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ABSTRACT 
With urbanization, population, and consumption on the rise, urban waste generation is steadily increasing. 
Consequently, waste management systems have become integral to city life, playing a critical role in resource 

efficiency and environmental protection. Inadequate waste management systems can adversely affect the 

environment, human health, and the economy. Accurate and rapid automatic waste classification poses a 
significant challenge in recycling. Deep learning models have achieved successful image classification in 

various fields recently. However, the optimal determination of many hyperparameters is crucial in these models. 

In this study, we developed a deep learning model that achieves the best classification performance by 
optimizing the depth, width, and other hyperparameters. Our six-layer Convolutional Neural Network (CNN) 

model with the lowest depth and width produced a successful result with an accuracy value of 89% and an F1 

score of 88%. Moreover, several state-of-the-art CNN models such as VGG19, DenseNet169, ResNet101, 

Xception, InceptionV3, RegnetX008, RegnetY008, EfficientNetV2S trained with transfer learning and fine-

tuning. Extensive experimental work has been done to find the optimal hyperparameters with GridSearch. Our 

most comprehensive DenseNet169 model, which we trained with fine-tuning, provided an accuracy value of 
96.42% and an F1 score of 96%. These models can be successfully used in a variety of waste classification 

automation. 
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1. Introduction 

According to World Bank data, global urban waste generation annually amounts to 2.01 billion tons. Urbanization and 

consumption trends indicate a projected 69% increase by 2050, surpassing 3.4 billion tons [1]. Consequently, waste 

management systems have become indispensable for cities, ensuring efficient resource utilization and environmental 

protection. Inadequate waste management systems harm the environment and the economy [2]. Recycling is crucial, ranking 

as the second-best environmentally friendly method according to the Environmental Protection Agency [3]. The European 

Union achieved a 56% recycling rate in 2016, with ongoing efforts to raise this figure. Human resources are used in some 

aspects of recycling, which reduces efficiency, increases costs, and harms the health of those who work in this industry [4]. 

Intelligent systems are being used to reduce or eliminate these issues. 

One of the critical stages in intelligent waste management systems is accurate and rapid waste classification. Convolutional 

Neural Networks (CNNs), which have end-to-end learning capability, are widely used to classify and segment images in 

many fields. In CNNs, multiple convolutional and max pooling layers are added sequentially to extract features from raw 

images. In the final stage, fully connected layers are employed for classification purposes. [5]. During the training phase, 

learning takes place through the iterative update of a multitude of filters and fully connected layer weights, utilizing the 

backpropagation algorithm [6]. At the onset of training, we establish numerous hyperparameters for the model architecture. 

These hyperparameters encompass various aspects such as model depth, number of filters, filter sizes, dropout rates, 

optimizers, learning rates, epochs, batch sizes, and more. CNN models often face challenges in achieving successful 
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classification in datasets with limited data and high inter-class similarity [7]. In CNN models, as the depth and width increase, 

overfitting is commonly encountered during the training phase, especially in datasets with limited labeled data. Despite 

exhibiting high accuracy on the training dataset, these models tend to perform poorly on previously unseen test datasets [8]. 

Avoiding overfitting and determining the optimal combination of hyperparameters play a crucial role in improving the 

classification performance of CNN models. Therefore, CNN models with various architectures and hyperparameters were 

used in the study for waste classification. 

In this study, several models with varying depths, widths, and optimized hyperparameters were developed. An attempt was 

made to achieve the best model through hyperparameter optimization using GridSearch. Although the success rate of deep 

learning models increases as the depth and width increase, excessive depth can lead to gradient vanishing, which prevents 

the model from reaching the optimum [9, 10]. This problem is partially addressed in models such as ResNet [11] and 

DenseNet [12] through the use of residual connections, which allow the following inputs or blocks to receive information 

from the previous inputs. In waste management systems, real-time classification is performed, which makes the classification 

time of models crucial. While deep and complex models may achieve high classification accuracy, the time taken to classify 

a single image in real-time implementations can exceed expectations. To address this, we developed the best model using 

transfer learning and optimization techniques, which led to improved classification performance. Additionally, we 

successfully obtained the most effective shallow or small model in terms of both accuracy and prediction speed. The proposed 

model has the potential for successful utilization in diverse applications of waste classification automation. 

The contributions of this study can be listed as follows: 

• A novel waste classification CNN model has been developed to work in different embedded systems and be integrated 

into waste management systems. 

• The performance of different architectures with various widths and depths in waste classification is presented. 

• The model performance has been increased by optimizing many hyperparameters with GridSearch. 

