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1. INTRODUCTION  
 

The increase in the integration of renewable energy 

sources in power grids and the intermittent nature of these 

sources has increased the need for better resolution and 

accuracy of electrical load forecasting, while creating new 

problems. In addition, inadequacies in regional energy storage 

have made ELF extremely essential. Establishing the balance 

between energy production and consumption is a great 

necessity in today's modern power system operation, 

management and planning. Thus ELF plays an important role 

at this point [1].  

In terms of time horizons, ELF methods can generally be 

split into three forecasting classes as short-term load 

forecasting (STLF), medium-term load forecasting (MTLF), 

and long-term load forecasting (LTLF). Although different 

forecasting horizons are defined in the literature for these 

categories; STLF, MTLF, and LTLF can last for a few minutes 

or hours to a week, a week to one year, and a few years up to 

decades, respectively. Each of these categories takes 

advantage of several forecasting methods to satisfy the certain 

objectives of application areas in power systems. In particular, 

the application areas of MTLF are of great importance as they 

are vital in power system operation, control and planning at 

any level such as generation, transmission, and distribution. A 

proper MTLF is required for getting a better generation and 

maintenance scheduling, planning programs in unit 

commitment, demand-side management, hydro thermal 

coordination, control of the system with many distributed 

energy resources, economic supply of different fuels, and 

more power system applications [2, 3]. 

According to the input data set, the load forecasting is divided 

into two levels as aggregated level (AL) and individual level 

(IL). While the dataset used for the forecast at AL contains 

aggregated datasets belonging to a certain group of end-users 

like system-level and feeder-level, a dataset of a specific 

building such as a residential building or commercial building 

is used for forecasting at IL. 

On the other hand, there are various explicit factors such 

as weather-related factors, electric energy prices, days of the 

week, public holidays, economic indicators, and the 

population of a country or a region that affect the aggregated 

electrical energy consumption [4]. The effects of weather 

variables on the electricity consumption forecast are equally 
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addressed in STLF, while in MTLF these variables affect this 

forecast to a certain extent. In terms of explicit factors 

affecting the electrical load consumption in [5], it is 

recommended that MTLF be divided into two classes as the 

conditional modeling approach and the autonomous approach. 

Factors affecting the electrical energy consumption addressed 

in the conditional modeling approach are historical electrical 

energy consumption and weather data, socio-economic 

indexes and sustained energy policies. In addition to the 

electrical energy consumption forecast, weather and socio-

economic situation forecasts are also taken into account in this 

approach. The parameters considered in the autonomous 

approach are only historical electrical energy consumption 

and weather data that involves values such as temperature, 

humidity, and wind speed. This approach is much more 

suitable for regions with strong economies and especially for 

forecasting periods of one year or less [5]. 

ELF methods are examined in two groups as parametric 

and non-parametric methods. Parametric methods are created 

on the basis of analytical models and non-parametric methods 

are created on the basis of artificial intelligence techniques. 

Among the non-parametric methods, especially machine 

learning (ML) and deep learning (DL) techniques are 

preferred more for ELF with the increase in their development 

rates in the past few years, as they can model the complicated 

and non-linear relationships between load and external factors 

[6]. 

In ELF algorithms, feature selection is extremely 

important because the sizes of input data are getting bigger 

with digitalization while the prediction models are complex as 

well. Feature selection can significantly improve the 

forecasting model performance by reducing the uncertainty of 

overfitting, improving the algorithm to a certain extent, and 

preventing irrelevant features used in training from increasing 

the system cost and runtime. 

In recent decades, most existing works on ELF have 

focused on ML- and DL-based models due to their remarkable 

performance in the area. However, most of these studies are 

on STLF methods. There are a limited number of research 

studies in the literature regarding MTLF methods 

\cite{Han19}. Because of the reason that short-term 

forecasting can be done by fitting a model to a dataset 

computationally or statistically and then extending a graph, 

curve, or range of values by making inferences about 

unknown values from trends in the known data while medium-

term forecasting is a completely different and complicated 

problem than short-term forecasting [7,8]. 

This paper presents a comparative analysis implementing 

state-of-the-art machine learning and deep learning methods 

on MTLF at AL. A great number of robust and most-practiced 

ELF models as of the date are performed: LR [9–12], DT [13], 

RF [14–16], gradient boosting [17, 18], AdaBoost [19–22] as 

the representatives of ML methods; RNN [23] and LSTM 

[24–29] as the representatives of DL models. The ELF results 

by all these methods have been achieved as daily forecasting 

steps for monthly forecasting intervals. In addition, feature 

selection as a technique that improves the overall performance 

of the system significantly has been realized based on the 

autonomous approach to the worked forecasting algorithms by 

using Pearson, random forest, chi-square, and light gradient 

boosting machine (Light-GBM) models; different from other 

existing forecasting methods.  

