

Mugla Journal of Science and Technology

38

AN OVERVIEW OF HADOOP JOB SCHEDULING ALGORITHMS FOR BIG DATA

Akhtari ZAMEEL, Computer and Information Engineering , Sakarya University, Turkey, akhtari.zameel@ogr.sakarya.edu.tr

(https://orcid.org/0000-0001-7215-0559)
Ahmet ZENGIN, Computer and Information engineering, Sakarya University, Turkey,

azengin@sakarya.edu.tr

(https://orcid.org/ 0000-0003-0384-4148)
Received: 02.06.2022, Accepted: 11.10.2022
*Corresponding author

Review Article

DOI: 10.22531/muglajsci.1124422

Abstract

Rapid advancements in Big data systems have occurred over the last several decades. The significant element for attaining
high performance is "Job Scheduling" in Big data systems which requires more utmost attention to resolve some challenges
of scheduling. To obtain higher performance when processing the big data, proper scheduling is required. Apache Hadoop
is most commonly used to manage immense data volumes in an efficient way and also proficient in handling the issues
associated with job scheduling. To improve performance of big data systems, we significantly analyzed various Hadoop job
scheduling algorithms. To get an overall idea about the scheduling algorithm, this paper presents a rigorous background.
This paper made an overview on the fundamental architecture of Hadoop Big data framework, job scheduling and its issues,
then reviewed and compared the most important and fundamental Hadoop job scheduling algorithms. In addition, this paper
includes a review of other improved algorithms. The primary objective is to present an overview of various scheduling
algorithms to improve performance when analyzing big data. This study will also provide appropriate direction in terms of
job scheduling algorithm to the researcher according to which characteristics are most significant.
Keywords: Big data, hadoop, job scheduling, scheduling algorithms.

BÜYÜK VERİLER İÇİN HADOOP İŞ ÇİZELGELEME ALGORİTMALARINA GENEL
BAKIŞ

Özet

Büyük veri sistemlerindeki hızlı gelişmeler son on yılda meydana gelmektedir. Büyük veri sistemlerinde yüksek performans
elde etmek için en önemli unsur "iş Çizelgeleme"dir. Çizelgelemenin bazı zorluklarını çözmek için daha fazla dikkat
gerekmektedir. Büyük verileri işlerken daha yüksek performans elde etmek için uygun çizelgeleme gereklidir. Apache
Hadoop, en yaygın olarak çok büyük veri hacimlerini verimli bir şekilde yönetmek için kullanılır ve ayrıca iş çizelgeleme ile
ilgili sorunları ele almada yetkindir. Büyük veri sistemlerinin performansını iyileştirmek için çeşitli Hadoop iş çizelgeleme
algoritmalarını önemli ölçüde analiz ettik. Çizelgeleme algoritması hakkında genel bir fikir edinmek için bu makale iyi bir
arka plan sunmaktadır. Bu makale Hadoop büyük veri çerçevesinin temel mimarisi, iş çizelgeleme ve sorunları hakkında
genel bir perspektif sunmaktadır. Ardından en önemli ve temel Hadoop iş çizelgeleme algoritmalarını incelemekte ve
karşılaştırmaktadır. Ek olarak makale diğer geliştirilmiş algoritmalarının bir incelemesini sunmaktadır. İlk amacı büyük
veriler analiz ederken performansı arttırmak için çeşitli çizelgeleme algoritmalarına genel bir bakış sunmaktır. Bu çalışma
aynı zaman da araştırmacıya ihtiyaçlarına göre iş çizelgeleme algoritmasına uygun yönlendirme sağlamaktadır.
Anahtar Kelimeler: Büyük veri, hadoop, iş çizelgeleme, çizelgeleme algoritmaları.
Cite
Zameel, A., Zengin, A., (2022). “An Overview of Hadoop Job Scheduling Algorithms for Big Data”, Mugla Journal of Science
and Technology, 8(2), 38-48.

1. Introduction

A great revolution in data has seen the light of day in
recent years. With the evolution of the Internet which is
rapidly developing into Internet of Things (IoT), the idea
of "Big Data" emerged [1]. For quality of life, the
advantages of IoT devices are enormous in aspects of
significant improvement. Simultaneously, it introduces
the challenge of dealing with outrageous measures of
information. A gigantic volume of information has been

produced in recent years as a result of technological
innovations from numerous sources. These data sources
like the IT sector, data in the form of media streams,
transactional information from enterprise applications,
electronic gadgets, files, and many more [2].

The characteristics of big data are known as “V”
challenges, later these "V" challenges were expanded to
include a large number of V’s: Velocity, Variety, Volume,
Veracity, Variability, Value, Verification, Vulnerability [3,
4]. The management of these highly characterized data is

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

39

arduous for traditional database systems. Doug Cutting,
a researcher and proprietor of Apache Lucene, designed
the Hadoop system to handle these complex big data.
Hadoop is very popular among other available big data
systems. It is an open-source framework capable of
addressing numerous challenges such as high volume of
data storage, analysis of data, transfer, capture and data
collection, and vulnerability means security and privacy
of enormous data [5, 6].

To influence the performance of big data systems, it is
important to examine job scheduling. In order to reduce
I/O processing time and finest allocation of resources of
a job, job scheduling should be considered. Moreover, Job
scheduling can anticipate how jobs will use their
resources. The scheduling of a job in a computer cluster,
on the other hand, is still a well-known outstanding
problem. As job scheduling is considered to be an
interesting and active field of study in Hadoop, this paper
focuses on “Hadoop Job Scheduling” in order to assist
researchers in better understanding of Hadoop job
scheduling. Working with big data system starts with
determining the appropriate algorithm. It is vital to
develop an algorithm for determining a node in efforts to
advance the Map Reduce process and enhance
performance [7]. The ideal algorithm is chosen based on
which attributes are most crucial for a certain
application. The researcher must carefully choose the
most appropriate algorithm in order to improve
performance. Goal of this research article is to offer
implementers an indication of an ideal scheduling
algorithm for their research according to their needs.

