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ABSTRACT 

Being able to forecast events has always been important for humans. Humans performed forecasting 

by observing the movements of material and non-material objects in ancient times. However, with 

technological developments and the increasing availability of data in recent years, forecasting has been 

done by computers, especially by machine learning methods. One of the areas where these methods 

are used frequently is numerical weather forecasting. In this type of forecast, short term, medium term 

and long term numerical weather forecasts are made using historical information. However, 

predictions are inherently error-prone, and should be indicated within which error ranges the 

predictions fall. In this study, numerical weather forecasting was done by combining Genetic 

Programming and the Inductive Conformal Prediction method. The effects of 10 and 20 days of 

historical data on short (1 day), medium (3 days) and long term (5 days) weather forecasts were 

examined. The results suggested that Genetic Programming has a good potential to be used in this 

area. However, when Genetic Programming was combined with the Inductive Conformal Prediction 

method, it was shown that forecasts gave meaningful results only in the short term; forecasts that were 

made for the medium and the long term did not produce meaningful results. 
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Ufuk Amaçlı Genetik Programlama ile Hava Durumu Tahminine 

Güven Aralıklı Yaklaşım 
 

ÖZ 

Olayları önceden tahmin edebilmek insanlar için her zaman önemli olmuştur. Eski zamanlarda insanlar 

tahminlerini maddesel ve maddesel olmayan cisimlerin hareketlerine göre yapmışlardır. Ancak, son 

yıllardaki teknolojik gelişmeler ve veri miktarındaki artış sayesinde tahmin çalışmaları bilgisayarlar 

tarafından, özellikle de makine öğrenmesi metotları tarafından yapılmaktadır. Bu metotların 

kullanıldığı en önemli alanlardan bir tanesi de sayısal hava durumu tahminidir. Bu tahmin çeşidinde, 

tarihsel veriler kullanılarak kısa, orta ve uzun vadeli tahminler yapılmaktadır. Ancak, tahminler doğası 

gereği hataya açık olaylardır ve ortaya çıkan hatanın hangi aralıkta olduğu belirtilmelidir. Bu 

çalışmada sayısal hava durumu tahmini Genetik Programlama ve Tümevarımsal Güven Aralığı 

metodu birleştirilerek yapılmıştır. 10 ve 20 günlük tarihsel verinin kısa (1 gün), orta (3 gün) ve uzun (5 

gün) vadede yapılan tahminlere olan etkisi incelenmiştir. Sonuçlar Genetik Programlamanın bu alanda 

kullanılabileceğini göstermektedir. Ancak, Genetik Programlama Tümevarımsal Güven Aralığı 
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metodu ile kullanılınca, yapılan tahminlerin sadece kısa vadede anlamlı sonuçlar ürettiği görülmüştür. 

Orta ve uzun vadeli yapılan tahminlerin anlamlı sonuçlar üretmediği görülmüştür. 

 
Anahtar Kelimeler: Yapay Zeka, Güven Aralığı, Tahmin, Genetik Programlama 

 

 

I. INTRODUCTION 
 
Humans have a strong tendency to see a cosmos in nature. This tendency has encouraged humans to 

seek a cause-and-effect relationship in nature. As a result, forecasting mechanisms in humans have 

emerged. In ancient times, due to the absence of necessary technology, people made predictions by 

observing the behaviors of material and non-material objects, such as planets, waves, and winds. 

However, nowadays, humans have transferred their forecasting ability to technology. Forecasts which 

had been made by humans in the non-technological era have been replaced by computers thanks to 

development in technology and the huge amount of data that are available today. Today, forecasts are 

generally made by algorithms that have been developed in the area called Artificial Intelligence (AI). 

These algorithms try to find relations between variables in which humans may not see clearly or do 

not have a mathematical function to describe the relation completely. AI algorithms use historical data 

of a particular phenomenon to model the forecasting mechanism, with the assumption that the data 

contains enough information which enable AI model to make future predictions. 