This study is prepared as follows. Section 2 and Section 3 

give detailed information on the materials and forecasting 

methods used, respectively. Section 4 shares experimental 

results by specifying them with different measurement 

techniques. These results are validated by related literature 

studies in Section 5. Finally, Section 6 presents a conclusion 

related to the overall study covering a few challenging points 

in MTLF and future aspects. 
 

2. MATERIALS 
2.1. Dataset 
 

The electrical load consumption data is obtained as open-

source from Czech Transmission System Operator (CEPS) for 

this study [30]. 

Electrical load data for the Prague region between January 

1, 2015 and February 20, 2021 are used. The considered 

feature name for electrical load is LOAD-MW and 

distribution of the aggregated electrical load in TW (terawatt) 

can be seen in Figure 1. The weather information data 

belonging to the electrical load is taken from Nasa Power Data 

Access Viewer [31].Temperature (T2M), dew/frost Point 

(T2MDEW), wet bulb temperature (T2MWET), and relative 

humidity is taken for 2 meters. Wind speed (WS10M) and 

wind direction (WD10M) are taken for 10 meters. Wind speed 

(WS50M) and wind direction (WD50M) are taken for 50 

meters. In addition, all-sky insolation incident on horizontal 

surface (CLRSKY-SFC-SW-DWN) precipitation 

(PRECTOT) and surface pressure (PS) are taken for 

prediction. The unit values and their short names for all 

features are shown in Table I.  
TABLE I   

THE UNIT VALUES AND SHORT NAMES FOR FEATURE NAME  

# Feature Name Short Name Unit 

1 Electrical load LOAD_MW TW 

2 All sky insolation incident on 
horizontal surface 

CLRSKY_SFC
_SW_DWN 

kW/hr 

3 Temperature at 2 meters  T2M °C 

4 Dew/Frost point at 2 meters  T2MDEW °C 

5 Wet bulb temperature at 2 meters  T2MWET °C 

6 Relative humidity R2HM % 

7 Precipitation PRECTOT mm 

8 Surface pressure PS kPa 

9 Wind speed at 10 meters WS10M m/s 

10 Wind direction at 10 meters WD10M Degrees 

11 Wind speed at 50 meters WS50M m/s 

12 Wind direction at 50 meters WD50M Degrees  

  

2.2. Dataset Input Selection and Preparation 
Feature selection evaluates the features piece by piece to 

determine how the features in the dataset are effective on the 

results. Feature selection methods are employed to reduce the 

number of relevant features.  

Pearson feature selection is a correlation number which 

stays in the range -1 and 1. It indicates the degree that two 

variables are linearly related. As it gets closer to zero, a 

weaker correlation is meant to be found.  

Chi-square feature selection aims to test the independence 

of two events. When the features are independent, the 

observed count becomes more similar to the expected count. 

As the chi-square value gets higher, the feature can be inferred 

to be more dependent on the response thus it can be selected.  

In RF feature selection, each tree calculates the importance 

of a feature by increasing the pureness of the leaves. The 
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higher the increment in leaves purity the higher the 

importance of the feature.  

Light-GBM feature selection utilizes tree-based learning. 

Light-GBM grows tree vertically while in parallel growing 

horizontally; ending up growing the tree leaf-wise and level-

wise concurrently. The features selected after performing 

feature selection methods in this study are shown in Table II. 
TABLE II   

SELECTED FEATURES OF FEATURE SELECTION METHODS.  
(TRUE: SELECTED, FALSE: NOT SELECTED) 

Feature Pearson Chi-

Square 

Light GBM Random 

Forest 

LOAD_MW Predict Predict Predict Predict 

CLRSKY_SFC

_SW_DWN 

True True True True 

T2M True True True True 

T2MDEW True True True True 

T2MWET True True True True 

R2HM True False True True 

PRECTOT True False True True 

PS True True True True 

WS10M True True True True 

WD10M False False False False 

WS50M True True True True 

WD50M False False False False 

 

3. METHODS 
 

3.1. Linear regression  
LR aims to find the best fit straight line or hyperplane for 

training samples. In this regard, a relationship between the 

dependent variable and one or more independent variables is 

provided using the best fit straight line, in other words the 

regression line.  

  

3.2. Decision tree  
DT aims to divide a dataset with many samples into 

smaller sets by finding a set of decision rules. Simple 

decision-making steps are learnt from the data for this 

purpose.  

