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Abstract 

Rapid advancements in Big data systems have occurred over the last several decades. The significant element for attaining 
high performance is "Job Scheduling" in Big data systems which requires more utmost attention to resolve some challenges 
of scheduling. To obtain higher performance when processing the big data, proper scheduling is required. Apache Hadoop 
is most commonly used to manage immense data volumes in an efficient way and also proficient in handling the issues 
associated with job scheduling. To improve performance of big data systems, we significantly analyzed various Hadoop job 
scheduling algorithms. To get an overall idea about the scheduling algorithm, this paper presents a rigorous background.  
This paper made an overview on the fundamental architecture of Hadoop Big data framework, job scheduling and its issues, 
then reviewed and compared the most important and fundamental Hadoop job scheduling algorithms. In addition, this paper 
includes a review of other improved algorithms. The primary objective is to present an overview of various scheduling 
algorithms to improve performance when analyzing big data. This study will also provide appropriate direction in terms of 
job scheduling algorithm to the researcher according to which characteristics are most significant. 
Keywords: Big data, hadoop, job scheduling, scheduling algorithms. 

BÜYÜK VERİLER İÇİN HADOOP İŞ ÇİZELGELEME ALGORİTMALARINA GENEL 
BAKIŞ 

Özet 

Büyük veri sistemlerindeki  hızlı gelişmeler son on yılda meydana gelmektedir. Büyük veri sistemlerinde yüksek performans 
elde etmek için en önemli unsur "iş Çizelgeleme"dir. Çizelgelemenin bazı zorluklarını çözmek için daha fazla dikkat 
gerekmektedir. Büyük verileri işlerken daha yüksek performans elde etmek için uygun çizelgeleme gereklidir. Apache 
Hadoop, en yaygın olarak çok büyük veri hacimlerini verimli bir şekilde yönetmek için kullanılır ve ayrıca iş çizelgeleme ile 
ilgili sorunları ele almada yetkindir. Büyük veri sistemlerinin performansını iyileştirmek için çeşitli Hadoop iş çizelgeleme 
algoritmalarını önemli ölçüde analiz ettik. Çizelgeleme algoritması hakkında genel bir fikir edinmek için bu makale iyi bir 
arka plan sunmaktadır. Bu makale Hadoop büyük veri çerçevesinin temel mimarisi, iş çizelgeleme ve sorunları hakkında 
genel bir perspektif sunmaktadır. Ardından en önemli ve temel Hadoop iş çizelgeleme algoritmalarını incelemekte ve 
karşılaştırmaktadır. Ek olarak makale diğer geliştirilmiş algoritmalarının bir incelemesini sunmaktadır. İlk amacı büyük 
veriler  analiz ederken performansı arttırmak için çeşitli çizelgeleme algoritmalarına genel bir bakış sunmaktır. Bu çalışma 
aynı zaman da araştırmacıya ihtiyaçlarına göre iş çizelgeleme algoritmasına uygun yönlendirme sağlamaktadır.  
Anahtar Kelimeler: Büyük veri, hadoop, iş çizelgeleme, çizelgeleme algoritmaları. 
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1.  Introduction 

A great revolution in data has seen the light of day in 
recent years. With the evolution of the Internet which is 
rapidly developing into Internet of Things (IoT), the idea 
of "Big Data" emerged [1]. For quality of life, the 
advantages of IoT devices are enormous in aspects of 
significant improvement. Simultaneously, it introduces 
the challenge of dealing with outrageous measures of 
information. A gigantic volume of information has been 

produced in recent years as a result of technological 
innovations from numerous sources. These data sources 
like the IT sector, data in the form of media streams, 
transactional information from enterprise applications, 
electronic gadgets, files, and many more [2]. 

The characteristics of big data are known as “V” 
challenges, later these "V" challenges were expanded to 
include a large number of V’s: Velocity, Variety, Volume, 
Veracity, Variability, Value, Verification, Vulnerability [3, 
4]. The management of these highly characterized data is 
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arduous for traditional database systems. Doug Cutting, 
a researcher and proprietor of Apache Lucene, designed 
the Hadoop system to handle these complex big data. 
Hadoop is very popular among other available big data 
systems. It is an open-source framework capable of 
addressing numerous challenges such as high volume of 
data storage, analysis of data, transfer, capture and data 
collection, and vulnerability means security and privacy 
of enormous data [5, 6]. 