 

Forecasting methods in AI realm can be divided into two subcategories according to mechanisms of 

the algorithms employ. Methods such as ARIMA [1] and Prophet [2] are specialized methods used 

only in forecasting. Another subarea of this field consists of Deep Learning (DL) methods, such as 

Long Short Time Memory (LSTM) [3], Artificial Neural Networks (ANN)[4], and Machine Learning 

(ML) algorithms such as Support Vector Machines (SVM)[5], K-Nearest Neighbors (KNN)[6]. While 

DL and ML methods are more commonly used for classification, image recognition, and image 

generation problems, these techniques can also be applied to forecasting by manipulating them. These 

methods have been shown to be effective through their ability to be readily adapted and their extensive 

application in forecasting domains, including electricity load forecasting [7,8], stock market prediction 

[9], and storm forecasting [10]. 

 

Inevitably, the power of these mentioned methods has been used in one of the hardest problems in 

forecasting; that is, numerical weather prediction from historical data. It is known that the weather 

itself is a chaotic system and making numerical weather prediction is a challenging problem [11,12]. 

However, both DL and ML methods have been used in numerical weather forecasting. A detailed 

comparison of ML and DL methods can be found in [13] where the authors thoroughly analyzed the 

performance of these methods in forecasting the weather using the NCDC data set. Another study that 

suggests a DL method specifically showed that a small error rate can be achieved when predicting 

wind speed in the weather [14]. Since long term weather forecasting is likely prone to errors, short 

term forecasting is the best option for the task at hand, and such a study can be found in [15] where the 

authors proposed a model that improved forecast accuracy up to 3 days in advance. The weather 

forecasting studies involve not only temperature forecasting, but also involve forecasting the general 

results of weather behavior such as tsunamis, typhoons, etc. Such a study can be found in [16] where 

the authors proposed a DL mechanism to predict the intensity of the typhoons in advance. 

 

However, both the DL and ML methods have several drawbacks. A major drawback of these 

algorithms is their parameters are determined through trial and error. As a result, each combination of 

parameters may yield different results. In other words, finding the parameters that give the best 

accuracy is an exhausting process. Besides, both DL and many of the ML methods are black-box 

algorithms, which means that they are not easily interpreted by humans.  

 

The problem of these black-box approaches can be solved with Genetic Programming (GP) [17]. Due 

to its simplicity and power, it is also used in forecasting problems [18,19]. GP is also utilized for 
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weather-related problems. A recent study using GP’s power predicted rainfall prediction [20]. The 

results indicated by the authors suggested that GP outperformed most of the fundamental ML 

algorithms. Another study that employed GP for water level forecasting can be found in [21]. 

 

These algorithms have proven their strengths in the forecast area by achieving high accuracies. 

However, especially the weather forecasting has an inevitable consequence, which is the error 

produced by the constructed model. It occurs especially when forecasting distant horizons [22]. This 

error is a numerical quantity, and it does give only bare information about the developed model. 

However, supporting this error quantity with a confidence interval is important in the forecasting 

studies. Given that weather dynamics are influenced by various independent attributes (pressure, 

humidity, etc.), even a slight change in one of these attributes can significantly impact the forecasting 

model. Thus, providing a confidence level for the model when making numerical weather predictions 

enhances our understanding of the model's performance. 

 

However, forecasting methods combined with confidence interval (CI) in the literature are scarce and 

should be used more often. Another issue in this area is the lack of an experimental study that 

extensively analyzes the effect of historical data on different forecast horizons. 

 

With these progresses and shortcomings in the literature in mind, the major problems of numerical 

weather predictions can be summarized as follows: 

• Models that are understandable by humans are needed, 

• CI-based weather forecasting should be a standard approach, 

• Effects of historical data on weather forecasting should be analyzed. 

 

In this study, GP combined with Inductive Conformal Prediction (ICP), was analyzed. Also, the 

effects of historical data on different forecast horizons were shown experimentally. In the present 

work, 10 and 20 days were used as historical information. Forecast horizons were selected as 1 day, 3 

days, and 5 days. Different GP models were constructed for each horizon. Moreover, the generated 

models by GP were tested monthly to see their genuine performances. Dataset used in the experiments 

was chosen as Jena Weather Dataset which has historical weather data from 2004 to 2020 [23]. 