• With transfer learning, the performance of the state-of-the-art CNN models has been increased by fine-tuning and 

hyperparameter optimization methods. 

Different CNN architectures have been optimized with extensive experimental studies, and the optimized models that make 

the most successful classification have been developed. These different CNN models can be integrated into various embedded 

systems and used practically in waste management systems. 

2. Related works 

CNN is a type of artificial neural network that processes images [11]. It extracts the features of the objects in the images and 

learns them using various learning algorithms. CNN provides effective results in many applications, including robotics, 

security cameras, license plate recognition, and face recognition. Since CNN is a technique that is widely used and has a high 

success rate in automatically classifying waste, the number of studies in this field is significant.  

Transfer learning-based CNN models have shown successful results in image classification, especially when dealing with 

datasets with a limited number of samples. Bircanoğlu et al. [13] developed a waste classification model based on transfer 

learning. Several state-of-the-art CNN models were re-trained on the TrashNet dataset. The Densenet121 model gave the best 

result with 95% accuracy. The DenseNet121 model is reported to have an approximate CPU time of 649 ms. Wang et al. [14] 

proposed a system for waste management. The TrashNet dataset was expanded in the study, and the number of categories 

was increased from six to nine. MobileNetV3, MobileNetV2, InceptionV3, ResNet50, ResNet101, ResNet152, and Xception 

CNN architectures were used and compared for waste classification. In nine categories, the accuracy ranged from 91.9% to 

94.6%. The MobileNetV3 architecture achieved the highest accuracy value of 94.26%. Furthermore, the MobileNetV3 

architecture had the smallest size of 49.5 MB and the shortest duration of 261.7 ms. According to Aral et al. [15], waste 

recycling is critical for the global economy and climate balance, so classifying recyclable waste is critical for humanity. The 

architectures Densenet121, DenseNet169, InceptionResnetV2, MobileNet, and Xception were used in the study. The 

DenseNet121 architecture yielded the highest accuracy value of 95%. Zhang et al. [16] presented how smart systems can be 

used to classify waste, which is a crucial step toward achieving sustainable development for people. It was emphasized that 

smart systems should take the place of traditional waste classification because it is ineffective. With the transfer learning 

model, DenseNet169 CNN architecture was chosen as the most accurate, with an accuracy value of 82%. Gyawali et al. [17] 

proposed a CNN model for automated waste classification to assist recycling. The TrashNet dataset was expanded and used 

in the proposed model to eliminate human intervention. Using the Resnet18 architecture, an accuracy of 87.8% was achieved. 

Rabano et al. [18] stated that waste classification is the first step in recycling and reusing waste. For this purpose, MobileNet 

CNN architecture was chosen to classify waste. Transfer learning and TrashNet dataset were used. The accuracy value of 

87.2% was reached on the test data. Feng et al. [19] proposed an enhanced GECM-EfficientNet model. In this model, they 

replaced the squeeze-and-excitation (SE) module from the EfficientNet architecture with the efficient channel attention 

(ECA) module. With the proposed model, they achieved a classification accuracy of 94.23% on the TrashNet test dataset. 
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Lin et al. [20] trained models using transfer learning with five different ResNet architectures on the TrashNet dataset. They 

used data augmentation techniques to increase the number of samples in the dataset before training the models. In this study, 

they achieved an accuracy of 88.8% and an F1 score of 88.9% with the RWNet-152 model. The ResNet architecture was one 

of the first architectures to address the vanishing gradients problem in CNN models by introducing residual connections. 

In the existing studies, multilayer hybrid convolutional neural network-based customized CNN models have also been 

proposed. Shi et al. [21] emphasized that existing models for waste classification still struggle with issues like a poor success 

rate and a long working time. The study focused on the solution of these problems through the use of a Hybrid CNN network. 

CNN architecture is similar to VGGNet in structure, but there are fewer parameters. The accuracy rate was reported to be 

92.6%. Yang et al. [22] proposed a model based on MLH-CNN. With the proposed model, they achieved a classification 

accuracy of 93.72% on the TrashNet test dataset. The accuracy of the proposed models was improved by applying image 

preprocessing techniques. Another custom CNN model was presented by Bobulski and Kubanek [23]. They conducted a 

study to increase the recycling rate by classifying plastic waste. In the study, the WaDaBa dataset was utilized. The system 

was developed to classify plastic waste using a microcomputer system with a color camera and image processing software. 