To influence the performance of big data systems, it is 
important to examine job scheduling. In order to reduce 
I/O processing time and finest allocation of resources of 
a job, job scheduling should be considered. Moreover, Job 
scheduling can anticipate how jobs will use their 
resources. The scheduling of a job in a computer cluster, 
on the other hand, is still a well-known outstanding 
problem. As job scheduling is considered to be an 
interesting and active field of study in Hadoop, this paper 
focuses on “Hadoop Job Scheduling” in order to assist 
researchers in better understanding of Hadoop job 
scheduling. Working with big data system starts with 
determining the appropriate algorithm. It is vital to 
develop an algorithm for determining a node in efforts to 
advance the Map Reduce process and enhance 
performance [7]. The ideal algorithm is chosen based on 
which attributes are most crucial for a certain 
application. The researcher must carefully choose the 
most appropriate algorithm in order to improve 
performance. Goal of this research article is to offer 
implementers an indication of an ideal scheduling 
algorithm for their research according to their needs.  

To achieve a general understanding of Job Scheduling the 
following is how the rest of the paper is organized. The 
structure of this survey study is such that after 
introduction it will concisely outline an effective big data 
framework with regard to the overall architecture. Then 
it will provide information about job scheduling in 
Hadoop and its issues in chapter 3. In section 4, a survey 
and comparison on available fundamental job scheduling 
algorithms with its advantages and disadvantages and 
also other improved mostly mentioned algorithms has 
been discussed. Finally, section 5 will represent the 
conclusion. 

2.  Generalized Features and Architecture of 
Hadoop System 

Various technologies are available for processing and 
analyzing datasets, however Apache Hadoop is the most 
commonly utilized and popular [8]. For distributed 
computing, data storage, and processing, Hadoop is a 
scalable, accurate and dependable open source platform. 
It allows to compose, organize and implement 
applications which was developed in Java at first [9]. 
When developing distributed applications, Hadoop users 
should not be concerned with the low-level details of the 
distributed system, but rather with their business 
requirements. 

2.1. Features 

For computing communications, Hadoop is adopted by 
many conventional business and internet enterprises 
because of its highly scalable features. Paper [10] 
presented that in 2016 Facebook handled 4 petabytes of 
data on daily basis and each day in 2017, 2:5 quintillion 
bytes of information were generated, according to IBM. 
Amazon uses ad hoc groups to manage enormous 
volumes of data on a regular basis, according to paper 
[11, 12, 13]. 

A substantial dataset is broken down into little segments 
and spread among multiple nodes, each with its distinct 
computing and caching capabilities. It delivers a high 
fault tolerance capability, which implies that in the event 
of a machine failure, a backup will consistently be 
present to ensure that processing is not disrupted. As an 
outcome of this feature, data is more readily available. 
Because of its extensive data availability, Hadoop is 
rarely susceptible to failures [14]. 

 
Figure 1. Generalized architecture of Hadoop system. 

Hadoop provides the ability to install additional nodes to 
clusters without requiring them to be reorganized. 
Hadoop also has the capability of combining multiple 
data sources. Hadoop can conduct map and reduce 
operations well regardless of the data type. 

2.2. Hadoop Architecture 

The generalized architecture of the Hadoop system is 
depicted in Figure 1. Hadoop framework features the 
Hadoop Core module, which serves as the framework's 
foundation and encompasses with the operating 
system's and file system's services and processes. It's a 
collection of libraries and functions that are shared by 
Hadoop modules. Another core module of Hadoop is the 
MapReduce part. This module is responsible for 
concurrent processing of big data sets and writing 
applications. It operates with data stored in the Hadoop 
distributed file system (HDFS) module. 
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2.2.1. MapReduce 

Hadoop includes MapReduce, It is a data processing 
technology developed to reliably process vast datasets in 
a distributed and parallel fashion using large clusters. 
The map and reduce functions are the two user-defined 
functions in a Hadoop MapReduce job [7, 15, 16]. The 
Mapper function usually splits the data into distinct 
smaller parts and maps the entire input file. 

The map function accepts and returns key(k)/value(v) 
pairs as input and output. The reducer function will 
receive the intermediate outcome of the map function to 
generate the final output. The HDFS, which is parallelized 
beneath Mapreduce, stores the final output. The whole 
data processing technology of Map/Reduce follows five 
phases which is illustrated in Figure 2. Hadoop is in 
charge of handling the technicalities of important duties, 
such as task completion verification, task issuance, and 
replicating information between the cluster's nodes [17]. 

2.2.2. JobTracker 

The JobTracker is a component of the MapReduce 
module which supervises the MapReduce job and 
functions as a master node. By scheduling system 
operations to execute on the Task Tracker, JobTracker 
synchronizes all of the jobs while also maintaining the 
entire Hadoop cluster's processing resources [18]. It 
requests NameNode to identify the data in HDFS that 
necessitates to be executed. To evaluate advancement of 
the task throughout process execution, the Job Tracker 
can acquire progress reports from the Task Tracker. 