 

The rest of the paper is organized as follows: Section II describes the dataset, GP, ICP, and design of 

the experiments. Section III presents the results of the experiments. Inferences and comments about 

the experimental results are also given in Section III. Finally, the conclusion and possible future works 

are given in Section IV. 

 

II. MATERIAL AND METHOD 
 

In this section, the dataset used in the experiments is explored, decent information about GP and ICP 

are given to reader and finally the experiment schema is explained. 

 

A. DATASET 
 

The dataset used in the experiments is an open-source Jena dataset that possesses information such as 

temperature, CO2 level, pressure, etc. that was collected from the city of Jena in Germany. Sensors 

collected distinctive attributes of the weather at 10-minutes intervals in that region. 

 

The aim of the paper is to forecast the daily temperature at different horizons. Thus, by taking 24-hour 

averages of each day, the overall dataset was converted into a format as if the data acquisition interval 

was utilized at daily. Since numerical weather prediction is the experimental aim of this study, the 

dependent variable that GP models try to forecast by minimizing the error was selected as T(degC). 

Other attributes in the dataset were given to GP models as independent variables. (see [23] for more 

information on the dataset).  
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Month-based distribution of T(degC) is given in Figure 1. An examination of Figure 1 indicates that 

there is a predictable pattern in the data for each month, due to the fact that the data were collected 

from a relatively small region. Another feature of the dataset is that the maximum and the minimum 

values of each month oscillate between certain intervals, which means that the dataset does not have 

extreme outliers. One more observation can be made about the stationary status of the dataset. Month-

based observations reveal that each month’s weather behavior repeats itself through the years. Thus, it 

can be concluded that the dataset is stationary, so manipulation of the dataset for stationary and 

seasonality is not needed. The next section briefly explains GP and ICP to readers so that they have 

decent information about them. 

 
Figure 1. Monthly temperature variation 

B. GENETIC PROGRAMMING 

 

The Genetic Programming (GP) scheme is inspired by Charles Darwin's evolution theory. The theory 

indicates that the best suitable organism in nature has the highest chance of living and breeding. GP 

takes this idea and uses it to solve complex problems. The main concept in GP is to establish a 

mathematical relationship between inputs and outputs using basic mathematical functions such as 

addition, subtraction, and multiplication, or user-defined functions. GP begins its operations by 

constructing trees (called population); each tree is called an individual, and it is a possible solution to 

the problem. Each tree in GP has two essential components: a combination of functions selected from 

the function set, and a terminal set that corresponds to the attributes in the dataset. For the second step, 

each solution is evaluated by a fitness function that measures the error between the output that is 

generated by the individual and the actual output. After each solution is evaluated, the solutions 

generated by each individual are sorted in an ascending order (from the smallest error to the biggest 

error). Then, the best candidates for solutions are transferred to the next generation. To create diversity 

in the solutions, a crossover mechanism that combines different parts of two trees to originate a new 

tree and a mutation mechanism that randomly changes a function or a variable in a tree are applied. A 

general working mechanism of GP is shown in Figure 2. 
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(a) (b) (c) 

Figure 2. General Working Mechanism of Genetic Programming; (a) A constructed tree by GP; (b) Crossover 

between two trees; (c) A mutation occurred in a tree 

Figure 2 (a) shows a possible solution generated by GP. 𝑋𝑛 (X3 and X6) corresponds to attributes in 

the dataset. Figure 2 (b) graphically depicts the crossover mechanism between two trees, where 

random sub-branches of each tree are exchanged. Finally, Figure 2 (c) presents the mutation step of 

GP, where random changes occur in any node. The changes are made based on whether it is a function 

node or a terminal node. 

 

This study uses GP since it does not require any human intervention in contrast to DL or ML methods. 