The study's success rate was 74%. Riba et al. [24] conducted a study to separate recyclable waste textile products. It aims to 

solve environmental problems while also producing high-quality recycling. For the study, a unique dataset was created. A 

new CNN architecture is proposed in the study to classify textile waste. The proposed system achieved 91.1% accuracy. Tran 

and Nguyen [25] proposed a customized CNN model consisting of five blocks that incorporate residual connections. The 

proposed model leverages the strengths of convolution layers, depthwise separable convolution layers, average pooling 

layers, batch normalization method, and two connectors to extract feature maps and optimize the network parameters. They 

achieved an accuracy of 90.71% on the TrashNet dataset. 

Object detection-based waste management systems have also started to be widely implemented. Sallang et al. [26] created a 

smart trash can in their study. The Raspberry Pi 4 placed in this trash can was used to classify waste. TensorFlow Lite is used 

to create a new CNN architecture for the IoT system. The architecture was trained using a dataset created specifically for this 

study, and an accuracy of 87% was achieved. Melinte et al. [27] worked on improving the efficiency of object detectors by 

employing CNN architecture for waste classification in municipalities. The study's goal is to improve the sensitivity and 

performance of object detection devices, as well as their generalization and detection speed. The study made use of the 

TrashNet dataset. The accuracy of the R-CNN-created architecture is 95.76%. Nowakowski and Pamula [28] introduced two 

CNN architectures in their study for the classification of electrical and electronic waste. A mobile and web-based system was 

developed. After utilizing the dataset created specifically for this study, the first architecture achieved an accuracy of 96.7%, 

while the second architecture achieved an accuracy of 93.3%. 

Alrayes et al. [7] proposed a Vision Transformer based on Multilayer Hybrid Convolution Neural Network for automatic 

waste classification. They achieved a classification accuracy of 95.8% on the TrashNet dataset. The Vision Transformer 

method has also become widely used in image classification. In this study, it has been stated that the Vision Transformer 

method outperforms transfer learning-based CNN methods in terms of performance. The iteration times during the training 

phase of the models were compared, but no information was provided regarding the prediction time of the models for 

classifying an image in real-time implementation. 

Although many models have been developed in the literature to make automatic classifications in waste management systems, 

the success rates have not reached the desired level. Especially in waste classification, the similarity of glass and plastic 

wastes at some points affects the model performances. Further investigation is required to ascertain methods for improving 

the performance of the classifier when dealing with a dataset that has limited samples and significant similarities between 

different classes. In this study, architectures that will produce the optimum result have been obtained with extensive 

experimental studies. 

3. Materials and method 

3.1 Dataset 

The proposed study used the TrashNet [29] dataset. TrashNet data is divided into six categories: glass, paper, cardboard, 

plastic, metal, and other (garbage). The total number of images is 2527, with 501 in the glass category, 594 in the paper 

category, 403 in the cardboard category, 482 in the plastic category, 410 in the metal category, and 137 in the other category. 

The images in the dataset are 512x384 pixels in size. The dataset is 47 MB large. Figure 1 depicts some examples from the 

dataset. 

The proposed model divides the dataset into training (80%) and test (20%) datasets. For the training, 323 cardboard, 401 

glass, 328 metal, 476 paper, 386 plastic, and 110 garbage (other) images were used. Furthermore, 200 images representing 

10% of the training images were used for validation. The test included 503 images, including 80 cardboard, 100 glass, 82 

metal, 118 paper, 96 plastic, and 27 garbage (other). As a result, the proposed model's success was measured using data that 

had never been used before. 
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Data augmentation techniques were used to increase the number of images in the dataset. By doing this, the dataset was 

increased, and the model was kept from memorizing information during training. The employed techniques are as follows: 

30-degree rotation (rotation_range), 0.2 percent shift (width_shift_range, height_shift_range), 0.2 shear_range, 0.2 zoom 

(zoom_range), and y-axis flip (horizontal flip). In this study, during the training phase, one of the specified data augmentation 

techniques was randomly applied to all images (the train dataset size) for each epoch. This approach ensures that the model 

sees different images in each epoch, thereby mitigating the problem of overfitting or memorizing the dataset. Data 

augmentation was not applied to the dataset before the training phase. In the test dataset, data augmentation techniques were 

not used. 

 

 
a) Cardboard 

 
b) Glass 

 
c) Metal 

 
d) Paper 

 
e) Plastic 

 
f) Other 

Figure 1 Images from the TrashNet dataset 

3.2 Convolutional neural network 

Convolutional neural networks belong to a class of artificial neural networks. It is primarily employed in image processing 

and recognition applications. Using images as input, it learns the features of images through various layers. In this manner, 

it can perform image classification or object recognition. 

