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Abstract: This paper offers several approaches for solving multiplicative second-order linear differential equations with 
variable exponentials, such as normalization and reduction to Riccati equations. In addition, in this paper, the multiplicative 
version of the Airy equation, which emerges in fluid mechanics, geophysics, and atomic physics, is solved using the 
multiplicative power series solution method. 
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İkinci Mertebeden Değişken Üslü Çarpımsal Lineer Diferansiyel Denklemlerin ve Çarpımsal 
Airy Denkleminin Çözümleri için Bazı Yaklaşımlar 

 
Öz: Bu makale, normalleşme ve Riccati denklemlerine indirgenme gibi ikinci mertebeden değişken katsayılı çarpımsal lineer 
diferansiyel denklemleri çözmek için çeşitli yaklaşımlar sunmaktadır. Ayrıca bu makalede akışkan mekaniği, jeofizik ve atom 
fiziğinde ortaya çıkan Airy denkleminin çarpımsal versiyonu çarpımsal kuvvet serisi çözüm yöntemi kullanılarak çözülmüştür. 
 
Anahtar kelimeler: Çarpımsal hesap, dönüşüm, çarpımsal Airy denklemi. 
 
1. Introduction 
 

As a substitute for traditional calculus, Grossman and Katz [1-2] invented multiplicative calculus in 1967. 
Because it differs from the traditional calculus of Newton and Leibniz, this sort of calculus is often referred to as 
"non-Newtonian calculus". Multiplicative calculus is a valuable addition to standard calculus since it is designed 
to be similar to how standard calculus is suited to cases involving linear functions and scenarios involving 
exponential functions. In multiplicative calculus, the functions of addition and subtraction are moved to 
multiplication and division. There are a lot of benefits to studying the calculation of multiplicative. It enhances the 
effectiveness of additive computations indirectly. Problems that are challenging to tackle in a traditional situation 
are solved here with amazing simplicity. Within the confines of specific constraints, multiplicative analysis may 
specify any attribute in the Newtonian situation. 

Natural phenomena frequently change exponentially. Events that act in this way include the populations of 
nations and the magnitude of earthquakes, to quote Benford [3] as an example. Multiplicative analysis, as opposed 
to classical analysis, enables a better physical assessment of these types of occurrences. In several disciplines, 
including finance, economics, biology, and demography, this calculus also yields better findings than typical. Up 
until the beginning of the 2000s, relatively little research had been done on this analysis. Numerous studies have 
recently been conducted on it, and the results are of high quality and effectiveness (see [3-17]). Using the 
fundamental ideas of multiplicative analysis, various investigations on multiplicative ordinary differential 
equations have been conducted in recent years [18-22]. 

The Airy’s equation, a classical equation in mathematical physics, has recently gained popularity among 
scientists because it is used to model light deflection and some optics problems. It is possible to see Airy’s equation 
that in several solutions in the fields fluid mechanics, geophysics and atomic physics etc. Because of the need to 
effectively and necessity to express a physical phenomenon and Airy’s equation resulting from the need to express 
it in comprehensive analytical form, many equations in mathematical physics can be written in the Airy’s equation 
format by making appropriate transforms [23,24]. Given that the Airy’s equation is linear, the analytical solution 
at the origin may be discovered using the power series solution approach. Their use in the approximate solution of 
differential equations with a simple turning point, the approximate solution of integrals with converging saddle 
points, and the mathematical modeling of physical processes is becoming more and more common [25-32]. 
However, this equation has not been examined in the multiplicative analysis. 
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2. Preliminaries 
 

This section will provide some fundamental definitions and characteristics of multiplicative calculus theories.  
 

Definition 2.1. [33] Assume that 𝜑:𝐴 ⊂ ℝ → ℝ		is positive, differentiable in the usual case, and that 𝜑 > 0 for 
every 𝑡. 𝜑∗(𝑡)	is known as the multiplicative derivative of 𝜑	at 𝑡 if the limit:  
 

𝜑∗(𝑡) = lim
"→$

1%('(")
%(')

2
!
" ,                                                                                                                                        (2.1) 

 
is positive and exists.  