 
Figure 2. Data Processing of MapReduce Module 

2.2.3. TaskTracker 

The TaskTracker is another component of MapReduce 
module which receives requests from master node 
JobTracker and processes the MapReduce job and 
functions as a slave node. The task tracker's 
responsibility is to perform the task, and if it fails, it 
notifies the Job Tracker about the failure [19, 20, 21]. The 
TaskTracker allocates processing slots for every slave 
node. The total number of map-reduce slots indicated by 
the TaskTracker determines the quantity of map-reduce 
jobs that can be simultaneously performed [7, 22]. 

2.2.4. Hadoop Distributed File System (HDFS) 

HDFS (Hadoop Distributed File System) is a file system 
that is designed to consistently and efficiently store huge 
quantities of information. It is based on Google File 
System (GFS), and it enables HDFS to store enormous 
amounts of data, including meta data and real data, 
across several devices. A master/slave structure exists in 
an HDFS cluster [23], name node acting as the master and 
several data nodes serving the master node. These 
attributes facilitate data reliability and processing speed. 
Data is sent via HTTP, which allows access to all 
information via an internet browser. In the event of 
failure whether by human or system, system operators 
can revert to a former version of HDFS following an 
upgrade. 

2.2.5.   NameNode 

HDFS has a single NameNode which is the metadata 
server. NameNode is liable to map data blocks to 
DataNodes and manage the file system by indexing all the 
files of the system. While file-related operations such as 
locate, transfer, open, delete and rename take place, 
Name Node handles these requests. NameNode divides 
the data into numerous pieces and assigns each to a 
separate Data Node based on its function. It’s the only 
point of failure in the cluster. In the event of NameNode 
failure, an assistant node called secondary NameNode is 
available to write checkpoint on HDFS. 

2.2.6. DataNode 

The slave of HDFS is DataNode and responsible for 
storing real data. HDFS consists of multiple data nodes 
which enable storing data replication in different 
locations. As a result, if one DataNode fails, the cluster 
remains unaffected. In every three seconds, DataNode 
sends a signal to Name Node to inform its status in the 
form of heartbeat message [19].  If a DataNode crushes, 
the NameNode updates its table of list and suspends that 
specific Data Node from performing any further 
activities. Read and write operation of HDFS is handled 
by DataNode. It can also perform construct, replicate, and 
delete blocks operations dependent on guidance 
indicated by NameNode [4]. 

3. Job Scheduling 

Usually, Job scheduling is the main focus within the 
analysis of Hadoop since it is a vital interface in 
influencing the platform's performance. The primary 
objective of scheduling in Big Data processing is to 
anticipate the execution and accomplishment of as many 
activities as feasible with the aid of dealing by efficiently 
managing and transforming data with the minimal 
quantity of potential modifications.  Another objective of 
job scheduling is to figure out a way to assign various 
tasks to appropriate task machines in order to reduce job 
completion time while increasing task machine usage. 

Job scheduling is the process of allocating computational 
resources from multiple TaskTracker nodes to tasks in a 
cluster using various methodologies. The working 
procedure of Hadoop job scheduling is outlined in Figure 
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3. Clients submit jobs to the job tracker, which are then 
scheduled by the JobTracker. Then it will send out 
notifications and assign tasks to task trackers. The 
TaskTracker requests a new task from the JobTracker. 
The TaskScheduler delivers the TaskList of undone jobs 
to the JobTracker once a request for new task is made by 
the TaskTracker. This TaskTracker is comprises of map 
and reduce tasks. The JobTracker maintains track of the 
available map and reduce slots of the TaskTracker for 
appropriately allocating jobs to them. Afterwards, 
TaskTracker launches the allocated task after mapping 
and reducing it [24]. 

 
Figure 3. Hadoop Job Scheduling Process 

3.1. Challenges of Scheduling Algorithm 

For the administration of massive data on diverse nodes 
in Hadoop clusters, optimal scheduling strategies are 
required. Hadoop schedulers are intended to maximize 
resource consumption while also improving 
performance [25]. Certain factors have an impact on the 
scheduler's overall performance. Therefore, some 
important challenges must be addressed in order to 
efficiently construct schedule algorithms. Those are 
Fairness, Data locality, Availability, Resource Utilization, 
Throughput and Synchronization [14, 7, 26, 27]. 