To achieve a general understanding of Job Scheduling the
following is how the rest of the paper is organized. The
structure of this survey study is such that after
introduction it will concisely outline an effective big data
framework with regard to the overall architecture. Then
it will provide information about job scheduling in
Hadoop and its issues in chapter 3. In section 4, a survey
and comparison on available fundamental job scheduling
algorithms with its advantages and disadvantages and
also other improved mostly mentioned algorithms has
been discussed. Finally, section 5 will represent the
conclusion.

2. Generalized Features and Architecture of
Hadoop System

Various technologies are available for processing and
analyzing datasets, however Apache Hadoop is the most
commonly utilized and popular [8]. For distributed
computing, data storage, and processing, Hadoop is a
scalable, accurate and dependable open source platform.
It allows to compose, organize and implement
applications which was developed in Java at first [9].
When developing distributed applications, Hadoop users
should not be concerned with the low-level details of the
distributed system, but rather with their business
requirements.

2.1. Features

For computing communications, Hadoop is adopted by
many conventional business and internet enterprises
because of its highly scalable features. Paper [10]
presented that in 2016 Facebook handled 4 petabytes of
data on daily basis and each day in 2017, 2:5 quintillion
bytes of information were generated, according to IBM.
Amazon uses ad hoc groups to manage enormous
volumes of data on a regular basis, according to paper
[11, 12, 13].

A substantial dataset is broken down into little segments
and spread among multiple nodes, each with its distinct
computing and caching capabilities. It delivers a high
fault tolerance capability, which implies that in the event
of a machine failure, a backup will consistently be
present to ensure that processing is not disrupted. As an
outcome of this feature, data is more readily available.
Because of its extensive data availability, Hadoop is
rarely susceptible to failures [14].

Figure 1. Generalized architecture of Hadoop system.

Hadoop provides the ability to install additional nodes to
clusters without requiring them to be reorganized.
Hadoop also has the capability of combining multiple
data sources. Hadoop can conduct map and reduce
operations well regardless of the data type.

2.2. Hadoop Architecture

The generalized architecture of the Hadoop system is
depicted in Figure 1. Hadoop framework features the
Hadoop Core module, which serves as the framework's
foundation and encompasses with the operating
system's and file system's services and processes. It's a
collection of libraries and functions that are shared by
Hadoop modules. Another core module of Hadoop is the
MapReduce part. This module is responsible for
concurrent processing of big data sets and writing
applications. It operates with data stored in the Hadoop
distributed file system (HDFS) module.

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

40

2.2.1. MapReduce

Hadoop includes MapReduce, It is a data processing
technology developed to reliably process vast datasets in
a distributed and parallel fashion using large clusters.
The map and reduce functions are the two user-defined
functions in a Hadoop MapReduce job [7, 15, 16]. The
Mapper function usually splits the data into distinct
smaller parts and maps the entire input file.

The map function accepts and returns key(k)/value(v)
pairs as input and output. The reducer function will
receive the intermediate outcome of the map function to
generate the final output. The HDFS, which is parallelized
beneath Mapreduce, stores the final output. The whole
data processing technology of Map/Reduce follows five
phases which is illustrated in Figure 2. Hadoop is in
charge of handling the technicalities of important duties,
such as task completion verification, task issuance, and
replicating information between the cluster's nodes [17].

2.2.2. JobTracker

The JobTracker is a component of the MapReduce
module which supervises the MapReduce job and
functions as a master node. By scheduling system
operations to execute on the Task Tracker, JobTracker
synchronizes all of the jobs while also maintaining the
entire Hadoop cluster's processing resources [18]. It
requests NameNode to identify the data in HDFS that
necessitates to be executed. To evaluate advancement of
the task throughout process execution, the Job Tracker
can acquire progress reports from the Task Tracker.

Figure 2. Data Processing of MapReduce Module

2.2.3. TaskTracker

The TaskTracker is another component of MapReduce
module which receives requests from master node
JobTracker and processes the MapReduce job and
functions as a slave node. The task tracker's
responsibility is to perform the task, and if it fails, it
notifies the Job Tracker about the failure [19, 20, 21]. The
TaskTracker allocates processing slots for every slave
node. The total number of map-reduce slots indicated by
the TaskTracker determines the quantity of map-reduce
jobs that can be simultaneously performed [7, 22].

2.2.4. Hadoop Distributed File System (HDFS)

HDFS (Hadoop Distributed File System) is a file system
that is designed to consistently and efficiently store huge
quantities of information. It is based on Google File
System (GFS), and it enables HDFS to store enormous
amounts of data, including meta data and real data,
across several devices. A master/slave structure exists in
an HDFS cluster [23], name node acting as the master and
several data nodes serving the master node. These
attributes facilitate data reliability and processing speed.
Data is sent via HTTP, which allows access to all
information via an internet browser. In the event of
failure whether by human or system, system operators
can revert to a former version of HDFS following an
upgrade.

2.2.5. NameNode

HDFS has a single NameNode which is the metadata
server. NameNode is liable to map data blocks to
DataNodes and manage the file system by indexing all the
files of the system. While file-related operations such as
locate, transfer, open, delete and rename take place,
Name Node handles these requests. NameNode divides
the data into numerous pieces and assigns each to a
separate Data Node based on its function. It’s the only
point of failure in the cluster. In the event of NameNode
failure, an assistant node called secondary NameNode is
available to write checkpoint on HDFS.

2.2.6. DataNode

The slave of HDFS is DataNode and responsible for
storing real data. HDFS consists of multiple data nodes
which enable storing data replication in different
locations. As a result, if one DataNode fails, the cluster
remains unaffected. In every three seconds, DataNode
sends a signal to Name Node to inform its status in the
form of heartbeat message [19]. If a DataNode crushes,
the NameNode updates its table of list and suspends that
specific Data Node from performing any further
activities. Read and write operation of HDFS is handled
by DataNode. It can also perform construct, replicate, and
delete blocks operations dependent on guidance
indicated by NameNode [4].

3. Job Scheduling

Usually, Job scheduling is the main focus within the
analysis of Hadoop since it is a vital interface in
influencing the platform's performance. The primary
objective of scheduling in Big Data processing is to
anticipate the execution and accomplishment of as many
activities as feasible with the aid of dealing by efficiently
managing and transforming data with the minimal
quantity of potential modifications. Another objective of
job scheduling is to figure out a way to assign various
tasks to appropriate task machines in order to reduce job
completion time while increasing task machine usage.