Another important advantage of GP is that it has a modifiable structure in terms of functions. Adding 

new functions is relatively easy and these functions may have a positive effect on the performance of 

the generated models. Finally, models that are constructed by GP are easily understandable by humans 

since they will be simple mathematical functions. 

 

The next section briefly explains the ICP that was selected as the CI method in this paper. 

 

C. INDUCTIVE CONFORMAL PREDICTION 
 

The Inductive Conformal Prediction (ICP) is a model-free method to ensure confidence and coverage 

[24]. Generally, in either DL models or regression models in ML, the output is a single continuous 

number. However, the range of outcomes should be specified for a particular input when making a 

prediction using a model. Since ICP is easy to use with any algorithm in AI, it was selected in this 

study. 

 

Successfully applying ICP to a forecasting model requires dividing the dataset into three distinct 

subsets: the train set, test set, and validation set. The overall algorithm for ICP is given below: 

 

1. Divide the dataset into three subsets. 𝐷𝑎𝑙𝑙 = 𝐷𝑡𝑟𝑎𝑖𝑛 + 𝐷𝑡𝑒𝑠𝑡 + 𝐷𝑣𝑎𝑙 

2. Train 𝐷𝑡𝑟𝑎𝑖𝑛 with the model 𝑀 using (𝑥𝑖,𝑦𝑖) set and obtain the loss 𝐿, where 𝐿 = 𝐹(𝑥𝑖𝑦𝑖) and 

𝑥𝑖, 𝑦𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 

3. Compute 𝐿𝑖 for each (𝑥𝑖, 𝑦𝑖) where (𝑥𝑖, 𝑦𝑖) ∈ 𝐷𝑡𝑒𝑠𝑡 

4. Calculate quantile 𝑞 using 𝐿𝑖 from the Step 3 and 
⌈(𝑛𝑡𝑒𝑠𝑡+1)(1−𝛼)⌉

𝑛𝑡𝑒𝑠𝑡
 where 𝑛𝑡𝑒𝑠𝑡 is the number of 

points in 𝐷𝑡𝑒𝑠𝑡 and 𝛼 is the error rate between (0,1). 

5. Finally, calculate the confidence interval of the model using [𝑀(𝑥𝑖) − 𝑞, 𝑀(𝑥𝑖) + 𝑞] where 

(𝑥𝑖, 𝑦𝑖) ∈ 𝐷𝑣𝑎𝑙. 

α is selected as 0.1 in the experiments, which means that we wanted the generated modes to be sure of 

%90 in their predictions. However, due to the stochastic nature of generated models, this percentage 

may not be satisfied all the time. 

 

D. EXPERIMENTAL DESIGN 
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Forecasting datasets are generally constructed in a time series format, and for algorithms such as 

ARIMAX and Prophet, forecasting datasets can be used without modification. However, for ML 

algorithms including GP, the modification of the dataset is a must. For any ML algorithm, it is 

essential that every input in the dataset has a corresponding output. Modification of the dataset to align 

with this requirement is necessary. The graphical interpretation of this idea is given in Figure 3. 

 

 

Figure 3. An example of a time series conversion step 

In Figure 3, a one-step lagged (referred to as day(s) in this paper) supervised version of a hypothetical 

time series is given. Following this fashion, the Jena dataset was modified so that it contains 10 days 

of historical data. The same approach was applied again to construct 20 days of historical data. The 

historical data was utilized to make predictions regarding the weather for 1, 3, and 5 days in advance. 

 

Another crucial aspect of conducting an ML experiment is to divide the dataset into train, test, and 

validation subsets. Therefore, the overall dataset was divided as %80 training set, %10 test set and 

%10 validation set. In this study, the validation set were used to generate prediction confidence 

interval and coverage, as mentioned in Section II. The division scheme is presented in Figure 4. 