  

3.3. Random Forest  
RF combines the predictions of many decision trees, 

aiming to end up a single result. It can simply handle 

classification and regression problems. RF is not heavily 

dependent on hyper-parameter estimation.  

 

3.4. Adaptive boosting algorithms (AdaBoost)  
In this model, learning is initialized by training a weak 

learner. In the next training, more priority is given to the 

incorrectly learned training data in the first step. Prioritized 

data are retrained by increasing their weight. It is continued 

by training the weak learner output to be the input to the other 

learner. At the end, the results are fused to form the final 

decision.  

 

3.4.1 Gradient boosting algorithms 
Gradient boosting is available both for regression and 

classification problems. A combination of weak predictive 

models typically creates a model of decision trees. The 

purpose of gradient boosting is to define and minimize a loss 

function.  

 

3.4. Recurrent Neural Networks 

RNN helps extracting information from sequences of 

time-series data. RNN allows previous outputs to be used as 

inputs while having hidden states. RNN architecture utilized 

in this work is described in the [32]. 

3.4. Long Short-Term Memory  
LSTM is an improvement of RNN, originated from the 

problem of short-term memory. LSTM has feedback 

connections in addition to feed-forward connections. LSTM 

networks are well suited for making predictions based on time 

series data. A common LSTM unit composes of a cell, an 

input, output, and forget gates. The cell remembers values in 

variable-length time intervals and these three gates aims to 

regulate the information flow into and out of the cell. LSTM 

unit facilitated in this work is described in the [32]. 

  

4.  EXPERIMENTAL RESULTS 
 

4.1. Metrics 

In this part of the study, the regression metrics used are 

mentioned. Mean squared error (MSE), mean absolute error 

(MAE) and mean absolute percentage error (MAPE) metrics 

are frequently practiced regression metrics in the related field 

in the literature. To more clearly compare the performance of 

our test results with the concerned studies, performance 

evaluations of test results are carried out with these metrics. 

MSE depicts the mean of the squared differences between 

predicted and expected values in a dataset. 

 

𝑀𝑆𝐸 =  
1

𝑛
∑|(𝐴𝑗  − 𝐹𝑗)2|

𝑛

𝑗=1

.                     (1) 

 

where Aj is the actual value, Fj is the forecast value and n 

is the total number of test samples. MAE and MAPE are 

defined similarly in what follows 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝐴𝑗 − 𝐹𝑗|

𝑛

𝑗=1

.                     (2) 

 

4.2. Results 

 

The results related to the prediction of electrical load are 

shown in Table III, IV, V. According to all these tables it seen 

that in the application without feature selection, the model that 

gives the best results is the LSTM model with the MAPE 

value which is evaluated as 8.66%. Among the models made 

by applying Pearson, RF and Light-GBM feature selection 

techniques, the model that gives the best result according to 

the MAPE value is the LSTM model with 2.02%. Based on 

chi-square feature selection results, LSTM gives the best 

result in the MAPE metric evaluation, with the value of 2.12%. 

Graphical comparisons of the actual and predicted electrical 

load values for the best performing models are illustrated in 

Figure 1. 
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TABLE III   

THE RESULTS OF THE REGRESSION MODEL PERFORMED ON DATA WITHOUT 

USING FEATURE SELECTION.  

Model MAE 

(%) 

MSE (%) MAPE 

(%) 

Random 

Forest 

1,38 3,30 10,93 

Decision 

Tree 

3,17 4,30 11,09 

Linear 

Regression 

6,32 8,01 14,78 

Ada Boosting 6,42 0,67 13,45 

Gradient 

Boosting 

6,11 0,60 13,36 

RNN 1,23 2,61 12,18 

*LSTM 2,04 0,22 8,67 

 

TABLE IV   

THE RESULTS OF REGRESSION MODELS PERFORMED ON DATA USING 

PEARSON, RF AND LIGHT-GBM FEATURE SELECTION. 

 

Model MAE (%) MSE (%) MAPE (%) 

Random 

Forest 

3,05 5,50 9,37 

Decision 

Tree 

4,23 5,89 10,90 

Linear 

Regression 

5,88 7,93 13,61 

Ada 

Boosting 

6,88 0,77 13,98 

Gradient 

Boosting 

5,97 0,58 13,07 

*LSTM 4,93 0,37 2,02 

RNN 1,96 0,07 2,52 

 
TABLE V   

THE RESULTS OF REGRESSION MODELS PERFORMED ON DATA USING CHI-

SQUARE FEATURE SELECTION. 

