. 

Gerdes and colleagues in their work [77], they proposed a based on steady-state RFF and preferred cards 

of the same manufacturer and model. The IEEE Ethernet 802.3 input part is used to identify the 

fingerprint profile, as well as the device emitting the signal. In the classification, a basic threshold and 

a matching filter application were used. [34] proposed a PARADIS. This system identifies the physical 

layer of a modulated signal based on five properties (frequency error, synchronous correlation, I/Q 

origin offset, magnitude and phase errors). The k-NN and SVM classifiers were used to create the RFF 

profile. To demonstrate the classifier's accuracy, 138 identical model Wi-Fi 1 signals are used. These 

signals were captured with a vector signal analyzer at distances in the interval of (3,15) meters from the 

antenna. With their proposed method, Shi and Jensen hoped to define Multiple Input Multiple Output 

devices. It has become a system comparable to PARADIS by utilizing the radiometric properties of 

these devices in modulation [78]. They used modulation-based approaches to classify RFID devices. 

They make use of spectral features from RFID transmitters as well as modulation features. Four different 

RFID transmitter classes and models are tested in the study (ISO 14443, HF 13.56 MHz) [40]. Frequency 

domain features were used in the study to identify RFF transmitters. The use of FFT allows for a great 

deal of flexibility in spectral feature selection. In laboratory testing, eight USRP transmitters are used. 

Optional feature selection the k-NN discriminator is used to generate the classification engine 

automatically. It achieves 97 and 66 percent accuracies at 30dB SNR and at 0dB SNR respectively. It 

also provides a less expensive alternative to the its counter approach requiring very high speed ADCs 

[79]. Suski and colleagues for their unique feature selection, they used the PSD coefficients in the Wi-

Fi 2/3 signal input [80]. Table 4 details the IEEE 802.11 standards [81-89]. Integration employs the 

feature selection method, as opposed to other known feature selection methods (RELIEF-F, F Score, 

and Laplacian Score). The covariance feature is used as an RF fingerprint, and the K-Nearest Neighbor 

(KNN) classifier is used. The Spearman correlation coefficient is used to assess the method's stability 

[90]. It is a fact that the steady state component of the signal is not shared by all transmitters. On the 

other hand, trainsient part of the signal is always present. As a result, the study focuses on transient-

based RFF. It is a significant difficulty to obtain the amplitude of the signal, in this context a higher 

sampling rate is needed to be able to detect the satarting of the transient [79]. WLAN, RFID, and almost 

all other technologies use preamble as it simplifies receiver design at the start of transmission. Therefore, 

these approaches do not require a steady-state signal [31]. For deep learning RFF approaches, Yu et al. 

offer a general Denoising Auto Encoder based model. A partially stacking technique has also been 

developed for efficiently identifying ZigBee devices using both quasi-stable and steady-state RFFs. 

Under AWGN channels at lower SNRs (-10 dB to 5 dB), their suggested PSCDAE beats traditional 

CNN by 14 to 23.5 percent in terms of identification accuracy [91]. 

Table 4 Information of IEEE 802.11 Standards. 

Release 

date 

Standard Common 

name 

Freq. 

(GHz) 

Modulation 

type 

Bandwith 

(MHz) 

Data 

speed 

(bps) 

Approx. 

range 

(meter) 

Number 

of 

clients 

1997 802.11 Wi-Fi 0 2.4 DSSS, 

FHSS 

22 2 M 20-100 N/A 

1999 802.11a Wi-Fi 2 5 DSSS 20 54 M 35-120 N/A 

1999 802.11b Wi-Fi 1 2.4 CCK 22 11 M 35-140 N/A 

2003 802.11g Wi-Fi 3 2.4 OFDM 20 54 M 38-140 N/A 

2009 802.11n Wi-Fi 4 2.4 & 5 OFDM 20-40 600 M 70-250 <50 

2013 802.11ac Wi-Fi 5 5 OFDM 20-40-160 6.9 G 35-… 50-100 
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2019 802.11ax Wi-Fi 6 2.4 & 5  OFDM, 