Job scheduling is the process of allocating computational
resources from multiple TaskTracker nodes to tasks in a
cluster using various methodologies. The working
procedure of Hadoop job scheduling is outlined in Figure

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

41

3. Clients submit jobs to the job tracker, which are then
scheduled by the JobTracker. Then it will send out
notifications and assign tasks to task trackers. The
TaskTracker requests a new task from the JobTracker.
The TaskScheduler delivers the TaskList of undone jobs
to the JobTracker once a request for new task is made by
the TaskTracker. This TaskTracker is comprises of map
and reduce tasks. The JobTracker maintains track of the
available map and reduce slots of the TaskTracker for
appropriately allocating jobs to them. Afterwards,
TaskTracker launches the allocated task after mapping
and reducing it [24].

Figure 3. Hadoop Job Scheduling Process

3.1. Challenges of Scheduling Algorithm

For the administration of massive data on diverse nodes
in Hadoop clusters, optimal scheduling strategies are
required. Hadoop schedulers are intended to maximize
resource consumption while also improving
performance [25]. Certain factors have an impact on the
scheduler's overall performance. Therefore, some
important challenges must be addressed in order to
efficiently construct schedule algorithms. Those are
Fairness, Data locality, Availability, Resource Utilization,
Throughput and Synchronization [14, 7, 26, 27].

3.1.1. Fairness

The scheduling algorithm's fairness is a metric for how
evenly resources are distributed among Map Reduce jobs
according to priority levels, volume, and completion
time. Certain intensive processes may consume all of the
cluster's processing capacity, prompting other light
weight tasks to suffer for long periods of time. Avoiding
such starvation is the goal of an effective scheduling
algorithm. Among the Map and Reduce cycles, Fairness
interacts with dependency and locality [28]. In the event
that fairness is not ensured, response time and
throughput will suffer.

3.1.2. Data Locality

Locality refers to the proximity among an input node and
a computation node. The closer the computational node
is to the input node, the shorter the data transfer time,
which increases throughput. During preparation and
execution phases, a k-means method provided by paper
[29] that works by putting the first most similar data sets
in the single data center. For the betterment of the
"stagger Machine" problem, a tasks replication technique
was utilized in the MapReduce framework, which repeats
tasks replication until all tasks are accomplished [30].

3.1.3. Availability

The term availability refers to the mean time among
failures and repetitions of user request. Another
definition of availability is the period during which the
system facilitates and manages to run continuously in
order to fulfill new requests. Following the verification of
the scheduler, the overall tasks must be accomplished
completely.

3.1.4. Resource Utilization

The utilization of resources is a key feature in numerous
scientific fields. The significance arises from a scarcity of
resources in comparison to the massive quantity of data
and processing power required. The efficiency with
which a scheduling algorithm allocates resources
between processes is measured by resource utilization.
Parallel to the communication utilization, the scheduler
should make good use of the available resources, in
particular the local computing device hardware. In order
to concentrate a number of tasks in clusters and achieve
good results, it is vital to optimize and manage these
resources.

3.1.5. Synchronization

The impact of synchronization in MapReduce cannot be
overstated. The technique of sending intermediate
outputs from Map processes as inputs to Reduce
processes is characterized as synchronization [4, 7, 31].
The "shuffle and sort" approach is used to establish
synchronization. In heterogeneous systems, the issue is
exacerbated by the fact that each node's capabilities and
configuration differ. As a result, Map job execution times
vary, which has an impact on the Reduce phase. The
reduce operation will not be able to begin unless all
mappers have completed their work. It accelerates in
limiting within the overall performance of the Hadoop
cluster.

3.1.6. Throughput

In addition to data locality and utilization, good
scheduling algorithms should provide high throughput.
The number of jobs to be completed in a certain amount
of time is known as throughput. A scheduling algorithm
is designed to maximize the system's overall throughput.

Akhtari ZAMEEL, Ahmet ZENGIN
An Overview of Job Scheduling Algorithms for Big Data

42

Figure 4. Classification of Scheduling Algorithm

4. Overview of Job Scheduling Algorithms

In the character of Hadoop, jobs must share the cluster
resources, so a scheduling strategy is required to
determine when and where a job will be executed. By
effectively assigning tasks to the processors, scheduling
aims to reduce completion time, enhance throughput,
reduce overhead, and equalize available resources in a
parallel program. Job scheduling greatly enhances the
performance of a Hadoop cluster according to Jyoti V
Gautam's study [32].

4.1. Classification

Many scheduling algorithms have been proposed and
developed by various researchers which can be classified
based on various parameters. To better comprehend
these algorithms, classification of Hadoop scheduling
algorithm is summarized in Figure 4. Scheduling
algorithms can be classified into Static and Dynamic
categories based on their scheduling strategy.

Static [33] or offline scheduling involves assigning jobs to
processors prior to execution of a program, and
information about task execution time and computing
resources is available during compilation time. The
purpose of static scheduling is to reduce the amount of
time required for present programs to run. The
assignment of jobs to processors in dynamic or online
scheduling takes place during execution time, with little
prior information of a job's resource requirements, and
even the job environment is uncertain. With distributed
computing, dynamic scheduling of jobs necessitates even
scheduling of resources throughout multiple
geographical regions [34, 35].

In the following section overview of some common and
default Static and Dynamic Hadoop scheduler algorithms
is provided.

4.1.1. First In First Out (FIFO) Scheduling

The inbuilt Hadoop default scheduler is First in First out
(FIFO) [36, 37] algorithm that can be employed in a
homogenous environment. According to FIFO queue
policy, jobs that join the ready queue first get first
precedence regardless of the priority and size of the task.

When the order in which tasks are completed is
unimportant, the FIFO algorithm is applied. Between all
schedulers, the FIFO scheduling strategy is the simplest
and most efficient [7, 38]. The main disadvantage of this
policy is that a lengthy process will induce all jobs to be
delayed. Although each and every job must be completed
on time, and each job must have a faster response time
[39]. The stability of allocating resources among lengthy
and small jobs is not considered by FIFO scheduling. As a
result, this approach minimizes data locality and leads to
job starvation [7].