 
Definition 2.2. [33] Assume that 𝜑:𝐴 → ℝ		is positive, usual differentiable at 𝑡. The following is the relationship 
between classical and multiplicative derivatives:  

 
𝜑∗(𝑡) = 𝑒(*+ ,	%)#('). 
 
Theorem 2.1. [33] Assume that 𝜑,𝜓		are multiplicative differentiable and that κ is usual differentiable at  𝑡.	The 
phrases listed below are offered for multiplicative derivative. 
 
i) 		(𝜗𝜑)∗(𝑡) = 𝜑∗(𝑡),				𝜗 ∈ ℝ(, 
 
ii) 		(𝜑𝜓)∗(𝑡) = 𝜑∗(𝑡)𝜓∗(𝑡), 
 
iii)  (𝜑/𝜓)∗(𝑡) = 𝜑∗(𝑡)/𝜓∗(𝑡),			 
 
iv)   (𝜑.)∗(𝑡) = 𝜑∗(𝑡).(/)	𝜑(𝑡).#(/),  
 

v)    (𝜑 + 𝜓)∗(𝑡) = 𝜑∗(𝑡)
$(&)

$(&)()(&)𝜓∗(𝑡)
)(&)

$(&)()(&). 
 
Definition 2.3. [33]  Assume that 𝜑	is positive, bounded function on finite interval [𝑎, 𝑏].  The symbol  ∫ 𝜑(𝑡)0'1

2   
is then known as multiplicative integral of 𝜑 on [𝑎, 𝑏].	 According to this definition, if 𝜑 is positive and Riemann 
integrable on [𝑎, 𝑏], then it is multiplicative integrable on [𝑎, 𝑏] and  
 
 ∫ 𝜑(𝑡)0' = 𝑒∫ (*+ ,	%)(')0'*

+ .1
2  

 
On the other hand, if 𝜑 is Riemann integrable on [a, b], one may demonstrate that: 
 
∫ 𝜑(𝑡)𝑑𝑡1
2 =ln ∫ (𝑒%('))0' .1

2  
 
Theorem 2.2. [33] Assume that 𝜑,𝜓		are positive, bounded function on [𝑎, 𝑏].  The multiplicative derivative is 
provided with the following expressions. 
 
i) ∫ (𝜑(𝑡)4)0' = (∫ 𝜑(𝑡)0'1

2 )41
2 , 𝜗 ∈ ℝ, 

 
ii) ∫ 𝜑(𝑡)𝜓(𝑡)0'1

2 = ∫ 𝜑(𝑡)0'1
2 ∫ 𝜓(𝑡)0' ,1

2  
 

iii) ∫ (%(')
5(')

)0'1
2 = ∫ %('),&*

+

∫ 5('),&*
+

 , 
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iv)	∫ 𝜑(𝑡)0'1
2 = ∫ 𝜑(𝑡)0'6

2 ∫ 𝜑(𝑡)0'1
6 , 𝑐 ∈ [𝑎, 𝑏]. 

 
3. Some Methods for General Solution of Multiplicative Second-Order Linear Differential Equations with 
Variable Exponentials and Multiplicative Airy’s Equation 
 

In this section, firstly, multiplicative second-order differential equations will be considered and solved by 
using some transforms. Then, using the multiplicative power series method [20, 22] multiplicative Airy’s equation 
will be solved. 

The definition of multiplicative linear differential equations is given in [21, 34] by  

(𝑦∗(7)(χ	))2-(8)(𝑦∗(79:)(𝜒))2-.!(8)⋯(𝑦∗∗(𝜒))2/(8)(𝑦∗(𝜒))2!(8)(𝑦(𝜒))20(8) = 𝑓(χ	),                                   (3.1) 
 
where 𝑓(χ) is a positive function. In this section, we consider homogeneous multiplicative linear second-order 
(for 𝑛 = 2  given in Eq. (3.1)) differential equations with variable exponentials: 
 
𝑦∗∗(χ)(𝑦∗(χ));(<)𝑦(χ)=(<) = 1,                                                                                                                           (3.2) 
 
where 𝑝(χ), 𝑞(χ) ∈ 𝐶[𝑎, 𝑏].  
 