3.1.1. Fairness 

The scheduling algorithm's fairness is a metric for how 
evenly resources are distributed among Map Reduce jobs 
according to priority levels, volume, and completion 
time. Certain intensive processes may consume all of the 
cluster's processing capacity, prompting other light 
weight tasks to suffer for long periods of time. Avoiding 
such starvation is the goal of an effective scheduling 
algorithm. Among the Map and Reduce cycles, Fairness 
interacts with dependency and locality [28]. In the event 
that fairness is not ensured, response time and 
throughput will suffer. 

3.1.2. Data Locality 

Locality refers to the proximity among an input node and 
a computation node. The closer the computational node 
is to the input node, the shorter the data transfer time, 
which increases throughput. During preparation and 
execution phases, a k-means method provided by paper 
[29] that works by putting the first most similar data sets 
in the single data center. For the betterment of the 
"stagger Machine" problem, a tasks replication technique 
was utilized in the MapReduce framework, which repeats 
tasks replication until all tasks are accomplished [30]. 

3.1.3. Availability 

The term availability refers to the mean time among 
failures and repetitions of user request. Another 
definition of availability is the period during which the 
system facilitates and manages to run continuously in 
order to fulfill new requests. Following the verification of 
the scheduler, the overall tasks must be accomplished 
completely. 

3.1.4. Resource Utilization 

The utilization of resources is a key feature in numerous 
scientific fields. The significance arises from a scarcity of 
resources in comparison to the massive quantity of data 
and processing power required. The efficiency with 
which a scheduling algorithm allocates resources 
between processes is measured by resource utilization. 
Parallel to the communication utilization, the scheduler 
should make good use of the available resources, in 
particular the local computing device hardware. In order 
to concentrate a number of tasks in clusters and achieve 
good results, it is vital to optimize and manage these 
resources. 

3.1.5. Synchronization 

The impact of synchronization in MapReduce cannot be 
overstated. The technique of sending intermediate 
outputs from Map processes as inputs to Reduce 
processes is characterized as synchronization [4, 7, 31]. 
The "shuffle and sort" approach is used to establish 
synchronization. In heterogeneous systems, the issue is 
exacerbated by the fact that each node's capabilities and 
configuration differ. As a result, Map job execution times 
vary, which has an impact on the Reduce phase. The 
reduce operation will not be able to begin unless all 
mappers have completed their work. It accelerates in 
limiting within the overall performance of the Hadoop 
cluster. 

3.1.6. Throughput 

In addition to data locality and utilization, good 
scheduling algorithms should provide high throughput. 
The number of jobs to be completed in a certain amount 
of time is known as throughput. A scheduling algorithm 
is designed to maximize the system's overall throughput. 
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Figure 4. Classification of Scheduling Algorithm 

4. Overview of Job Scheduling Algorithms 

In the character of Hadoop, jobs must share the cluster 
resources, so a scheduling strategy is required to 
determine when and where a job will be executed. By 
effectively assigning tasks to the processors, scheduling 
aims to reduce completion time, enhance throughput, 
reduce overhead, and equalize available resources in a 
parallel program. Job scheduling greatly enhances the 
performance of a Hadoop cluster according to Jyoti V 
Gautam's study [32].  

4.1. Classification 

Many scheduling algorithms have been proposed and 
developed by various researchers which can be classified 
based on various parameters. To better comprehend 
these algorithms, classification of Hadoop scheduling 
algorithm is summarized in Figure 4. Scheduling 
algorithms can be classified into Static and Dynamic 
categories based on their scheduling strategy. 

Static [33] or offline scheduling involves assigning jobs to 
processors prior to execution of a program, and 
information about task execution time and computing 
resources is available during compilation time. The 
purpose of static scheduling is to reduce the amount of 
time required for present programs to run. The 
assignment of jobs to processors in dynamic or online 
scheduling takes place during execution time, with little 
prior information of a job's resource requirements, and 
even the job environment is uncertain. With distributed 
computing, dynamic scheduling of jobs necessitates even 
scheduling of resources throughout multiple 
geographical regions [34, 35]. 

In the following section overview of some common and 
default Static and Dynamic Hadoop scheduler algorithms 
is provided.  

4.1.1. First In First Out (FIFO) Scheduling 

The inbuilt Hadoop default scheduler is First in First out 
(FIFO) [36, 37] algorithm that can be employed in a 
homogenous environment. According to FIFO queue 
policy, jobs that join the ready queue first get first 
precedence regardless of the priority and size of the task. 