CNNs have been used as image classifiers in most computer vision fields, requiring a simple and high-accuracy classifier 

[30]. In classical machine learning models, the problem-specific features were first determined manually. The feature vector 

was used to perform classification on the dataset. The biggest innovation that deep learning models add to this field is that 

feature vectors are generated automatically from the dataset during the training phase rather than manually. As a result, in 

CNN architectures, the number of filters and filter sizes in each convolutional layer is determined. During the training phase, 

the models will update these filter weights to determine the best features automatically for classification [6]. 

The AlexNet CNN was proposed in the ImageNet image recognition competition in 2012 and achieved the best performance 

[5]. This performance represents a breakthrough in computer vision. CNNs have since become the most widely used artificial 

neural network in image classification as a result of this research. CNN scans image segments and extracts features to 

recognize objects in those segments. Again, these features are used to define what the objects in the image are. CNN is built 

in layers, with each layer building on the previous layer's feature maps [5, 6]. It identifies objects in the image more accurately 

this way. A new CNN architecture is proposed in this study to classify waste. 

3.3 Proposed model 

Deep learning models can successfully classify the desired image according to different depth, width, and hyperparameter 

properties. Our aim in this study is to increase classification performance by designing these properties optimally. In the input 

layer of the proposed model, images were tested using 64x64, 128x128, 180x180, and 224x224 pixels. The most effective 

dimension for increasing the success rate was determined to be 180x180 pixels. As a result, 180x180 pixels images were used 

in the model's input layer. Figure 2 depicts the proposed model, which consists of four convolutional layers. The convolution 

layer’s filter numbers were determined to be 16, 32, 64, and 128, respectively. Each layer's filter (kernel) size was determined 
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to be 3x3. Activation functions were used to learn about any continuous and complex relationship between network variables 

[31]. To avoid linearity in the network, the ReLu activation function was used after all convolution layers. 

The pooling layer was used in the network to reduce the feature map dimensions. The largest value in the filter window 

determines the size of the filter window in max pooling; in average pooling, the average of all pixels in the window is kept 

as a single value in the output pixel [32]. The maximum pooling layer was added after each convolution layer in the proposed 

model. The BatchNormalization layer was added after the activation layer. However, it was discovered that this layer had no 

positive effect on the model's success and was removed. Flattening took place after the last pooling layer but before the fully 

connected layer. The multidimensional feature array was thus reduced to a one-dimensional array and fed into the fully 

connected layers [33]. As a result, the flattening process was carried out after the last max-pooling layer, with the addition of 

a flattening layer. 

 

Figure 2 Proposed model 

In CNN, the fully connected layer predicts the results using the features obtained by the convolution and pooling layers [33-

35]. That is, the previous layers' output is used as the input in the fully connected layers. In this manner, it predicts the 

outcomes based on the features provided as input. The fully connected layer was represented by 512 units in our proposed 

model. The last layer added was the output layer. A dense layer with six neurons was added because the model will classify 

into six categories. The nonlinear Softmax activation function, which is used for multi-classification, was used in this layer. 

Softmax produces an output indicating the likelihood that the given input belongs to a class. 

3.4 Performance metrics 

The Confusion Matrix [36, 37] is a matrix created to interpret the results of a created model and to cross-examine the 

relationships between the actual and predicted values. This matrix contains four parameters.  

• True Positive (TP): If a circumstance that is generally positive in the estimating process is projected to be positive. 

• True Negative (TN): If the current situation is negative and the forecast is negative. 

• False Positive (FP): If the current state is negative, but the estimating system expects a positive state. 

• False Negative (FN): If the current state is positive and the estimator produces a negative outcome.  

Accuracy, precision, recall, and F1-score metrics were used in the study [38-40]. Performance metrics are given in Equations 

1-4, which are calculated from the confusion matrix. 

 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  

𝑻𝑷 + 𝑻𝑵

(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵)
 

(1) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
   

(2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  

𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(4) 

In cases where the class distribution of a dataset is imbalanced, it is necessary to consider the F1-score metric alongside 

accuracy for comparative purposes. To thoroughly assess the performance of a model, it is important to evaluate both 

precision and recall. The F1 score is a valuable metric that takes into account both of these measures. To summarize the 

model's performance in a more balanced manner, we utilize the F1-score, which is the harmonic mean of precision and recall 

values. 

4. Experimentation and results 

The TrashNet dataset was employed, utilizing pre-trained architectures from the ImageNet dataset. Initially, these 

architectures were loaded using the Keras deep learning framework, an open-source tool, with TensorFlow serving as the 

backend. Subsequently, the models were fine-tuned specifically for the TrashNet dataset. The experimental setup involved a 

Standard PC equipped with 16 GB RAM, an NVIDIA GeForce GTX 1080 Ti GPU with 11 GB memory, and an Intel i5-

8400 processor operating at 2.80 GHz. 