3.1. First Transform: Normalization 
 

To eliminate the first-order term from the supplied second order equation, Lanczos [35] initially created this 
approach. This approach is used with Eq. (3.2). We start by taking into account the following transformation for 
Eq. (3.2). 

 
𝑦 = 𝑢>,                                                                                                                                                                 (3.3) 
 
𝑦∗ = (𝑢∗)>𝑢>?, 
 
𝑦∗∗ = (𝑢∗∗)>(𝑢∗)@>#𝑢>

??
. 

  
(3.3)		and its multiplicative derivatives are substituted into Eq. (3.2) and rearranged to produce: 
 

𝑢∗∗(𝑢∗)
/1#
1 (;(𝑢)

1##
1 (;

1#
1(= = 1.		                                                                                                                           (3.4) 

 
If we take  
 
@>#

>
+ 𝑝 = 0,		                                                                                                                                                        (3.5) 

 
in this case, we obtain:  
 
𝑣 = 𝑒9

!
/∫;0<.		                                                                                                                                                      (3.6) 

 
If the first and second order classical derivatives of Eq. (3.6) 
 
𝑣! = − "

#
𝑒$

!
"∫"&χ,  

 
𝑣!′ = '− "!

#
+ ""

'
) 𝑒$

!
"∫"&χ,  

 
are written in Eq. (3.4), we obtain: 
 
𝑢∗∗𝑢)(χ) = 1,                                                                                                                                                          (3.7) 
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where, 
 
𝑟(χ) = − ;#

@
− ;/

B
+ 𝑞.                                                                                                                                          (3.8) 

 
Eq. (3.7) is in a normal form of multiplicative equation, namely this equation does not contain the first-order term. 
Especially, for 𝑘 (𝑘 is a constant), Eq. (3.7) transforms into multiplicative second order linear equation with 
constant exponentials: 
 
𝑢∗∗𝑢C = 1.                                                                                                                                                           (3.9) 
 
Consequently, this method says that if the solution of Eq. (3.7) is known, the solution of Eq. (3.2) is obtained by 
using the transform (3.3). 
 
Example 3.1. Solve    
 
𝑦∗∗(𝑦∗)@6,D<𝑦9DE7<9DE7/< = 1.                                                                                                                          (3.10) 
 
Solution Here  𝑝 = 2𝑐𝑜𝑠χ, 𝑞 = −𝑠𝑖𝑛χ − 𝑠𝑖𝑛@χ  for Eq. (3.2) and therefore using (3.8), 
 
𝑟(χ) = −1, 
 
and by (3.7), we get 
 
𝑢∗∗𝑢9: = 1.  
 
The solution of this equation is: 
 
𝑢 = 𝑐:F

.2𝑐@F
2 ,  (𝑐:, 𝑐@ are constants). 

 
From Eq. (3.6) 
 
𝑣 = 𝑒9DE7<. 
 
Then the general solution of Eq. (3.10) is 
 
𝑦(χ) = 𝑐:F

.2.34-2𝑐@F
2.34-2 .  

 
Example 3.2. Find general solution of     
 
𝑦∗∗(𝑦∗)@</𝑦@<(<59B = 1.                                                                                                                                   (3.11) 
 
Solution   𝑝 = 2χ@, 𝑞 = 2χ + χB − 4  and then from (3.8) 
 
𝑟(χ) = −4,  
 
and Eq. (3.7), we find: 
 
𝑢∗∗𝑢9B = 1.  
 
This equation's solution is: 
 
𝑢 = 𝑐:F

./2𝑐@F
/2 ,   (𝑐:, 𝑐@ are constants) 

 



Tuba GÜLŞEN 
 

305 
 

and thus by (3.6) 
 

𝑣 = 𝑒9
26
6 .  