 
Figure 4. Dataset division 

 

4964 days of the dataset were reserved for training, which corresponds to 13.6 years of data. The 

remaining data was divided equally into test and validation sets, with each set consisting of the same 

number of days. One of the main distinctions of the experiment is that the models that were generated 

using the train set were tested and validated monthly. The test set and validation set were divided into 

12 months and the models were evaluated for each month separately. Each month has a different 

characteristic as can be seen in Figure 1. Therefore, conducting monthly evaluations of the models 

could yield a more comprehensive assessment of their performance. 

For GP part, the experiments were carried out for 100 generations, each having 5000 individuals. In 

each generation, 20 individuals with the highest performance were selected for the next generation. 

The crossover rate and the mutation rate were %80 and %0.05 respectively. The general settings of the 

experiments for GP are given in Table 1 and the general schema of the experiments is shown in Figure 

5. 
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Table 1. Parameters for GP 

Parameters Value(s) 
Non-Terminals [25] +,*,/,sqrt,max,log,abs,inv,max,min 

Terminals Features in [23] 

Generations 100 

Population Size 5000 

# of Individuals for Next Generation 20 

Crossover Probability- Mutation Probability %80- %0.05 

 

 

Figure 5. Overall experiment schema 

Finally, Mean Absolute Error (MAE) was utilized as a loss function to indicate the error rate of the 

generated models. The MAE function is given in (1). 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=0

 (1) 

  

where 𝑛 is the total number of data points, 𝑦𝑖 is true continuous value and 𝑦̂𝑖 is the forecasted value by 

the model. All data were normalized before the experiments. Python (version 3.8) programming 

language was used for the experiments. The next section presents the experimental results and 

discusses their possible interpretations. 

 

III. RESULTS 
 

The results of the Mean Absolute Error (MAE) computed using 10 and 20 days of historical 

information for different horizons, are presented in a side-by-side manner in Figure 6 for ease of 

comparison. It shows MAE results for 100 generations when different amount of past information was 

used. It also depicts the behavior of the generated models as the forecast horizon advances. 

  
(a) (b) 

 

Figure 6. Train Performance on GP Programs for Different Historical Information and Forecast Horizons; (a) 

MAE Results for different forecast horizons using 10 days as information in Training; (b) MAE Results for 

different forecast horizons using 20 days as information in Training (Best Viewed Online) 

The results showed that the model created by GP to forecast 1 day in advance had a lower error rate 

compared to the models developed by GP to forecast 3 and 5 days in advance. This statement is valid 

for both 10 and 20 days of data when they were used as historical information. The MAE was 3.45 

when 10 days of historical information were used to forecast 1 day in advance. However, this error 
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rate seemed to increase as the forecast horizon progressed. MAEs for forecasting 3 and 5 days in 

advance were 5.13 and 5.74, respectively when 10 days of historical information were used.  

 

An important insight that can be derived from the experiment is that there was a substantial 

discrepancy between forecasting 1 day in advance and 3 days in advance. However, this discrepancy 

did not arise between forecasting 3 days in advance and 5 days in advance. It can be interpreted that 

there was not much difference in forecasting between forecasting 3 days and 5 days in advance. The 

same things could be said for 20 days of information when it was used as past information. MAEs for 

forecasting 1 day, 3 days and 5 days in advance were 3.43, 4.76, 5.04 respectively. These results 

suggested that there were no significant changes in MAEs when the amount of information changed. 

These mentioned results are given in Table 2. 

 
Table 2. Training Performance of Models Generated by GP (MAE Results) 

 10 Days of 

Information 

20 Days of 

Information 

1 Day Ahead 3.45 3.43 

3 Days Ahead 5.13 4.76 

5 Days Ahead 5.74 5.04 

 

As mentioned before, the models generated by GP were tested monthly. The test and validation set 

were divided monthly, and the models were tested on each month separately. The test set performance 

of the models generated by GP is given in Table 3. The generated models are given in Table 4. 