4.1.2. Fair Scheduler

With the idea of sharing resources equally over time
Facebook developed Fair scheduler [40]. Pools are sets of
jobs that are created depending on configurable
attributes such as user name. Every user has their own
pool, with a minimum share allotted to them. The
MapReduce task slot, by default, distributes resources
fairly among the pools. If a pool's idle slots are not used,
the other pools will employ them. If the identical user or
pool sends an excessive number of jobs, the fair
scheduler can constrain these jobs by identifying them as
not executable. The Fair Scheduler supports preemption
[41], which means that if a pool has not gained its fair
portion for a predetermined period of time, the scheduler
module will refuse tasks in pools that are over capacity
in order to allocate slots to pools that are under capacity.
The main drawback of FIFO is solved by the fair
scheduler where smaller jobs are managed more quickly
than larger jobs. Another advantage of the fair scheduler
is that it allows the system to specify the number of jobs
from each pool and user that can be executed
concurrently. The problem of fair scheduler is that it does
not take into account the weight of each job, resulting in
imbalance performance in each pool.

4.1.3. Capacity Scheduler

Capacity Scheduler, which was originally developed at
Yahoo [40, 42], addresses a usage platform in which a
vast number of users is present, a requirement to ensure
a fair allotment of computation resources and scheduling
of task allocation between clients.

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

43

Table 1. Comparison of Hadoop scheduling algorithms used in Big Data
Scheduling
Algorithm

Key

Techniques

Fair

Sharing of

Resources

Environment Priority

in Job

Queue

Working

Cluster

Merit Demerit

Homo
geneo

us

Hete

roge

neou

s

FIFO Job allocation:
Static, Non-

adaptive, Non
primitive,
Execution

time

No ✓ No Small
clusters

Easy to
implement,

Cost of
cluster

scheduling is
minimal

Starvation,
Bad data
locality,

Small job will
wait

long time

Fair
Scheduling

Job allocation:
Static,

Adaptive,
Primitive,
Execution

time

Yes ✓ Yes Small
clusters

Distributes
resources

fairly,
Smaller jobs
are managed
quickly than
larger jobs

Imbalance
performance

due to
absence of job

weight,
Complex

configuration
Capacity Job allocation:

Static,
Adaptive, Non

primitive,
Execution

time

Yes ✓ No Large
clusters

Unused
capacity of

jobs in
queues is
reused,

Increases
throughput

Challenging to
select

appropriate
queues

Delay Job allocation:
Static,

Adaptive,
Primitive,

Data locality

Less than
Fair

✓ Yes Small
clusters

Scheduling is
simple,

For complex
calculations

has no
overhead

Limited slot
for each node,
Ineffective for
larger queue

of jobs

Deadline
Constraint

Job allocation:
Dynamic,
Adaptive,
Primitive,
Deadline

Yes ✓ ✓ Yes Large
clusters

Maximize
system

utilization,
Optimize
Hadoop

implementat
ion

Nodes be
uniform in

composition
leads to

increasing
cost

Resource
Aware

Job allocation:
Dynamic,
Adaptive,
Primitive,
Resource
utilization

Yes ✓ ✓ Yes Large
clusters

Better
resource

utilization in
cluster,

Job
management
performance
is enhanced

Non
preemption of

jobs
reduction,
Need extra

capacities to
handle

network
constraints

Capacity scheduler employs a queue rather than pools,
which is allotted once the resources have been
distributed within these queues using a configurable
map and reduce slot. Each cluster capacity is distributed
between clients as opposed to among tasks, as in the fair

scheduler. In case tasks of capacities in lines have
additional capacity it kills or pulls down the task. To gain
control of the queues, a security technique is designed to
guarantee that each client can solely access one of the
queues. The capacity scheduler enables job scheduling

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

44

depending on priority in terms of time. In a cluster
environment, capacity scheduling greatly increases
resource utilization and throughput. It also ensures that
the unused capacity of jobs in queues is reused. With
capacity scheduling it is challenging to select appropriate
queues. The issue of capacity scheduling is with context
to awaiting jobs, and it has some drawbacks in ensuring
the cluster's stability and fairness from a queue and
single user [7].

4.1.4. Delay Scheduler

To address the issue of fair scheduling, Facebook created
delay scheduling, which attempts to improve locality
through the application of a waiting strategy. This
scheduling is added by means of enhancing Map Reduce
with data locality to improve its performance and the
quickest response time for the Map assignment [43]. The
reallocation of resources is accomplished by eradicating
the pending tasks of preceding tasks in order to manage
a slot for that task and waiting for a task to be
accomplished in the assigned slots for the latest task [3].
If data for a task is not present, the task tracker will wait
for a predetermined amount of time. The scheduler
examines at the job's size to determine if there's a
request for task allocation from a local node, and if there
is, it skips the job which is excessively small and looks for
an available subsequent job to execute. If job skipping
persists over an extended period of time, a nonlocal task
is created in order to avoid starvation. This scheduling is
simple and for complex calculations, has no overhead.
Disadvantage of delay scheduling is that it has a limited
slot for each node. When most of the jobs are
substantially more than an average job, the delay
scheduling strategy is ineffective.

4.1.5. Deadline Constraint Scheduler

In Hadoop clusters, deadlines are prioritized by
anticipating job completion durations [44]. Then
assigning them to slots which can be able to process them
within a set time limit, which is given by the user. By
simply disregarding new work that cannot be handled
within their timeframe, this algorithm guarantees that
jobs with an appropriate deadline are scheduled for
completion. This is obtained with the aid of estimating
the due date and comparing it to the time it takes to
complete the task [45]. In case the schedulability
assessment fails, the user will be prompted to set a new
due date, and if that is successful, the task will be
rescheduled. It emphasizes on challenges such as
meeting deadlines and maximizing system utilization [4,
7, 42]. There is a penalty associated with the requirement
that the nodes be uniform in composition.

4.1.6. Resource Aware Scheduler

Scheduling regarding resource use [46] and minimizing
resource demand on systems is an important field of
study in Hadoop. Currently, the system contains a variety
of heterogeneous nodes that provide node assignment
variation. Prior schedulers did not take into account the
resource availability in greater depth and allotted

resources of a specified size [4, 47]. This strategy
attempts to reduce resource dissipation while increasing
utilization. These schemes cognizance on how
efficaciously useful resource usage has been carried out

with diverse forms of usage like IO, memory, disk,
network and CPU utilization [48, 49] . Two distinct
techniques to Resource Aware Scheduling are "Free Slot
Filtering" and "Dynamic Free Slot Advertisement." Job
management performance is enhanced with a resource
aware scheduler. The disadvantages of this scheduling
are that it does not support the preemption of reduction
jobs and that extra capacities to handle network
constraints are required.