 
Therefore, the general solution to the given equation (3.11) is: 
 

𝑦(χ) = 𝑐:F
./2.2

6
6 𝑐@F

/2.2
6
6  . 

 
3.2. Second Transform (Reduction of Order) 
 
If a particular solution 𝑦 = 𝑦: of Eq. (3.2) is known, then let take the second linear independence solution of the 
form [13] 

 
𝑦@ = 𝑦:∫G0<.                                                                                                                                                      (3.12) 
 
If the first and second order multiplicative derivatives of (3.12) 
 
𝑦@∗ = (𝑦:∗)∫G0<𝑦:G,  
 
𝑦@∗∗ = (𝑦:∗∗)∫G0<𝑦:∗

@G𝑦:G
# ,  

 
are considered in Eq. (3.2), we get 
 
(𝑦:∗∗(𝑦:∗);𝑦:=)∫G0<((𝑦:∗)@𝑦:;)G𝑦:G

# = 1.                                                                                                         (3.13) 
  
By remembering that 𝑦 = 𝑦:	is a particular solution of Eq. (3.2), 
 
𝑦:∗∗(𝑦:∗);𝑦:= = 1.                                                                                                                                               (3.14) 
 
Therefore, if we set Eq. (3.14) in Eq. (3.13), we obtain homogeneous linear multiplicative equation: 
 
G#

G
= −W@H7I!

∗

H7I!
+ 𝑝X.                                                                                                                                            (3.15) 

 
The solution of Eq. (3.15) is 
 
𝑢 = 6

(H7I!)/
𝑒9∫;0<,                                                                                                                                            (3.16) 

 
where c is integral constant. Consequently, when 𝑐 = 1, the second independent solution of Eq. (3.2) is of the 
form: 
 

𝑦@ = 𝑦:
∫ !
(8-9!)/

F.∫;,20<
.                                                                                                                                    (3.17) 

 
Then the general solution of Eq. (3.2) is   
                                                   

𝑦(χ) = 𝑦:
6!𝑦@6/ = 𝑦:

{6!(6/ ∫
!

(8-9!)/
F.∫;,20<}

,                                                                                                   (3.18) 
 
where 𝑐:, 𝑐@ are constants. 
 
Example 3.3.  For the given particular solution 𝑦: = 𝑒<.DE7<, χ > 0 of  
 

𝑦∗∗(𝑦∗)9
/
2𝑦(:(

/
2/
) = 1,                                                                                                                                       (3.19)      
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find the general solution.  
 
Solution Here 𝑝 = − @

<
, and therefore using Eq. (3.17), the second independent solution of Eq. (3.19) is 

 
𝑦@ = 𝑒9<.6,D<,  
 
and so the general solution of Eq. (2.18) is  
 
𝑦 = 𝑒(6!DE7<96/6,D<)<.  
 
Example 3.4.  Solve 
 
𝑦∗∗𝑦∗𝑦F./2 = 1,                                                                                                                                                 (3.20) 
 
with the knowledge of particular solution 𝑦: = 𝑒MNO	(F.2), χ > 0. 
 
Solution   The second solution of Eq. (3.20) regarding to Eq. (3.17) 
 
𝑦@ = 𝑒OP+	(9F.2),   
 
where 𝑝 = 1. So the general solution of Eq. (3.20)  
 
𝑦 = (𝑒MNO	(F.2))6!(𝑒OP+	(9F.2))6/ = 𝑒6!MNO	(F.2)(6/OP+	(9F.2).  
 
Example 3.5.  Figure out the general solution to  
 

𝑦∗∗𝑦
./

<=3/2 = 1,                                                                                                                                                    (3.21)  
 
giving the particular solution 𝑦: = 𝑒'27<, χ > 0.  
 