When the order in which tasks are completed is 
unimportant, the FIFO algorithm is applied. Between all 
schedulers, the FIFO scheduling strategy is the simplest 
and most efficient [7, 38]. The main disadvantage of this 
policy is that a lengthy process will induce all jobs to be 
delayed. Although each and every job must be completed 
on time, and each job must have a faster response time 
[39]. The stability of allocating resources among lengthy 
and small jobs is not considered by FIFO scheduling. As a 
result, this approach minimizes data locality and leads to 
job starvation [7]. 

4.1.2. Fair Scheduler 

With the idea of sharing resources equally over time 
Facebook developed Fair scheduler [40]. Pools are sets of 
jobs that are created depending on configurable 
attributes such as user name. Every user has their own 
pool, with a minimum share allotted to them. The 
MapReduce task slot, by default, distributes resources 
fairly among the pools. If a pool's idle slots are not used, 
the other pools will employ them. If the identical user or 
pool sends an excessive number of jobs, the fair 
scheduler can constrain these jobs by identifying them as 
not executable. The Fair Scheduler supports preemption 
[41], which means that if a pool has not gained its fair 
portion for a predetermined period of time, the scheduler 
module will refuse tasks in pools that are over capacity 
in order to allocate slots to pools that are under capacity. 
The main drawback of FIFO is solved by the fair 
scheduler where smaller jobs are managed more quickly 
than larger jobs. Another advantage of the fair scheduler 
is that it allows the system to specify the number of jobs 
from each pool and user that can be executed 
concurrently. The problem of fair scheduler is that it does 
not take into account the weight of each job, resulting in 
imbalance performance in each pool. 

4.1.3. Capacity Scheduler 

Capacity Scheduler, which was originally developed at 
Yahoo [40, 42], addresses a usage platform in which a 
vast number of users is present, a requirement to ensure 
a fair allotment of computation resources and scheduling 
of task allocation between clients.  
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Table 1. Comparison of Hadoop scheduling algorithms used in Big Data 
Scheduling 
Algorithm 

Key 

Techniques 

Fair 

Sharing of 

Resources 

Environment Priority 

in Job 

Queue 

Working 

Cluster 

Merit Demerit 

Homo
geneo

us 

Hete

roge

neou

s 

FIFO Job allocation: 
Static, Non-

adaptive, Non 
primitive, 
Execution 

time 

No ✓  No Small 
clusters 

Easy to 
implement, 

Cost of 
cluster 

scheduling is 
minimal 

Starvation, 
Bad data 
locality, 

Small job will 
wait 

long time 

Fair 
Scheduling 

Job allocation: 
Static, 

Adaptive, 
Primitive, 
Execution 

time 

Yes ✓  Yes Small 
clusters 

Distributes 
resources 

fairly, 
Smaller jobs 
are managed 
quickly than 
larger jobs 

Imbalance 
performance 

due to 
absence of job 

weight, 
Complex 

configuration 
Capacity Job allocation: 

Static, 
Adaptive, Non 

primitive, 
Execution 

time 

Yes ✓  No Large 
clusters 

Unused 
capacity of 

jobs in 
queues is 
reused, 

Increases 
throughput 

Challenging to 
select 

appropriate 
queues 

Delay Job allocation: 
Static, 

Adaptive, 
Primitive, 

Data locality 

Less than 
Fair 

✓  Yes Small 
clusters 

Scheduling is 
simple, 

For complex 
calculations 

has no 
overhead 

Limited slot 
for each node, 
Ineffective for 
larger queue 

of jobs  

Deadline 
Constraint 

Job allocation: 
Dynamic, 
Adaptive, 
Primitive, 
Deadline  

Yes ✓ ✓ Yes Large 
clusters 

Maximize 
system 

utilization, 
Optimize 
Hadoop 

implementat
ion 

 

Nodes be 
uniform in 

composition 
leads to 

increasing 
cost 

Resource 
Aware 

Job allocation: 
Dynamic, 
Adaptive, 
Primitive, 
Resource 
utilization 

Yes ✓ ✓ Yes Large 
clusters 

Better 
resource 

utilization in 
cluster, 

Job 
management 
performance 
is enhanced 

Non 
preemption of 

jobs 
reduction, 
Need extra 

capacities to 
handle 

network 
constraints 

Capacity scheduler employs a queue rather than pools, 
which is allotted once the resources have been 
distributed within these queues using a configurable 
map and reduce slot. Each cluster capacity is distributed 
between clients as opposed to among tasks, as in the fair 

scheduler. In case tasks of capacities in lines have 
additional capacity it kills or pulls down the task. To gain 
control of the queues, a security technique is designed to 
guarantee that each client can solely access one of the 
queues. The capacity scheduler enables job scheduling 
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depending on priority in terms of time. In a cluster 
environment, capacity scheduling greatly increases 
resource utilization and throughput. It also ensures that 
the unused capacity of jobs in queues is reused. With 
capacity scheduling it is challenging to select appropriate 
queues. The issue of capacity scheduling is with context 
to awaiting jobs, and it has some drawbacks in ensuring 
the cluster's stability and fairness from a queue and 
single user [7].  