4.2. Comparison of Scheduling Algorithms

The principal purpose of this research article is to
investigate and analyze various types
scheduling algorithms and strategies that can be used to
improve Hadoop operating efficiency when dealing with
enormous datasets. The fact that different jobs have
distinctive quality specifications is a vital open area of
concern in scheduling algorithms. Many jobs necessitates
equilibrium with the other specifications. To better
comprehend these algorithms this comparison is based
on some conspicuous Hadoop scheduler properties. Such
as key techniques, job allocation, area, fairness in
resources sharing, environment, priority in job queue,
working cluster and their merits and demerits. These
criterias will offer the implementers an indication of an
ideal scheduling algorithm for their research.
Comparison of different scheduling algorithms used in
big data is presented in Table 1.

From Table 1, Fair and Capacity Scheduler were found to
be developed for short and production jobs, and
overcoming the fairness issue. Due to its ability to deliver
quick response times for both small and large jobs mixed
together, the fair scheduler is advantageous when there
are a variety of jobs present. The capacity scheduler is the
best option for managing a big Hadoop cluster with
several clients, various task kinds, and varying priorities
in order to assure rapid access with the ability to utilize
idle capacity and prioritize jobs inside queues. Delay
scheduling techniques are developed to solve the locality
problem. In a deadline constraint scheduler, the user
specifies the work due date, and the job is accomplished
in real time. In the field of Big Data processing, a job
scheduling algorithm is a crucial area of research.

4.3. Other Improved Algorithms

Many experts are studying on ways to improve Hadoop's
scheduling policies. An overview of some potential novel
scheduling algorithms, in addition some immensely-
cited and well-established ones, is offered in these
review articles.

In [50], the authors suggested "The Gallery Scheduler,"
an upgraded version of fair scheduler that enables all
tasks to be executed by a default or defined configuration
file, restricting the amount of tasks per user and pool.
However, the system has to wait for the recently arrived

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

45

jobs in the Scheduler queue till several of the currently
running tasks are completed before it can move on to
them.

When TaskTracker is available, the scheduling
capabilities choose the queue with the highest available
resources based on the task's priority. In the event that
the task requires a considerable amount of memory, this
scheduling technique guarantees that there is
appropriate free Memory in TaskTracker to perform it.
This way, resource demands issues can always be
addressed right away according to article [51].

The study in [52] offers an algorithm named LsPS
(Leveraging size Patterns Scheduler) for managing
bursty workloads in a multi-user context that uses
knowledge of workload patterns by dynamically
modifying resource shares between scheduling
algorithms and users for each user to minimize average
task response times. This is accomplished by giving users
a slot sharing ratio that is inversely proportionate to
their task average sizes. With various users, varied
clusters, and heterogeneous workloads, the
experimental findings show promising results in
enterprise scenarios.

Context aware scheduling was proposed by a researcher
in [53], with the principal aim of boosting Hadoop
scheduling by allowing for dynamic changes in resource
availability. Two essential metrics are used to create the
layout. First, a large proportion of Map Reduce processes
operate on a regular basis and have similar CPU
characteristics, network and disk requirements. Second,
nodes in a Hadoop cluster grow heterogeneous with time
as newer nodes replace existing ones owing to errors. If
Hadoop does not execute task preemption, speculative
jobs and a context-aware scheduler could assist to avoid
inefficiencies caused by resource unpredictability.

In the course of the reduce phase, Hadoop jobs have
unbalanced workloads and inefficiently leverage the
available computational and network resources. In this
research [54], authors introduce two algorithms for
optimizing the Locality-Enhanced Load Balance: the
Locality-Based Balanced Schedule (LBBS) and the
Overlapping-Based Resource Utilization (OBRU) to
overcome these issues. Local reduction, shuffle, and final
reduce are the three phases of the process. Both of these
algorithms improve load balancing significantly while
utilizing eight DataNodes, according to the findings of
experiments.

In order to minimize the trade-offs between fairness and
data localization while job scheduling, the Dynamic Task
Splitting Scheduler (DTSS) is presented [55]. According
to evaluation and experiment findings, modifying the
task split's proportion can enhance fairness and
performance. However, researchers must proceed
cautiously while adopting the DTSS scheduler because it
is ineffective when jobs have convenient access to data-
local nodes.

This paper [56] suggested a new method for scheduling
tasks and/or jobs in a Big Data Cluster that focuses on

enhancing the NameNode's task distribution to the data
nodes. This task scheduler outperforms the existing
task schedulers: FIFO Scheduler and Capacity Scheduler,
as evidenced by the significant results gained.

Recently the Densest-Job-Set-First (DJSF) approach was
proposed in this research work [57] as an enhanced
heuristic job scheduling mechanism with the goal of
increasing system throughput and lowering the average
Job Completion Time (JCT). They define the work packing
problem, which incorporates maximizing the job sets'
completion efficiency, and deploy the k-means clustering
technique to achieve JCT alignment. When the k-means
clustering approach yields excessive groups, the number
of jobs in each job unit decreases, which is a disadvantage
for the job packing method to pick and pack appropriate
jobs from a job group [56].

By integrating Round robin and the priority scheduling
technique, a hybrid scheduler is presented in [58]. The
optimization of this approach involves less context
switches. Additionally, it overcame every drawback
associated with both Round robin and Priority
Schedulers.

After prioritizing the jobs with the aid of the k-means
clustering technique, authors in [59] used the
MapReduce framework to schedule tasks for big data
using Hadoop. Here, the energy optimization is carried
out using the FireFly Algorithm (FA) and BAT (FF-BAT)
technique. The present resource is chosen in the Hadoop
map-phase by combining the firefly algorithm (FFA) with
the bat algorithm.