Solution By (3.17) with 𝑝 = 0 
 
𝑦@ = 𝑒9:9</Q+<,  
 
and then the general solution of (3.21) is 
 
𝑦 = 𝑒6!/Q+<96/96/</Q+<.  
 
3.3. Third Transform 
 

By reducting the order of Eq. (3.2), we will obtain the multiplicative Riccati equation. So, let take the 
transform: 

 
𝑦(χ) = 𝑒{∫ R(<)

,2}.! .                                                                                                                                           (3.22) 
 
The multiplicative derivates of this function 
 
𝑦∗ = 𝑧{∫ R

,2}.! = 𝑧9H7I, 
 

𝑦∗∗ = WR
8->

R∗
X
{∫ R,2}.!

= WR
8->

R∗
X
H7I

, 
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are written in Eq. (3.2), we can get 

WR
8->

R∗
X
H7I

𝑧9;(<)H7I𝑒=(<)H7I = 1, 
 
or 
 
𝑧∗𝑧;(<)𝑒9=(<) = 𝑧H7R.                                                                                                                                         (3.23) 
 
Eq. (3.23) is a multiplicative Riccati equation. We can write this equation as 
 

𝑒
>#
> 𝑧;(<)𝑒9=(<) = 𝑧H7R.                                                                                                                                       (3.24) 

 
If we apply the natural logarithmic on both sides, we get the result: 
                       
𝑧? + 𝑝(χ)𝑧𝑙𝑛𝑧 − 𝑞(χ)𝑧 = 𝑧𝑙𝑛@𝑧.                                                                                                                      (3.25) 
 
From the transform 
 
𝑙𝑛𝑧 = 𝑡,                                                                                                                                                              (3.26) 
 
we take classical Riccati equation:  
 
𝑡? + 𝑝(χ)𝑡 − 𝑞(χ) = 𝑡@.                                                                                                                                    (3.27) 
 
The general solution of problem is attained when solving this equation and reversing the transform (3.2). In 
contrast, taking note of 
 

𝑧(χ) = (𝑦∗)9
!
8-9,  

 
it can be take Eq. (3.2). 
 
Example 3.6.  Figure out solution to 
 

 𝑦∗∗(𝑦∗)
!
2𝑦9

!
2/ = 1.                                                                                                                                            (3.28) 

 
Solution If we apply (3.22) to (3.28), we get multiplicative Riccati equation: 
 

𝑧∗𝑧
!
2𝑒9

!
2/ = 𝑧H7R,    

with the particular solution 𝑧; = 𝑒9
!
2.  By applying the process for (3.23) - (3.27),  we achieve: 

 
𝑡? + :

<
𝑡 + :

</
= 𝑡@,				𝑡; = − :

<
 . 

 
Its solution is  
 
𝑡 = :9@6</

<(@6<6
,  

 
and from (3.26) and then (3.22), we obtain:  
 

𝑧 = 𝑒
!./<2/

2(/<26 , 
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and the general solution as  

𝑦 = 𝑒
!(/<2/

2 .  
 
3.4. Multiplicative Airy’s Equation 
 
Here, multiplicative Airy’s equation will be solved using the multiplicative power series method [14, 16]. 
 
With the particular choice  𝑝(χ) = 0, 𝑞(χ) = −χ , we derive Airy’s equation: 
 
𝐿𝑦 = 𝑦∗∗𝑦9< = 1.                                                                                                                                              (3.29) 
  
This equation is equivalent to the non-linear equation:  
              
𝑦??𝑦 − (𝑦?)@ − χ𝑦@𝑙𝑛𝑦 = 0,  
 
or  
 
(𝑦?? − χ𝑦)𝑦 − [(𝑦?)@ − χ𝑦@(1 − 𝑙𝑛𝑦)] = 0,  
 
which can be obtained by using the properties of multiplicative calculus. Let's examine the solution of Eq. (3.29) 
as a multiplicative power series:  
 
𝑦(χ) = ∏ 𝑐7<

-S
7T$ ,                                                                                                                                             (3.30) 

 
where 𝑐7 are positive real constants. Taking second order multiplicative derivative of both sides of the Eq. (3.30), 
 