4.1.4. Delay Scheduler 

To address the issue of fair scheduling, Facebook created 
delay scheduling, which attempts to improve locality 
through the application of a waiting strategy. This 
scheduling is added by means of enhancing Map Reduce 
with data locality to improve its performance and the 
quickest response time for the Map assignment [43]. The 
reallocation of resources is accomplished by eradicating 
the pending tasks of preceding tasks in order to manage 
a slot for that task and waiting for a task to be 
accomplished in the assigned slots for the latest task [3]. 
If data for a task is not present, the task tracker will wait 
for a predetermined amount of time. The scheduler 
examines at the job's size to determine if there's a 
request for task allocation from a local node, and if there 
is, it skips the job which is excessively small and looks for 
an available subsequent job to execute. If job skipping 
persists over an extended period of time, a nonlocal task 
is created in order to avoid starvation. This scheduling is 
simple and for complex calculations, has no overhead. 
Disadvantage of delay scheduling is that it has a limited 
slot for each node. When most of the jobs are 
substantially more than an average job, the delay 
scheduling strategy is ineffective. 

4.1.5. Deadline Constraint Scheduler 

In Hadoop clusters, deadlines are prioritized by 
anticipating job completion durations [44]. Then 
assigning them to slots which can be able to process them 
within a set time limit, which is given by the user. By 
simply disregarding new work that cannot be handled 
within their timeframe, this algorithm guarantees that 
jobs with an appropriate deadline are scheduled for 
completion. This is obtained with the aid of estimating 
the due date and comparing it to the time it takes to 
complete the task [45]. In case the schedulability 
assessment fails, the user will be prompted to set a new 
due date, and if that is successful, the task will be 
rescheduled. It emphasizes on challenges such as 
meeting deadlines and maximizing system utilization [4, 
7, 42]. There is a penalty associated with the requirement 
that the nodes be uniform in composition. 

4.1.6. Resource Aware Scheduler 

Scheduling regarding resource use [46] and minimizing 
resource demand on systems is an important field of 
study in Hadoop. Currently, the system contains a variety 
of heterogeneous nodes that provide node assignment 
variation. Prior schedulers did not take into account the 
resource availability in greater depth and allotted 

resources of a specified size [4, 47]. This strategy 
attempts to reduce resource dissipation while increasing 
utilization. These schemes cognizance on how 
efficaciously useful resource usage has been carried out  

with diverse forms of usage like IO, memory, disk, 
network and CPU utilization [48, 49] . Two distinct 
techniques to Resource Aware Scheduling are "Free Slot 
Filtering" and "Dynamic Free Slot Advertisement." Job 
management performance is enhanced with a resource 
aware scheduler. The disadvantages of this scheduling 
are that it does not support the preemption of reduction 
jobs and that extra capacities to handle network 
constraints are required. 

4.2. Comparison of Scheduling Algorithms 

The principal purpose of this research article is to 
investigate and analyze various types 
scheduling algorithms and strategies that can be used to 
improve Hadoop operating efficiency when dealing with 
enormous datasets. The fact that different jobs have 
distinctive quality specifications is a vital open area of 
concern in scheduling algorithms. Many jobs necessitates 
equilibrium with the other specifications. To better 
comprehend these algorithms this comparison is based 
on some conspicuous Hadoop scheduler properties. Such 
as key techniques, job allocation, area, fairness in 
resources sharing, environment, priority in job queue, 
working cluster and their merits and demerits. These 
criterias will offer the implementers an indication of an 
ideal scheduling algorithm for their research. 
Comparison of different scheduling algorithms used in 
big data is presented in Table 1. 

From Table 1, Fair and Capacity Scheduler were found to 
be developed for short and production jobs, and 
overcoming the fairness issue. Due to its ability to deliver 
quick response times for both small and large jobs mixed 
together, the fair scheduler is advantageous when there 
are a variety of jobs present. The capacity scheduler is the 
best option for managing a big Hadoop cluster with 
several clients, various task kinds, and varying priorities 
in order to assure rapid access with the ability to utilize 
idle capacity and prioritize jobs inside queues. Delay 
scheduling techniques are developed to solve the locality 
problem. In a deadline constraint scheduler, the user 
specifies the work due date, and the job is accomplished 
in real time. In the field of Big Data processing, a job 
scheduling algorithm is a crucial area of research. 