Model MAE 

(%) 

MSE (%) MAPE 

(%) 

Random Forest 3,05 5,45 10,37 

Decision Tree 4,23 5,90 10,90 

Linear 

Regression 

6,24 7,93 13,61 

Ada Boosting 6,26 0,63 13,30 

Gradient 

Boosting 

6,04 0,59 13,23 

*LSTM 1,61 0,04 2,12 

RNN 2,57 0,11 9,58 

 

5. BENCHMARKING STUDY 
 

At a glance to the comparison Table IV, the result of our 

research is superior in terms of the accuracy of forecasting, 

and on par with [17]. However, [17] has longer period of data 

compared to our data and just 12 points have been forecasted 

while we forecast 100 points considering point forecasting. It 

is clearly seen from the table that other studies have estimated 

much less points compared to ours, with a maximum of 24-

point forecasting. Our study nevertheless seems to be more 

successful in MTLF, as the accuracy of the prediction 

decreases while the prediction interval is getting larger. From 

here it can be easily inferred that; Pearson, RF and Light GBM 

feature selection methods are of great importance in 

increasing the accuracy of the estimations made with ML and 

especially deep neural network (DNN) models. Proposed 

study uses Czech Republic (2015-2021) as the dataset. 

Historical power load and meteorological data are used as 

input features. Pearson, RF and Light-GBM are used for 

feature selection. LSTM is considered as the best forecasting 

model. [1] studies a small region in Ontario, Canada over 10 

years. Input features are historical power load and 

meteorological data. Non-linear auto-regressive exogenous 

(NARX) and RNN-LSTM are utilized as forecasting models. 

[17] studies United States (1987-2009) as the data. As for 

the features; historical power load, natural gas load, natural 

gas price, average retail price of electricity, electric power 

sector natural gas consumption and CO2 emissions are 

facilitated. Quantile regression and kernel density estimation 

are utilized as models. [33] studies Seoul, South Korea over 

14 months. Input features are historical power load and air 

temperature. A hybrid model based on dynamic and fuzzy 

time series is facilitated. [34] covers 35 European countries 

until 2014. Features in use are historical power load and 

meteorological data. Exponential smoothing is used for 

feature selection. Residual dilated LSTM is utilized as the 

forecasting model. [35] studies 25 districts in Seoul between 

2005 and 2018. Considered features are calendar, population 

and meteorological data. Feature selection is applied with 

Pearson correlation coefficient. DNN is utilized via transfer 

learning. 

 
TABLE VI   

COMPARISON WITH THE RELATIVE LITERATURE STUDIES. 

Works  Forecasting steps  Forecasting intervals  MAPE (%) 

Proposed Daily ∼3,5 months 2,12 

[1] Hourly 12 months 4-10 

[17] Monthly 12 months 2,12 

[33] Monthly 4 months ∼3 

[34] Monthly 12 months 4,46 

[35] Monthly 24 months 6,46 

 

6. CONCLUSION 
 

Machine learning models including deep learning have 

been successful and performing better than traditional time 

series and regression techniques. However, non-linear energy 

consumption patterns are in need to be better modelled while 

obtaining high accuracy and prediction performances for the 

medium-term monthly forecasting [25]. In this study, the 

electricity load estimation of the Prague region of the Czech 

Republic for the years 2015-2021 has been carried out. In 

order to better observe the results of the methods used, 

initially, all the features of the data are used without applying 

any feature selection process. Then, feature selection 

techniques are applied and the results are evaluated. Among 

all the ML and DL-based ELF methods studied, the LSTM 

approach gives the best results both with feature selection and 

without feature selection study. While the MAPE value 

difference between the results obtained with this approach and 

the results obtained with other approaches is at least 3% 

without applying feature selection, it is around 9% when 

feature selection is applied. Such an improvement is of great 

importance for ELF. Moreover, when the results of the 

applications performed with three different methods are 

examined, it is seen that the results of the deep learning 

methods are close to each other when the Pearson, RF, Light-

GBM feature selection is applied. In this context, it has been 

concluded that these feature selection methods are more 

effective in terms of comparison of the methods discussed and 

the accuracy of the results obtained.  
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For future studies, the facilitated forecasting methods will 

also be analyzed for the LTLF which is of great importance 

especially in the expansion planning of real-world power 

systems [36]. Since LTLF shows similar structures to MTLF in 

terms of algorithms and features, the applications of the same 

feature selection methods will be carried out for LTLF, and 

improvement studies will be made on it. In addition to these 

estimation methods and feature selection techniques that have 

been studied on aggregated load data, all the proposed 

techniques will be studied for individual loads, and the impacts 

of these methods and development techniques on all load types 

will be evaluated.  
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Figure 1. (a) LSTM with Pearson, RF and Light-GBM feature selection, (b) LSTM with chi-square feature selection. 
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