For focusing on the scaling issue of data locality rate with
shorter completion times, a localization ID and dynamic
priority-based hybrid scheduling algorithm (HybSMRP)
was presented in [60]. Dynamic priority assists in
choosing which tasks and tasks should be allocated to the
resource node that is currently accessible. Each slave
node in the cluster is given an ID so that a reasonable
amount of data can be executed locally. This algorithm
guarantees a high data locality rate by avoiding resource
waste.

The conventional Hadoop MapReduce fault tolerance
technique leads to significant performance
disadvantages for processing tasks during failure
recovery. For the betterment of this area, Fast Recovery
MapReduce (FAR-MR), a fault recovery technique, is
suggested to ensure effective recovery [61]. To facilitate
rapid recovery from task failure and node failure, this
incorporates a novel fault tolerance method that mixes
decentralized checkpointing and proactive push
mechanisms.

This research [62] proposed an optimal Simulated
Annealing (SA) metaheuristic approach for flight
scheduling issues and delays. By employing the
constraints utilized to avoid flight delays, this strategy
yielded the most ideal results. The evaluation is carried
out by comparison with the genetic algorithm (GA) and
the artificial bee colony (ABC) algorithm. When
compared to the conventional methodology, issue

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

46

solving using metaheuristic approaches was better since
the researched space's dimensions expanded.

The MapReduce framework was the main emphasis of
the authors' study in [13, 14, 42, 63-65], as well as its
limitations, problems with job scheduling between
nodes, and other algorithms presented by different
academics. These algorithms were then categorized
based on a variety of performance-related quality
indicators in some of these studies. However, these
papers are mostly oriented on task scheduling or
considering dataset of specific platform, whereas we
offered a number of algorithms that address a number of
Hadoop scheduler concerns. Additionally, this paper
provided extensive information on variety of hybrid job
scheduling techniques. Our intention is to give
researchers proper guidelines to help them with their
particular issues, such as load balancing, high data
locality, and minimizing competition time. This study
gives the implementer appropriate research direction in
terms of selecting Hadoop scheduler.

5. Conclusion
Because of the rapid expansion of mobile devices and
other gadget sensors associated with the Internet, the
volume and varieties of data is growing daily. With the
aid of numerous applications in various industries,
humans process a substantial volume of data. These
applications necessitate extensive input/output
processing as well as job scheduling. According to
reports, IO processing consumes 69% of the resources
and 79% of the time for jobs at the Facebook and
Microsoft Bing data center. Therefore, Hadoop is a
future-oriented technology. Hadoop is frequently
presented as the platform that organization needs to
address a range of issues. A fundamental understanding
of big data is presented, as well as a well-known big data
platform, Hadoop, and its essential components. Job
scheduling exemplifies a crucial perspective for
achieving big data analysis performance. We delivered an
assessment of some of the issues of job scheduling
algorithms in big data processing in this article. The
employment of various Scheduling algorithms to
appropriately employ resources was reviewed. As a
result of this comparative investigation, we draw the
conclusion that Hadoop's core schedulers are ineffective
at dealing with a number of problems, including locality,
fairness, and speculative execution.
Numerous enhanced schedulers or strategies have been
developed by various researchers to address the
aforementioned problems. To reduce the time required
for job execution and therefore enhance performance,
this area still need further focus. Scholars determine the
best algorithm for a specific application according
to which characteristics are most significant. Following
an examination of several relevant research on Hadoop
scheduling, one result that comes out is that the basic
Hadoop algorithms for scheduling have scope for
development. Furthermore, traditional job scheduling
algorithms are either focused on a user-centric or a
resource-centric approach, since they are unable to

acknowledge both elements at the same time. Significant
constraints and issues must be overcome with the aid of
the researchers in the future in order to guarantee the
long-term viability of data management and job
scheduling. In the time ahead, it can be improved by
introducing or eliminating a few limitations, or taking
into account all of the parameters discussed above and
rendering it more adaptable.
This analysis is conducted to give academics an
appropriate guideline in determining the propitious
region regarding the Hadoop scheduling algorithm.
We've observed that the study of Hadoop scheduling is a
promising subject of study in which further research is
required to improve Hadoop scheduling algorithms. Big
data warehouses that serve multiple users or
organizations are an example of how Hadoop is
developing along with its usage paradigms. In order to
make better use of cluster resources for big data
analytics, the additional flexibility that Hadoop offers is a
significant step forward.

6. References
[1] Zameel, A., Najmuldeen, M., and Gormus, S., “Context-

Aware Caching in Wireless IoT Networks”, 11th
International Conference on Electrical and Electronics
Engineering (ELECO), IEEE, 2019, pp. 712-717.

[2] Seethalakshmi, V., Govindasamy, V., & Akila, V., “Job
scheduling in big data-a survey”, International
Conference on Computation of Power, Energy,
Information and Communication (ICCPEIC) IEEE,
2018, pp. 023-031.

[3] Deshai, N., Venkataramana, S., Hemalatha, I., &
Varma, G. P. S., “A Study on Big Data Hadoop Map
Reduce Job Scheduling”, International Journal of
Engineering & Technology, 7(3), 59-65, 2017.

[4] Mohamed, E., & Hong, Z., “Hadoop-MapReduce job
scheduling algorithms survey”, 7th International
Conference on Cloud Computing and Big Data (CCBD),
IEEE, 2016, pp. 237-242.

[5] Singh, D., Reddy, C.K., “A survey on platforms for big
data analytics”, Journal of big data, 2(1): p. 1-20,
2015.

[6] Nagina, D. and Dhingra, S., “Scheduling algorithms in
big data: A survey”, Int. J. Eng. Comput. Sci, 5(8): p.
17737-17743, 2016.

[7] Cheng, D., Zhou, X., Lama, P., Wu, J., & Jiang, C., “Cross-
platform resource scheduling for spark and
mapreduce on yarn”, IEEE Transactions on
Computers, 66(8), 1341-1353, 2017.

[8] Apache Hadoop. (2021, November 11) [online].
Available: http://hadoop.apache.org.

[9] Hamad, F. and Alawamrah, A., “Measuring the
Performance of Parallel Information Processing in
Solving Linear Equation Using Multiprocessor
Supercomputer”, Modern Applied Science, 12(3): p.
74, 2018.

[10] Liu, J., Pacitti, E. and Valduriez, P., “A survey of
scheduling frameworks in big data systems”,
International Journal of Cloud Computing, 7(2): p.
103-128, 2018.