4.3. Other Improved Algorithms 

Many experts are studying on ways to improve Hadoop's 
scheduling policies.  An overview of some potential novel 
scheduling algorithms, in addition some immensely-
cited and well-established ones, is offered in these 
review articles. 

In [50], the authors suggested "The Gallery Scheduler," 
an upgraded version of fair scheduler that enables all 
tasks to be executed by a default or defined configuration 
file, restricting the amount of tasks per user and pool. 
However, the system has to wait for the recently arrived 
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jobs in the Scheduler queue till several of the currently 
running tasks are completed before it can move on to 
them. 

When TaskTracker is available, the scheduling 
capabilities choose the queue with the highest available 
resources based on the task's priority. In the event that 
the task requires a considerable amount of memory, this 
scheduling technique guarantees that there is 
appropriate free Memory in TaskTracker to perform it. 
This way, resource demands issues can always be 
addressed right away according to article [51]. 

The study in [52] offers an algorithm named LsPS  
(Leveraging size Patterns Scheduler) for managing 
bursty workloads in a multi-user context that uses 
knowledge of workload patterns by dynamically 
modifying resource shares between  scheduling 
algorithms and users for each user  to minimize average 
task response times. This is accomplished by giving users 
a slot sharing ratio that is inversely proportionate to 
their task average sizes. With various users, varied 
clusters, and heterogeneous workloads, the 
experimental findings show promising results in 
enterprise scenarios. 

Context aware scheduling was proposed by a researcher 
in [53], with the principal aim of boosting Hadoop 
scheduling by allowing for dynamic changes in resource 
availability. Two essential metrics are used to create the 
layout. First, a large proportion of Map Reduce processes 
operate on a regular basis and have similar CPU 
characteristics, network and disk requirements. Second, 
nodes in a Hadoop cluster grow heterogeneous with time 
as newer nodes replace existing ones owing to errors. If 
Hadoop does not execute task preemption, speculative 
jobs and a context-aware scheduler could assist to avoid 
inefficiencies caused by resource unpredictability. 

In the course of the reduce phase, Hadoop jobs have 
unbalanced workloads and inefficiently leverage the 
available computational and network resources. In this 
research [54], authors introduce two algorithms for 
optimizing the Locality-Enhanced Load Balance: the 
Locality-Based Balanced Schedule (LBBS) and the 
Overlapping-Based Resource Utilization (OBRU) to 
overcome these issues. Local reduction, shuffle, and final 
reduce are the three phases of the process. Both of these 
algorithms improve load balancing significantly while 
utilizing eight DataNodes, according to the findings of 
experiments. 

In order to minimize the trade-offs between fairness and 
data localization while job scheduling, the Dynamic Task 
Splitting Scheduler (DTSS) is presented [55]. According 
to evaluation and experiment findings, modifying the 
task split's proportion can enhance fairness and 
performance. However, researchers must proceed 
cautiously while adopting the DTSS scheduler because it 
is ineffective when jobs have convenient access to data-
local nodes. 

This paper [56] suggested a new method for scheduling 
tasks and/or jobs in a Big Data Cluster that focuses on 

enhancing the NameNode's task distribution to the data 
nodes. This task scheduler outperforms the existing 
task schedulers: FIFO Scheduler and Capacity Scheduler, 
as evidenced by the significant results gained. 

Recently the Densest-Job-Set-First (DJSF) approach was 
proposed in this research work [57] as an enhanced 
heuristic job scheduling mechanism with the goal of 
increasing system throughput and lowering the average 
Job Completion Time (JCT). They define the work packing 
problem, which incorporates maximizing the job sets' 
completion efficiency, and deploy the k-means clustering 
technique to achieve JCT alignment. When the k-means 
clustering approach yields excessive groups, the number 
of jobs in each job unit decreases, which is a disadvantage 
for the job packing method to pick and pack appropriate 
jobs from a job group [56]. 

By integrating Round robin and the priority scheduling 
technique, a hybrid scheduler is presented in [58]. The 
optimization of this approach involves less context 
switches. Additionally, it overcame every drawback 
associated with both Round robin and Priority 
Schedulers. 

After prioritizing the jobs with the aid of the k-means 
clustering technique, authors in [59] used the 
MapReduce framework to schedule tasks for big data 
using Hadoop. Here, the energy optimization is carried 
out using the FireFly Algorithm (FA) and BAT (FF-BAT) 
technique. The present resource is chosen in the Hadoop 
map-phase by combining the firefly algorithm (FFA) with 
the bat algorithm. 