 
Table 3. Test Set Performance of Models Generated by GP 

 

1 Day Ahead Forecast 3 Days Ahead Forecast 5 Days Ahead Forecast 

MAE MAE MAE 

10 Days of 

Information 

20 Days of 

Information 

10 Days of 

Information 

20 Days of 

Information 

10 Days of 

Information 

20 Days of 

Information 

January 3.28 3.24 5.96 5.15 7.25 5.13 

February 2.93 3.47 6.34 5.31 7.79 5.70 

March 3.51 3.44 5.84 5.21 6.35 4.89 

April 3.51 3.18 4.91 5.16 5.30 6.52 

May 3.95 3.59 5.77 5.59 6.42 6.13 

June 4.13 3.62 4.93 4.38 5.00 3.71 

July 3.85 3.86 6.70 5.72 7.32 5.42 

August 3.25 3.18 5.51 4.91 5.53 5.14 

September 3.82 3.44 4.50 4.40 4.41 4.43 

October 3.80 3.12 3.61 4.03 4.12 4.49 

November 2.82 2.78 4.70 4.03 6.17 4.60 

December 2.59 2.66 5.32 4.32 6.08 4.10 

 

Although the training set MAE results of the methods gave the general performance, when the month-

based approach was used for the test, it was observed that the performance of the models was 

inconsistent and varied. Table 3 reveals that more information from the past did not necessarily 

improve the forecasting results. The experiments indicated that forecasting 1 day in advance using 10 

and 20 days as information resulted in lower MAE compared to other forecast horizons.  

 
Table 4. Generated Models by the GP 

 1 Day Horizon (Xn indicates an attribute in the dataset) 

10 Days as 

Information 

add(add(X182, X183), add(sqrt(max(log(X187), div(X198, X51))), add(add(X182, add(X182, X183)), 

sqrt(inv(X191))))) 

20 Days as add(add(add(sub(add(add(inv(sqrt(X251)), X381), X383), log(X191)), add(X381, X397)), add(X381, 

Forecast Horizon 

Historical Information 
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Information X397)), X381) 

 3 Days Horizon (Xn indicates an attribute in the dataset) 

10 Days as 

Information 

add(sub(sqrt(inv(X71)), log(min(X171, X181))), add(X41, add(add(X198, abs(X105)), 

add(max(X118, X197), X62)))) 

20 Days as 

Information 

add(add(add(add(add(inv(0.273), inv(sqrt(X251))), add(X381, min(X241, X37))), add(max(X297, 

X397), add(min(X289, X18), X397))), add(X381, min(X261, X18))), mul(X281, X82)) 

 5 Days Horizon (Xn indicates an attribute in the dataset) 

10 Days as 

Information 
add(X197, sub(add(X81, add(X2, sqrt(inv(X131)))), sub(sub(log(X31), X125), X101))) 

20 Days as 

Information 

add(add(add(add(add(X56, add(sqrt(inv(0.273)), inv(0.273))), X283), 

add(add(add(add(inv(0.273), mul(X37, X302)), mul(max(X25, X117), X345)), mul(X61, X261)), 

add(X397, X77))), X18), min(X138, X302)) 

 

However, calculating MAE alone for the test set does not give the overall performance of the methods 

generated by GP. Confidence and coverage area, that are lower and upper error limits of the models 

should be indicated. For that purpose, the test set and validation set were used together to calculate the 

confidence level and coverage area of the models. Table 5 shows these metrics and presents a more 

vivid picture on the performance of the models. In other words, it shows the overall performance of 

the models. The lowest bound (L) and the upper bound (U) show the lowest and highest values that the 

generated models may fluctuate.  

 

Finally, coverage (C) gives the probability of the forecast that will result in between L and U. For 

example, the prediction results for November differed greatly as the forecasting horizon advances. As 

the forecasting horizon for November increased, the difference between the lower and upper bounds 

grew, causing the predictions to resemble random guesses. Similar deductions could be made for all 

months and forecasting horizons. Although coverage rates were high, the gap between L and U was 

also very high. Only models for forecasting 1 day in advance produced meaningful predictions. 