4.1 Hyperparameter optimization of the CNN architectures 

In this study, many models with varying depth, width, and other hyperparameter values were developed. Table 1 displays the 

investigated hyperparameters and values. Table 2 shows the developed models with an accuracy value greater than 80% and 

the hyperparameter values for these models. 

Table 1 Hiperparameters and values 
Hyperparameter Values 

Number of convolutional layers (NCL) 4, 5, 6, 7, 9, 11, 13, 15 

Number of filters (NF) 16, 32, 64, 128, 256, 512 

Input Image Dimension, pixels (IID) 64, 128, 180, 224, 256, 512 

Kernel size (KS) 3, 5, 7 

Number of dense layers (NDS) 1, 2, 3, 4, 5 

Epoch (Epo) 120, 150, 200, 300 

Batch size (BS) 8, 16, 32 

Optimizer (Opt) Adam, Nadam, RmsProp, SGD, Adamax, Adadelta 

 

The optimization strategy consists of generating CNNs with predetermined hyperparameters, training them iteratively, and 

identifying the optimal set of hyperparameters among these constructed networks. CNNs belong to the category of deep 

learning techniques that can learn end-to-end [5]. In the training phase, CNNs employ the backpropagation algorithm to 

update their filter weights and facilitate the learning process [6]. The training phase of CNNs is computationally expensive. 

In the case of waste classification, training a CNN network takes approximately 20 minutes. Considering all the 

hyperparameters in Table 1, there are a total of 181,440 different combinations of CNN networks. Training and comparing 

all these combinations would require a significant amount of time. Due to the large number of combinations, the Random 

Search method, which works on a limited number of combinations, can be applied. However, since Random Search does not 

remember past model results, we applied a different method. In this study, a prioritized Manuel Search approach was adopted 

by initially focusing on selected combinations based on our experience. Approximately 500 different CNN networks were 

trained, and out of these, 21 were reported.  

In CNN architectures, increasing the depth (number of convolutional layers) and width (number of filters) hyperparameters 

enhances the model's learning capacity during the training phase [6]. However, as the models have more network weight 

parameters than the limited dataset, the risk of overfitting arises. To mitigate the problem of overfitting, regularization 

techniques such as L2 regularization, dropout, batch normalization, and data augmentation are employed [8]. However, these 

methods may not be sufficient for limited datasets. CNNs extract features from raw input images and perform classification 

tasks [6]. When we increase the size of input images, we often require deeper networks for better learning capacity. 

In CNN architectures, the early layers learn basic features such as edges and color blobs, while the deeper layers learn more 

complex structures specific to the dataset [10]. In this study, we primarily focused on determining the depth of the model, the 

number of filters in each layer, and the size of the kernels for waste classification. Based on the obtained basic CNN 

architectures, we then observed the effects of other hyperparameters like optimizers, epochs, and batch sizes to achieve the 

optimal model. Increasing the depth and number of filters in a model leads to a higher success rate during the training phase. 

However, due to overfitting in the training phase, the performance of the model on unseen test datasets decreases. Deep 

models require a substantial amount of data to learn and generalize statistical patterns from the dataset during the training 
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phase. Therefore, pre-trained models trained on large-scale datasets (such as ImageNet) with millions of samples have been 

successfully utilized through transfer learning in solving current problems. 

 

Table 2 Experimental studies 

M 

No 

NCL NF KS IID NDL Epoch BS Opt Acc F1 

score 

CPU 

time 

(ms) 