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

47

[11] Guo, Y., Wu, L., Yu, W., Wu, B., & Wang, X., ”The
improved job scheduling algorithm of Hadoop
platform”, arXiv preprint arXiv :1506.03004, 2015.

[12] Hudaib, A.A. and Fakhouri, H.N., “An automated
approach for software fault detection and recovery”,
Communications and Network, 8(03): p. 158, 2016.

[13] Hamad, F., “An overview of Hadoop scheduler
algorithms”, Modern applied science, 12(8): p. 69,
2018.

[14] Usama, M., Liu, M., and Chen, M., “Job schedulers for
Big data processing in Hadoop environment: testing
real-life schedulers using benchmark programs”,
Digital communications and networks, Elsevier, 2017.

[15] Hannan, S.A., “An overview on big data and hadoop”,
International Journal of Computer Applications,
154(10), 2016.

[16] Dai, X. and Bensaou, B., “Scheduling for response
time in Hadoop MapReduce” in 2016 IEEE
International Conference on Communications (ICC)
IEEE, 2016, pp. 1-6.

[17] Shi, Y., Zhang, K., Cui, L., Liu, L., Zheng, Y., Zhang, S.,
& Yu, H., “MapReduce short jobs optimization based
on resource reuse”, Microprocessors and
Microsystems, 47, 178-187, 2016.

[18] Li, X., Jiang, T., & Ruiz, R., “Heuristics for periodical
batch job scheduling in a MapReduce computing
framework”, Information Sciences, 326: p. 119-133,
2016.

[19] Ghazi, M. R., & Gangodkar, D., “Hadoop, MapReduce
and HDFS: a developers perspective”, Procedia
Computer Science, 48: p. 45-50, 2015.

[20] Liroz-Gistau, M., Akbarinia, R., Agrawal, D., &
Valduriez, P., “FP-Hadoop: Efficient processing of
skewed MapReduce jobs”, Information Systems, 60,
69-84, 2016.

[21] Singla, M., “A survey on Static and Dynamic Hadoop
Schedulers”, Advances in Computational Sciences and
Technology, 10(8): p. 2317-2325, 2017.

[22] Rao, B. T., & Reddy, L. S. S., “Samr: A self-adaptive
mapreduce scheduling algorithm in heterogeneous
environment”, arXiv preprint arXiv: 1207.0780,
2012.

[23] Mavridis, I. and Karatza, H., “Performance
evaluation of cloud-based log file analysis with
Apache Hadoop and Apache Spark”, Journal of
Systems and Software, 125: p. 133-151, 2017.

[24] Xue, T., You, X., Yan, M., “Research on Hadoop job
scheduling based on an improved genetic algorithm”,
INTERNATIONAL JOURNAL OF GRID AND
DISTRIBUTED COMPUTING, 10(2): p. 1-12, 2017.

[25] Suresh, S. and Gopalan, N. P., “An optimal task
selection scheme for Hadoop scheduling”, IERI
Procedia, 10: p. 70-75, 2014.

[26] Mana, S.C., “A feature based comparison study of big
data scheduling algorithms”, 2018 International
Conference on Computer, Communication, and Signal
Processing (ICCCSP) IEEE. 2018.

[27] Al-Sayyed, R. M., Fakhouri, H. N., Murad, S. F., &
Fakhouri, S. N., “CACS: Cloud Environment

Autonomic Computing System”, Journal of Software
Engineering and Applications, 10(03), 273, 2017.

[28] Wang, Z. and Shen, Y., “Job-aware scheduling for big
data processing”, 2015 International Conference on
Cloud Computing and Big Data (CCBD), IEEE, 2015,
pp. 177-180.

[29] Yuan, D., Yang, Y., Liu, X., & Chen, J., “A data
placement strategy in scientific cloud
workflows” Future Generation Computer
Systems, 26(8), 1200-1214, 2010.

[30] Chen, Q., Zhang, D., Guo, M., Deng, Q., & Guo, S.,
“Samr: A self-adaptive mapreduce scheduling
algorithm in heterogeneous environment”. In 2010
10th IEEE International Conference on Computer and
Information Technology, IEEE, 2010, pp. 2736-2743.

[31] Jia, Z., Zhou, R., Zhu, C., Wang, L., Gao, W., Shi, Y.,
Zhan, J. and Zhang, L., “The implications of diverse
applications and scalable data sets in benchmarking
big data systems”, In Specifying Big Data
Benchmarks, Springer, Berlin, Heidelberg, 2012, pp.
44-59.

[32] Alam, A. and Ahmed, J., “Hadoop architecture and its
issues” in 2014 International Conference on
Computational Science and Computational
Intelligence, IEEE, 2014.

[33] Casavant, T. L. and Kuhl, J. G., “A taxonomy of
scheduling in general-purpose distributed
computing systems”. IEEE Transactions on software
engineering, 14(2): p. 141-154, 1988.

[34] Abraham, A., Buyya, R. and Nath, B., “Nature’s
heuristics for scheduling jobs on computational
grids”, The 8th IEEE international conference on
advanced computing and communications (ADCOM
2000), 2000.

[35] Senthilkumar, M. and Ilango, P., “A survey on job
scheduling in big data”, Cybernetics and Information
Technologies, 16(3): p. 35-51, 2016.

[36] Brahmwar, M., Kumar, M., and Sikka, G., “Tolhit–a
scheduling algorithm for hadoop cluster”, Procedia
Computer Science, 89: p. 203-208, 2016.

[37] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy,
K., Shenker, S., & Stoica, I., “Delay scheduling: a
simple technique for achieving locality and fairness
in cluster scheduling”, In Proceedings of the 5th
European conference on Computer systems, 2010, pp.
265-278.

[38] Divya, S., Kanya Rajesh, R., Rini Mary Nithila, I. and
Vinothini, M., “Big Data Analysis and Its Scheduling
Policy–Hadoop”, IOSR Journal of Computer
Engineering (IOSR-JCE) e-ISSN, 2278-0661, 2015.

[39] Nikhil, B., Riddhikesh, B., & Patil Balu, T. M., “A
Survey On Scheduling In Hadoop For Bigdata
Processing”, Multidisciplinary Journal of Research in
Engineering and Technology, 2(3), 497-501, 2015.