OFDMA 

80-160 9.6 G N/A 200-400 

2020 802.11ax Wi-Fi 6E  6 OFDMA 80-160 9.6 G N/A 200-400 

Expected 

in (2nd 

half of 

2022) 

802.11be Wi-Fi 7 2.4, 5 

& 6 

OFDMA 320 30 G N/A N/A 

3.4 Other Methods 

These approaches typically employ a proprietary wireless technology and/or extract additional signal 

and logical layer features [92], [47]. The PL is described by Danev et al. using the modulation pattern, 

spectral characteristics, and timing of device response signals. Timing and modulation are used to 

distinguish devices from various manufacturers, while spectral features are used to identify devices from 

the same manufacturer when fingerprints are used to identify devices [40]. Jana and Kasera identified 

access points in a wireless local area network using clock skew as a distinguishing feature [92]. In [93], 

the effectiveness of this technique for complex networks has been demonstrated. The results 

demonstrated that various access points could be distinguished with high accuracy. 802.11a OFDM 

signal devices are defined by a complex wavelet transform. MDA is used to categorize the features [47], 

[94]. To identify wireless devices, Suski et al. [95] generates an RF fingerprint. It makes use of the PSD 

of the Wi-Fi 2 preamble and spectral correlation is used for classification. When the SNR value of the 

captured packet frames is greater than six decibels, the average classification error rate is 20 percent in 

this method, which was tested on three devices. Recent research has focused on various RFID classes 

for PL identification [96], [97]. Periaswamy et al. [97], [98] used UHF-RFID tags to identify devices. 

According to the results of the study, the minimum power response feature can be used to identify 

devices with a 94.4 percent success rate. Recently, researchers looked into various signal characteristics 

and signal components [99], [6] in GSM devices. They identified and classified devices from four 

different manufacturers by using the intermediate and temporal parts of the GSM-GMSK burst signals. 

When the results of GSM signal identification are examined, it is discovered that the near temporal part 

is more effective in classification accuracy, while the mid-level part is less effective. Padilla et al. assess 

system performance using 20 Wi-Fi device datasets with 15 fingerprint samples per device. Both 

methods combine subspace transform-based feature reduction techniques with similarity-based analysis 

techniques such as PCA and PLS regression as identification methods. When only one device per 

manufacturer is used, accuracy is greater than 90%, and accuracy is around 70% when two devices per 

manufacturer are used [100]. To extract RFF features, the DCTF, a two-dimensional representation of 

the differential relationship of signal time series, is used. When defining devices, the developed DCTF-

CNN is used [53]. Furthermore, HHT [101], EMD and Welch methods, which are employed in signal 

classification in several domains, will add to the literature if used to RFF [102]. 

4. Classification Methods 

The classification methods used in the literature can be summarized as in Figure 10. As seen in the 

figure, methods divide into two main category as supervised and unsupervised. Unsupervised learning 

is not effective if there is prior tag information about devices. For Wi-Fi fingerprinting, infinite hidden 

Markov random field (ihMrf) based unsupervised clustering techniques are proposed using online 

classification algorithm and batch updates [103]. Transmitter features are used in [35], where Bayesian 

approach  passively classifies equipments unsupervised. 
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Figure 10 Perspective on RFF Classification. 

In supervised learning, the network requires multiple labeled samples gathering prior to deployment to 

train for ML algorithm [104]. Below are studies using supervised learning-based methods in four 

different categories. 

Based on Likeness: Comparing the observed signature of the transmitting device with records in a master 

database is necessary for similarity metrics. A passive fingerprint technique has been proposed in [105], 

to identify the Wi-Fi device driver running on an IEEE 802.11. Analysis of the collected traces and 

fingerprinting of device drivers is done using the Supervised Bayes approach. Using wavelet analysis 

[106] describes a passive black box-based technique that uses the time from TCP or UDP packet to 

determine type of access points. These techniques are based on priory knowledge about vendor-specific 

features. 

Classification-Based: As can be seen in Figure 10, there are studies in the literature on classification-

based supervised learning that makes use of RF features such as I/Q and phase imbalance, frequency 

error and RSS. 