1 5 16, 16, 32, 32, 128 3, 3, 3, 3, 3 180 2 150 16 SGD 0.80 0.80 334.80 

2 7 16,16,16,32,64,128, 

256 

3, 3, 3, 5, 5, 

5, 7 

224 3 150 16 SGD 0.81 0.81 443.76 

3 5 16, 32, 32, 64, 64 3, 3, 5, 5, 5 128 4 150 16 Nadam 0.81 0.80 261.22 

4 6 16, 32, 32, 64, 64, 

128 

3, 3, 3, 5, 7, 7 128 4 150 16 Nadam 0.82 0.81 301.89 

5 6 16, 16, 32, 64, 128, 

256 

3, 3, 3, 3, 3, 7 224 3 150 16 SGD 0.82 0.82 410.76 

6 6 16, 32, 32, 64, 128, 

256 

3, 3, 3, 3, 7, 7 224 3 150 16 SGD 0.82 0.81 442.71 

7 6 8, 16, 32, 64, 128, 

256 

3, 3, 3, 3, 7, 7 224 3 150 16 SGD 0.83 0.83 432.75 

8 5 8, 16, 32, 64, 128 3, 3, 3, 3, 3 256 4 120 16 Adam 0.83 0.83 401.56 

9 6 16, 16, 32, 64, 128, 

256 

3, 3, 3, 3, 3, 7 256 3 150 16 SGD 0.84 0.83 421.47 

10 7 16, 16,16,32,64,128, 

128 

3, 3, 5, 5, 5, 

7, 7 

128 2 150 16 Adam 0.84 0.83 337.80 

11 6 16, 32, 32, 32, 64, 

128 

3, 3, 3, 3, 5, 5 224 3 150 16 RmsProp 0.84 0.84 379.88 

12 5 16, 16, 32, 32, 128 3, 3, 3, 5, 7 180 3 150 32 Adam 0.84 0.83 358.13 

13 5 16, 16, 32, 32, 128 3, 3, 3, 5, 5 180 2 150 16 SGD 0.84 0.83 340.62 

14 6 16, 16, 32, 64, 128, 

256 

3, 3, 3, 3, 3, 7 224 3 150 16 SGD 0.85 0.84 410.73 

15 5 16, 32, 64, 128, 256 3, 3, 3, 3, 7 224 3 150 16 SGD 0.86 0.86 332.77 

16 5 16, 32, 64, 128, 256 3, 3, 3, 3, 7 224 3 150 16 Adamax 0.86 0.86 349.82 

17 6 16, 32, 64, 128, 256, 

256 

3, 3, 3, 3, 7, 7 224 3 150 16 Adamax 0.86 0.86 426.80 

18 5 16, 32, 64, 128, 256 7, 3, 3, 5, 7 180 3 300 16 Adamax 0.87 0.87 351.76 

19 5 16, 32, 64, 128, 256 7, 3, 3, 5, 7 180 3 300 16 Adam 0.87 0.87 370.76 

20 5 16, 32, 64, 128, 256 7, 3, 3, 5, 7 180 1 300 16 Nadam 0.88 0.87 248.63 

21 4 16, 32, 64, 128 3, 3, 3, 3 180 1 300 16 Nadam 0.89 0.88 239.86 

          M No: Model No, Acc: Accuracy, and other abbreviations are given in Table 1. 

  

 

Figure 3 Accuracy and F1 score values of experimental studies for custom CNN models 
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The following study was carried out with the best-performing models among the derived models during the experimental 

studies shown in Table 2. The real-time classification time of models is important for waste classification. The best model, 

Model 21, achieved a classification time of 239.86 ms CPU time for a single image. The accuracy and F1 scores of the 

experimental studies can be analyzed in Figure 3. In the final proposed model (Model 21), four convolution layers were used 

to determine the best hyperparameters. Convolution layer filter numbers are 16, 32, 64, and 128, respectively. The size of the 

filters used in the layers is 3x3 on condition that all layers are equal. A 2x2 pooling (MaxPooling) layer was added after each 

conv layer. Because it produces better results in convolution layers, the ReLu activation function was used. In the classifier 

layer, the Softmax activation function was used. The epoch number was set to 300. Furthermore, the best performance was 

obtained with DenseNet169 architecture in the transfer learning study, with an accuracy of 96.42% and an F1 score of 96%. 

 

 

Figure 4 Accuracy and F1-scores of the state-of-the-art CNN models (with transfer learning and fine-tuning) 

Figure 4 presents the accuracy and F1 scores of the state-of-the-art CNN models. Several state-of-the-art CNN models were 

trained through hyperparameter optimization. We keep the convolution layers of these models and remove the layers after 

the last convolution layer. After the last convolution layer, a Global Average Pooling, two dense and dropout layers are added. 

Finally, since we made a six-category classification, a dense layer with six neurons was added. Dense layers were optimized 

using different neuron numbers between 128 and 1024. In the dropout layer, the previous neurons were ignored with a ratio 

between 0.2 and 0.7, and the optimum ratio was found. In DenseNet169 architecture, the last fully connected layers were 

eliminated, a 256-node fully connected layer was created, and then a 128-node fully connected layer was added. A dropout 

with the 0.2 ratio was added after the 256-node fully connected layer. As a result, this architecture reduced the number of 

parameters from 12 million to about 5 million. 