For focusing on the scaling issue of data locality rate with 
shorter completion times, a localization ID and dynamic 
priority-based hybrid scheduling algorithm (HybSMRP) 
was presented in [60]. Dynamic priority assists in 
choosing which tasks and tasks should be allocated to the 
resource node that is currently accessible. Each slave 
node in the cluster is given an ID so that a reasonable 
amount of data can be executed locally. This algorithm 
guarantees a high data locality rate by avoiding resource 
waste. 

The conventional Hadoop MapReduce fault tolerance 
technique leads to significant performance 
disadvantages for processing tasks during failure 
recovery. For the betterment of this area, Fast Recovery 
MapReduce (FAR-MR), a fault recovery technique, is 
suggested to ensure effective recovery [61]. To facilitate 
rapid recovery from task failure and node failure, this 
incorporates a novel fault tolerance method that mixes 
decentralized checkpointing and proactive push 
mechanisms. 

This research [62] proposed an optimal Simulated 
Annealing (SA) metaheuristic approach for flight 
scheduling issues and delays. By employing the 
constraints utilized to avoid flight delays, this strategy 
yielded the most ideal results. The evaluation is carried 
out by comparison with the genetic algorithm (GA) and 
the artificial bee colony (ABC) algorithm. When 
compared to the conventional methodology, issue 
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solving using metaheuristic approaches was better since 
the researched space's dimensions expanded.  

The MapReduce framework was the main emphasis of 
the authors' study in [13, 14, 42, 63-65], as well as its 
limitations, problems with job scheduling between 
nodes, and other algorithms presented by different 
academics. These algorithms were then categorized 
based on a variety of performance-related quality 
indicators in some of these studies. However, these 
papers are mostly oriented on task scheduling or 
considering dataset of specific platform, whereas we 
offered a number of algorithms that address a number of 
Hadoop scheduler concerns. Additionally, this paper 
provided extensive information on variety of hybrid job 
scheduling techniques. Our intention is to give 
researchers proper guidelines to help them with their 
particular issues, such as load balancing, high data 
locality, and minimizing competition time. This study 
gives the implementer appropriate research direction in 
terms of selecting Hadoop scheduler. 

5. Conclusion 
Because of the rapid expansion of mobile devices and 
other gadget sensors associated with the Internet, the 
volume and varieties of data is growing daily. With the 
aid of numerous applications in various industries, 
humans process a substantial volume of data. These 
applications necessitate extensive input/output 
processing as well as job scheduling. According to 
reports, IO processing consumes 69% of the resources 
and 79% of the time for jobs at the Facebook and 
Microsoft Bing data center. Therefore, Hadoop is a 
future-oriented technology. Hadoop is frequently 
presented as the platform that organization needs to 
address a range of issues. A fundamental understanding 
of big data is presented, as well as a well-known big data 
platform, Hadoop, and its essential components. Job 
scheduling exemplifies a crucial perspective for 
achieving big data analysis performance. We delivered an 
assessment of some of the issues of job scheduling 
algorithms in big data processing in this article. The 
employment of various Scheduling algorithms to 
appropriately employ resources was reviewed. As a 
result of this comparative investigation, we draw the 
conclusion that Hadoop's core schedulers are ineffective 
at dealing with a number of problems, including locality, 
fairness, and speculative execution.  
Numerous enhanced schedulers or strategies have been 
developed by various researchers to address the 
aforementioned problems. To reduce the time required 
for job execution and therefore enhance performance, 
this area still need further focus. Scholars determine the 
best algorithm for a specific application according 
to which characteristics are most significant. Following 
an examination of several relevant research on Hadoop 
scheduling, one result that comes out is that the basic 
Hadoop algorithms for scheduling have scope for 
development. Furthermore, traditional job scheduling 
algorithms are either focused on a user-centric or a 
resource-centric approach, since they are unable to 

acknowledge both elements at the same time. Significant 
constraints and issues must be overcome with the aid of 
the researchers in the future in order to guarantee the 
long-term viability of data management and job 
scheduling. In the time ahead, it can be improved by 
introducing or eliminating a few limitations, or taking 
into account all of the parameters discussed above and 
rendering it more adaptable.  
This analysis is conducted to give academics an 
appropriate guideline in determining the propitious 
region regarding the Hadoop scheduling algorithm. 
We've observed that the study of Hadoop scheduling is a 
promising subject of study in which further research is 
required to improve Hadoop scheduling algorithms. Big 
data warehouses that serve multiple users or 
organizations are an example of how Hadoop is 
developing along with its usage paradigms. In order to 
make better use of cluster resources for big data 
analytics, the additional flexibility that Hadoop offers is a 
significant step forward. 
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