[40] Yoo, D. and Sim, K. M., “A comparative review of job
scheduling for MapReduce”, 2011 IEEE International
Conference on Cloud Computing and Intelligence
System, IEEE, 2011.

Akhtari Zameel, Ahmet Zengin
An Overview of Hadoop Job Scheduling Algorithms for Big Data

48

[41] Patil, A. U., Bagban, T. I., & Pande, A. P., “Recent Job
Scheduling Algorithms in Hadoop Cluster
Environments: A Survey”, International journal of
Advanced Research in computer and communication
Engineering, 4(2), 2015.

[42] Gautam, J. V., Prajapati, H. B., Dabhi, V. K., &
Chaudhary, S., “A survey on job scheduling
algorithms in big data processing”, 2015 IEEE
International Conference on Electrical, Computer and
Communication Technologies (ICECCT), IEEE,
2015, pp. 1-11.

[43] Xie, Q., Pundir, M., Lu, Y., Abad, C. L., & Campbell, R.
H., “Pandas: robust locality-aware scheduling with
stochastic delay optimality”, IEEE/ACM Transactions
on Networking, 25(2), 662-675, 2016.

[44] Kc, K. and Anyanwu, K., “Scheduling hadoop jobs to
meet deadlines”, 2010 IEEE Second International
Conference on Cloud Computing Technology and
Science, IEEE, 2010.

[45] Johannessen, R., Yazidi, A., & Feng, B., “Hadoop
MapReduce scheduling paradigms”, 2017 IEEE 2nd
International Conference on Cloud Computing and
Big Data Analysis (ICCCBDA), IEEE, 2017.

[46] Liu, Z., Zhang, Q., Ahmed, R., Boutaba, R., Liu, Y., &
Gong, Z., “Dynamic resource allocation for
MapReduce with partitioning skew”, IEEE
Transactions on Computers, 65(11), 3304-3317,
2016.

[47] Yong, M., Garegrat, N., & Mohan, S., “Towards a
resource aware scheduler in hadoop”, Proc. ICWS,
2009.

[48] Mashayekhy, L., Nejad, M. M., Grosu, D., Lu, D., & Shi,
W., “Energy-aware scheduling of mapreduce jobs”.
In 2014 IEEE International Congress on Big
Data, IEEE, 2014, pp. 32-39.

[49] Khalil, W. A., Torkey, H., & Attiya, G., “Survey of
Apache Spark optimized job scheduling in Big Data”,
International Journal of Industry and Sustainable
Development, 1(1): p. 39-48, 2020.

[50] Usha, D. and Jenil, A., “A survey of Big Data
processing in perspective of Hadoop and
MapReduce”, International Journal of Current
Engineering and Technology, 4(2): p. 602-606, 2014.

[51] Dean, J., Ghemawat, S., ”MapReduce: a flexible data
processing tool”, Communications of the ACM, 53(1):
p. 72-77, 2010.

[52] Yao, Y., Tai, J., Sheng, B., & Mi, N., “A job size-based
scheduler for efficient task assignments in Hadoop”,
IEEE Trans. Cloud Comput, 77-83, 2015.

[53] Cassales, G. W., Charão, A. S., Pinheiro, M. K.,
Souveyet, C., & Steffenel, L. A., “Context-aware
scheduling for apache hadoop over pervasive
environments”, Procedia Computer Science, 52, 202-
209, 2015.

[54] Li, J., Wang, J., Lyu, B., Wu, J., & Yang, X., “An
improved algorithm for optimizing MapReduce
based on locality and overlapping”, Tsinghua Science
and Technology, 23(6), 744-753, 2018.

[55] Xu, Y., & Cai, W., “Hadoop job scheduling with
dynamic task splitting”, International Conference on
Cloud Computing Research and Innovation (ICCCRI)
IEEE, 2015, pp. 120-129.

[56] Hadjar, K. and Jedidi, A., “A new approach for
scheduling tasks and/or jobs in big data cluster”,
2019 4th MEC International Conference on Big Data
and Smart City (ICBDSC), IEEE, 2019.

[57] Hu, Z. and Li, D., “Improved heuristic job scheduling
method to enhance throughput for big data
analytics”, Tsinghua Science and Technology, 27(2):
p. 344-357, 2021.

[58] Rao, B. T., Susmitha, M., Swathi, T., & Akhil, G.
“Implementation Of Hybrid Scheduler In Hadoop”.
International Journal of Engineering & Technology,
7(2.7), 868-871, 2018.

[59] Senthilkumar, M., “Energy-aware task scheduling
using hybrid firefly-bat (ffabat) in big data”. Cybern
Inf Technol, 18(2), 98-111, 2018.

[60] Gandomi, A., Reshadi, M., Movaghar, A., &
Khademzadeh, A., “HybSMRP: a hybrid scheduling
algorithm in Hadoop MapReduce framework”.
Journal of Big Data, 6(1), 1-16, 2019.

[61] Zhu, Y., Samsudin, J., Kanagavelu, R., Zhang, W.,
Wang, L., Aye, T. T., & Goh, R. S. M., “Fast Recovery
MapReduce (FAR-MR) to accelerate failure recovery
in big data applications”. The Journal of
Supercomputing, 76(5), 3572-3588, 2020.

[62] Erdem, E., Aydın, T., & Erkayman, B., “Flight
scheduling incorporating bad weather conditions
through big data analytics: A comparison of
metaheuristics”. Expert Systems, 38(8), e12752,
2021.

[63] Dhulavvagol, P. M., Totad, S. G., & Sourabh, S.,
“Performance analysis of job scheduling algorithms
on Hadoop multi-cluster environment”. In Emerging
Research in Electronics, Computer Science and
Technology, Springer, Singapore, 2019, pp. 457-470.

[64] Kalia, K., & Gupta, N., “Analysis of hadoop
MapReduce scheduling in heterogeneous
environment”. Ain Shams Engineering Journal, 12(1),
1101-1110, 2021.

[65] Zarei, A., Safari, S., Ahmadi, M., & Mardukhi, F., “Past,
Present and Future of Hadoop: A Survey”. arXiv
preprint arXiv:2202.13293, 2022.