 

Figure 5 Training times of the state-of-the-art CNN models (with transfer learning and fine-tuning) 

Figure 5 displays the training times of models on the TrashNet dataset using transfer learning. Since a large number of 

combinations were attempted in this study and the aim was to find the most optimal hyperparameter combination, training 

times became significant. Training the DenseNet169 model for 50 epochs takes approximately 20 minutes. 
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Figure 6 Prediction times (one image) of the state-of-the-art CNN models (with transfer learning and fine-tuning) 

When examining Figure 6, it can be observed that the DenseNet169 model, which is the best-performing model, has a 

significantly longer inference time for predicting a single image compared to Model 21 in Table 2. The inference time for the 

DenseNet169 model to classify a single image is approximately 3.6 seconds. This duration is higher than the expected values 

for real-time implementations. Therefore, the proposed Model 21, which even predicts the class of an image in a shorter time 

(0.24 seconds) than the VGG19 model (0.36 seconds), can be utilized in waste management systems. Additionally, cross-

platform support can be added as work moves forward. In this way, versions such as mobile and server-based systems can be 

derived [41, 42]. 

4.2 Confusion matrix 

The confusion matrix of the proposed model is shown in Figure 7. When examined as an example in Figure 7, out of a total 

of 80 cardboard images in the test data, our model correctly predicted 72 of them. These 72 images correctly classified as 

Cardboard represent our true positive (TP) value. When analyzing the true labels in the horizontal row for Cardboard, our 

model made erroneous predictions for 4 images, classifying them as Glass instead of Cardboard. Similarly, it misclassified 2 

images as Paper and 2 images as Plastic instead of correctly identifying them as Cardboard. These 8 images (4+2+2=8), 

which our model misclassified as Cardboard, represent the false negative (FN) value for our Cardboard class. Upon reviewing 

the column values for the Cardboard class in Figure 7, we can see the predictions made by our model. In these columns, our 

model erroneously labeled 3 images as Cardboard instead of Glass. Similarly, it misclassified 2 images as Cardboard instead 

of Plastic and 1 image as Cardboard instead of Trash. These 6 images (3+2+1=6) correspond to the false positive (FP) values 

for the Cardboard class. The same procedure is followed to interpret the confusion matrix values for the remaining classes, 

enabling the calculation of total FN and FP values for each class in Table 3. Precision, recall, and F1-score values for each 

class are computed by substituting the TP, FN, and FP values obtained from the confusion matrix into Equations 2-4. 
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The confusion matrix of the study with the DenseNet169 architecture using the transfer learning method is presented in Figure 

8. When the confusion matrix in both models is examined, it is seen that the most inaccurate cases are caused by the glass 

and plastic classifications. 
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Figure 8 DenseNet169 confusion matrix 

When the confusion matrix in both models is examined, the most incorrect cases are found in the glass and plastic 

classification. These two types of trash are quite similar to each other in some images. For this reason, it can be seen that the 

models are unstable in classifying them. For these two types of trash, solutions can be offered with data augmentation or 

handcrafted features. These handcrafted features can be integrated with CNN architecture. 

4.3 Performance metrics 

The proposed model was tested with 503 images. The model's performance metrics were measured as an accuracy of 88.66% 

and an F1 score of 88%. By utilizing the confusion matrix (see Section 4.2), we can substitute the TP, FN, and FP values 

obtained for each class into Equations 2-4 to determine the precision, recall, and F1-score values for each class. When we 

represent the F1-score using the True Positive (TP), False Positive (FP), and False Negative (FN) values, we obtain the 

following equation: F1 = TP / (TP + 0.5 (FP+FN)). Table 3 provides the calculated performance metric values for each class 

in multiclass datasets, utilizing the TP, FP, and FN values obtained from the confusion matrix table. 

Table 3 Calculating precision, recall, and F1-score values for each class using the confusion matrix for model 21. 
 TP FP FN Precision Recall F1-score Support 

Cardboard 72 6 8 72/(72+6) = 

0.92 

72/(72+8) = 

0.90 

72 / (72 + 0.5 (6+8)) 

= 0.91 

80 / 503 = 0.16 

Glass 87 16 13 87/(87+16) 

= 0.84 

87/(87+13) = 

0.87 

87 / (87 + 0.5 

(16+13)) = 0.86 

100 /503 = 0.20 

Metal 76 8 6 76/(76+8) = 

0.90 

76/(76+6) = 

0.93 

76 / (76 + 0.5 (8+6)) 

= 0.92 

82 /503 = 0.16 

Paper 115 15 3 115/(115+1

5) = 0.88 

115/(115+3) 

= 0.97 

115 / (115 + 0.5 

(15+3)) = 0.93 

118/503 = 0.23 

Plastic 79 11 17 79/(79+11)    