 
Table 5. Test and Validation Set Performance with Error Limits and Coverage 

 

1 Day Ahead Forecast 3 Days Ahead Forecast 5 Days Ahead Forecast 

MAE with Lower (L) and Upper (U) Limit and Coverage (C) 

10 Days of 

Information 

20 Days of 

Information 

10 Days of 

Information 

20 Days of 

Information 

10 Days of 

Information 

20 Days of 

Information 

January 

L=-1.49  

MAE =3.28  

U=13.55 
C = %87 

L=0.30  

MAE =3.24  

U=13.74 
C = %87 

L=-4.47  

MAE =5.96  

U=18.86 
C = %93 

L=-6.80  

MAE =5.15  

U=17.74 
C = %93 

L=-6.95  

MAE =7.25  

U=22.82 
C = %93 

L=-8.18  

MAE =5.13  

U=18.15 
C = %93 

February 

L=-1.65  

MAE =2.93  

U=14.55 
C = %86 

L=-0.64  

MAE =3.47  

U=15.77 
C = %89 

L=-5.76  

MAE =6.34  

U=19.88 
C = %93 

L=-5.14  

MAE =5.31  

U=17.20 
C = %93 

L=-8.10 

MAE =7.79  

U=23.25 
C = %96 

L=-7.60  

MAE =5.70  

U=19.53 
C = %93 

March 

L=-1.43  

MAE =3.51  
U=14.73 

C = %96 

L=-0.59  

MAE =3.44  
U=15.77 

C = %93 

L=-4.19  

MAE =5.84  
U=20.58 

C = %96 

L=-3.45  

MAE =5.21  
U=17.57 

C = %93 

L=-7.76 

MAE =6.35  
U=24.20 

C = %96 

L=-4.79  

MAE =4.89  
U=17.83 

C = %93 

April 

L=1.81  
MAE =3.51  

U=19.22 

C = %100 

L=2.67  
MAE =3.18  

U=19.02 

C = %100 

L=-1.89  
MAE =4.91  

U=23.37 

C = %97 

L=-2.52  
MAE =5.16  

U=23.52 

C = %100 

L=-3.28 
MAE =5.30  

U=23.68 

C = %95 

L=-3.55  
MAE =6.52  

U=24.30 

C = %100 

May 

L=3.25 
MAE =3.95  

U=21.12 

C = %96 

L=3.62  
MAE =3.59  

U=21.43 

C = %95 

L=2.62  
MAE =5.77  

U=21.57 

C = %83 

L=1.13  
MAE =5.59  

U=22.70 

C = %90 

L=-1.35 
MAE =6.42  

U=24.54 

C = %98 

L=-0.04  
MAE =6.13  

U=23.70 

C = %96 

June 

L=6.25 

MAE =4.13 

U=25.86 
C = %93 

L=7.30  

MAE =3.62  

U=24.81 
C = %91 

L=3.17  

MAE =4.93  

U=25.14 
C = %85 

L=2.17  

MAE =4.38  

U=27.71 
C = %93 

L=2.32 

MAE =5.00  

U=25.33 
C = %88 

L=5.55 

MAE =3.71  

U=24.22 
C = %81 

July 

L=6.81 

MAE =3.85 

U=24.54 
C = %88 

L=7.55  

MAE =3.86  

U=24.39 
C = %88 

L=1.03  

MAE =6.70  

U=28.54 
C = %93 

L=2.34 

MAE =5.72  

U=28.35 
C = %98 

L=0.55 

MAE =7.32  

U=28.62 
C = %93 

L=3.41 

MAE =5.42  

U=28.34 
C = %95 

August 

L=8.34 

MAE =3.25 
U=21.07 

C = %82 

L=8.93  

MAE =3.18  
U=21.22 

C = %85 

L=0.34 

MAE =5.51  
U=27.91 

C = %95 

L=-0.17 

MAE =4.91  
U=28.95 

C = %100 

L=3.02 

MAE =5.53  
U=25.61 

C = %93 

L=3.37 

MAE =5.14  
U=27.02 

C = %98 
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September 

L=1.73 
MAE =3.82 

U=21.80 

C = %82 

L=4.42  
MAE =3.44  

U=21.25 

C = %93 

L=3.15 
MAE =4.50  

U=21.70 

C = %88 

L=4.35 
MAE =4.40  

U=20.83 

C = %86 

L=2.26 
MAE =4.41  

U=23.39 

C = %95 

L=1.88 
MAE =4.43  

U=23.01 

C = %95 

October 

L=0.82 

MAE =3.80 

U=17.55 
C = %95 

L=3.77  

MAE =3.12  

U=16.70 
C = %93 

L=1.22 

MAE =3.61  

U=18.05 
C = %90 

L=-0.45 

MAE =4.03  

U=18.68 
C = %95 

L=1.15 

MAE =4.12  

U=19.29 
C = %88 

L=0.59 

MAE =4.49  

U=18.12 
C = %80 

November 

L=0.26 

MAE =2.82 

U=12.10 
C = %83 

L=0.04  

MAE =2.78  

U=13.78 
C = %90 

L=-2.79 

MAE =4.70  

U=16.70 
C = %93 

L=-3.65 

MAE =4.03  

U=15.51 
C = %90 

L=-3.26 

MAE =6.17  

U=19.91 
C = %96 

L=-4.04 

MAE =4.60  

U=16.46 
C = %91 