Traditional: In traditional classification, matching with pre-selected features is examined using the 

domain knowledge of the system. To do this, dominant features must be known beforehand. The method 

proposes a classification based on subtracting known input parts and calculating spectral ingredients. 

The log spectral energy property is given as input to the k-nearest neighbors (KNN) discriminant 

classifier [79]. PARADIS achieves 99% accuracy using SVM and KNN algorithms, fingerprinting 

802.11 Wi-Fi devices, based on modulation specific errors in the frame [34]. A structure called GTID 

is proposed for physical device classification with artificial neural networks. This structure takes 

advantage of variations in clock skewness as well as hardware combinations of devices [107]. They 

investigated the problem of detecting and classifying micro-UAV control signals. The proposed 

detection method executes  a Bayesian approach based on the Markov models of UAV and non-UAV 

classes,  while the classification method relies on energy-time domain RF signal and uses features 

(skewness (γ), variance (σ2), energy spectral entropy (H), and kurtosis (κ)) extracted in this domain [48]. 

The mathematical calculations of these properties are given in the following equations.  
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𝜿 =

𝟏

𝑳𝝈𝟒
∑  

𝑳

𝒏=𝟏

(𝜶(𝒏) − 𝝁)𝟒 (47) 

 
𝛄 =

𝟏

𝐋𝛔𝟑
∑  

𝐋

𝐧=𝟏

(𝛂(𝐧) − 𝛍)𝟑 
(48) 

 
𝛔𝟐 =

𝟏

𝐋
∑  

𝐋

𝐧=𝟏

(𝛂(𝐧) − 𝛍)𝟐 
(49) 

 
𝛍 =

𝟏

𝐋
∑  

𝐋

𝐧=𝟏

𝛂(𝐧) 
(50) 

Choosing an appropriate feature set is an important  huge duty when using many different features. 

When there are many devices, scalability problems may occur. This causes to increased computational 

complexity in training. 

Deep Learning is also a popular approach in recent years using supervised learning. It is a network 

structure consisting of many layers, capable of solving complex problems by processing big data. It 

implements deep learning at the PL, focusing on modulation recognition using CNNs [108] [109]. 

However, it does not define a device as Riyaz et al. does, it only defines the modulation type used by 

the transmitter [104]. Three deep learning models (CNN, LSTM and MLP) were found successful in the 

literature, considering the characteristics of IQ samples, FFT results and spectrogram. In the literature, 

it appears that CNN is efficient in processing spatially relevant data such as images (spectrogram) in 

deep learning, whereas LSTM is efficient in temporally related time series (IQ samples) [110]. AlexNet, 

GoogleNet, VGG16, and ResNet are examples of popular CNN models. In the RF field, two new models 

are proposed as deep CNN architectures, inspired by Alex-Net and ResNet [54]. 

Extreme Learning Machines (ELM) was proposed for single  layer neural networks by G. Huang in 

2006. It presents a fast and not iterative numeeric supervised learling. ELM provides good generalization 

performance at extremely fast learning speed [111, 112]. One of its most important features is that it 

does not require iterative calculations based on derivatives. It uses pseudo inverse computations for 

determining networks parameters [113]. This area is very untouched in RFF. A long time is required for 

the training of the above-mentioned structures used in deep learning. ELMs have the potential to reduce 

this time to extremely low values with an extremely fast operation. In this context, it is considered as an 

open field that is recommended to be used in the future. 

5. Conclusion 

Finally, this review focuses on the rapid development and widespread use of IoT and the security part. 

Considering the IoT's own hardware resources, the use of RFF to ensure security due to the error 

experienced during production at the physical layer draws attention. Therefore, RFF methods for Wi-Fi 

communication devices have been reviewed. Essentially, unique features from Wi-Fi communication 

devices are extracted and adapted to two-factor authentication systems for identification purposes. SDRs 

take the lead in signal capture and preprocessing to support different communication protocols. This 

review gives a summary of the most recent RFF detection and extraction techniques. FE methods used 

for different fingerprinting methods are detailed in this review. 
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