= 0.88 

79/(79+17) = 

0.82 

79 / (79 + 0.5 

(11+17)) = 0.85 

96/503  = 0.19 

Trash 

(Other) 

17 1 10 17/(17+1)     

= 0.94 

17/(17+10) = 

0.63 

17 / (17 + 0.5 (1 + 

10)) = 0.76 

27/503  = 0.05 

Accuracy  0.89 503 

Macro avg  0.90 0.85 0.87 503 

Weighted avg  0.89 0.89 0.88 503 

The results of the measured metrics are given in Table 3. To calculate the macro-averaged precision, recall, and F1 scores, 

the arithmetic mean (or unweighted mean) of the per-class F1 scores is computed. To calculate the weighted-averaged 

precision, recall, and F1 scores, the mean of all the per-class F1 scores is computed, considering each class’s support. The 

individual metric value of each class is weighted according to the ratio of the number of images with their true labels. For 

example, according to the macro average, the F1 score value is calculated as (0.91+0.86+0.92+0.93+0.85+0.76)/6 = 0.87. 

The performance metric results of the study with DenseNet169 were given in Table 4. 
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Table 4. DenseNet169 performance metrics 

 Precision Recall F1-Score Number of images 

Cardboard 0.97 0.96 0.97 80 

Glass 0.98 0.96 0.97 100 

Metal 0.95 0.99 0.97 82 

Paper 0.99 0.99 0.99 118 

Plastic 0.95 0.95 0.95 96 

Trash (Other) 0.85 0.85 0.85 27 

- - - - - 

Accuracy   0.96 503 

Macro avg 0.95 0.95 0.95 503 

Weighted avg 0.96 0.96 0.96 503 

4.4 Accuracy and loss charts 

When the accuracy graph shown in Figure 9 is examined, the training and test accuracy curves increase gradually. The 

validation curve follows the training curve somewhat from below. Accordingly, a small amount of memorization is observed, 

but the training of the model is successful as the validation curve follows the training curve in a parallel manner and there is 

no decrease in the validation curve in the following stages. 

 

Figure 9. Training and test accuracy graph 

In the loss graph in Figure 10, it is seen that the loss value decreases during the training and validation phases. In addition, 

the loss value in the validation phase follows the training phase from above. It has been tried to prevent memorization with 

Dropout methods. 

 

Figure 10. Training and test loss graph 

Table 5 presents a comparison of the proposed model with existing studies. Most of the existing models have increased their 

model accuracy by transfer learning. Since state-of-the-art CNN models are very comprehensive models, good performances 

can be achieved in the desired dataset with the right hyperparameters. In this study, we achieved better results than existing 
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studies with hyperparameter optimization. All existing studies in Table 5 have used the TrashNet dataset, and the performance 

values on the TrashNet test dataset have been presented. 

Table 5 Comparison of the recommended model with existing CNN methods using the TrashNet dataset 

Model Year Accuracy (%) F1-Score (%) 

Rabano et al. [18] 2018 87.2 - 

Gyawali et al. [17] 2020 87.8 - 

Lin et al. [20] 2022 88.8 88.9 

Tran and Nguyen [25] 2022 90.71 - 

Shi et al. [21] 2021 92.6 91 

Yang et al. [22] 2022 93.72 - 

Feng et al. [19] 2022 94.23 - 

Wang et al. [14] 2021 94.24 94 

Alrayes et al. [7] 2023 94.7 - 

Bircanoğlu et al. [13] 2018 95 - 

Aral et al. [15] 2018 95 - 

Proposed Model 2023 96.42 96 

5. Conclusion 

Urban waste is a major issue in many countries around the world. Recycling is regarded as the most effective method of 

reducing urban waste. This study aims to enhance the effectiveness of waste classification in recycling through the 

optimization of various CNN models. In the study, a new CNN architecture was proposed for the classification of wastes in 

six categories using the TrashNet dataset. The proposed model has achieved an accuracy of 88.66% and an F1 score of 88%. 

Using the DenseNet169 architecture and transfer learning, an accuracy of 96.42% and an F1 score of 96% were achieved. 

This research can help city governments and recycling facilities classify waste and create an efficient waste management 

system. Thanks to the small size and fast operation of the model, waste classification can be performed without the need to 

transport it to facilities. This can be achieved using smart garbage containers equipped with devices like Raspberry Pi. 

Additionally, reducing the need for manual labor in recycling, it will contribute to safeguarding the health of individuals 

involved in this sector. New models will continue to be evaluated in future studies. We also aim to expand the dataset to 

categorize waste into more specific categories and increase the accuracy rate. 
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