December 

L=-0.98 

MAE =2.59 
U=13.26 

C = %95 

L=0.58  

MAE =2.66  
U=13.20 

C = %85 

L=-5.07 

MAE =5.32  
U=18.42 

C = %96 

L=-4.76 

MAE =4.32  
U=16.39 

C = %93 

L=-5.45 

MAE =6.08  
U=21.34 

C = %96 

L=-5.50 

MAE =4.10  
U=17.26 

C = %89 

One important argument which can be deduced from the experiments is that, for numerical weather 

predictions, increasing the volume of past information does not affect the results positively. Another 

argument that can be exposed from the experiments is that GP has the potential for usage in this area, 

although modification of built-in functions or adding new functions may be necessary. Moreover, it has 

been shown that the performance of the models can be seen more vividly when ICP is used.  

 

IV. DISCUSSION AND CONCLUSION 
 

Forecasting is a challenging problem in the area of AI, and it is an ongoing research subject for this 

field. It is mainly based on past observations of the attributes in the dataset, which can be called 

independent variables, and it is assumed that they represent enough information to predict the 

dependent variable. Using these assumptions, DL and ML methods which are a subset of AI are 

utilized. One of the important fields of forecasting is numerical weather prediction. Weather systems 

are complex systems and difficult to forecast numerically. But the power of ML algorithms may be 

utilized in this purpose to help researchers at least. However, one important issue for ML algorithms is 

that they are black box algorithms that are not easily interpretable by humans.  

 

In addition to the interpretability issue of ML in forecasting, forecasting alone is not enough since it is 

fundamentally prone to errors. For that reason, the confidence and coverage rate of the predictions 

should be provided with the forecasting models.  

 

In this study, the GP was proposed for interpretability and ICP was proposed for a confidence interval. 

They were combined to forecast weather temperatures at various horizons using different amount of 

historical data. Unlike the classical approaches, the testing and validation phases of the experiments 

were conducted monthly using the Jena dataset. First, the dataset was modified and made suitable for 

GP, since it works in the format of input-output sequences. Effects of different amount of information, 

namely 10 and 20 days, were investigated at different horizons, namely 1 day, 3 days and 5 days. 

 

The experimental results showed that even forecasting 1 day in advance was prone to error and 

increasing the volume of data did not decrease the error. Usage of the ICP approach revealed that the 

gap between the lower and upper limits of the predictions became so large that the predictions became 

almost random when forecasting 3 days and 5 days in advance. 

 

We can list some of the possible ideas that could enhance the work presented in this paper. First, the 

optimal number of past days that maximize information could be investigated. Additionally, the 

attributes that have the greatest impact on reflecting weather conditions could be examined. This work 

may be enhanced in the ways mentioned above, which could serve as future work. 
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