𝑦∗∗(χ) = ∏ 𝑐7(79:)7<

-./S
7T@ .                                                                                                                             (3.31) 

  
If Eq. (3.29) is constructed using the values discovered with (3.30) and (3.31), it is obtained: 
 
𝑐@@∏ (𝑐7(@(7(:)(7(@). 𝑐79:9:)<

-S
7T: = 1 , 

 
𝑐@ = 1 , 
 
𝑐U@.U. 𝑐$9: = 1 , 
 
𝑐BU.B. 𝑐:9: = 1 , 
⋮  
𝑐7(@(7(:).(7(@). 𝑐79:9: = 1 , 
 
and hence 
 
𝑐U79: = 1 , 
 

𝑐U7 = 𝑐$
!

/.6.@.A…(6-.!)6- , 
 

𝑐U7(: = 𝑐:
!

6.5.A.C…6-(6-(!) . 
 
Thus, the general solution of Eq. (3.29) is 
 

𝑦(χ) = 𝑐$
V:(∑ 26-

/.6.@.A…(6-.!)6-
D
-E! X. 𝑐:

V<(∑ 26-(!
6.5.A.C…6-(6-(!)

D
-E! X.  
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4. Conclusion 
 
In this paper, we have applied three transforms to multiplicative second-order linear differential equations in order 
to derive their general solutions. For each case, we present some examples for a better understanding of the 
methods. Further, multiplicative Airy’s equation has been solved by the multiplicative power series method. 
 

References 
 
[1] Grossman M. An introduction to Non-Newtonian calculus. Int J Math Educ Sci Technol 1979; 10(4): 525-528. 
[2] Grossman M,  Katz R. Non-Newtonian Calculus. Pigeon Cove, MA: Lee Press, 1972. 
[3] Benford A, The Law of anomalous numbers. Proc Am Philos Soc 1938; 78: 551-572. 
[4] Bashirov AE, Riza M. On complex multiplicative differentiation. TWMS J Appl  Eng Math 2011; 1(1): 75-85. 
[5] Bashirov AE, Mısırlı E, Tandogdu Y, Özyapıcı A. On modeling with multiplicative differential equations. Appl Math-J 

Chin Univ 2011; 26(4): 425-438. 
[6] Boruah K, Hazarika B. G-Calculus. J Appl Eng Math 2018; 8(1): 94-105. 
[7] Florack L, Assen Hv. Multiplicative calculus in biomedical image analysis. J Math Imaging Vision 2012; 42: 64-75. 
[8] Guenther RA. Product integrals and sum integrals. Int J Math Educ Sci Technol 1983; 14(2): 243-249. 
[9] Slavik A. Product Integration, Its History and Applications. Prague: Matfyzpress, 2007. 
[10] Stanley D. A multiplicative calculus. Primus 1999; 9(4): 310-326. 
[11] Gulsen T, Yilmaz E, Goktas S. Multiplicative Dirac system. Kuwait J Sci 2022; 49(3): pp. 1-11.  
[12] Yalçın N, Çelik E, Gokdogan A. Multiplicative Laplace transform and its applications. Optik 2016; 127(20): 9984–9995. 
[13] Yalçın N, Çelik E. Çarpımsal Cauchy-Euler ve Legendre diferansiyel denklemi. Gumushane Univ J Sci Technol 2019; 

9(3): 373–382. 
[14] Yalçın N, Dedeturk M. Solutions of multiplicative ordinary differential equations via the multiplicative differential 

transform method. Aims Math 2021; 6(4): 3393-3409. 
[15] Yalcin N. Multiplicative Chebyshev differential equations and multiplicative Chebyshev polynomials. Therm Sci 2022; 

26(2): 785-799. 
[16] Bal A, Yalçın N, Dedetürk M. Solutions of multiplicative integral equations via the multiplicative power series method. J 

Polytechnic 2023; 26(1): 311-320.  
[17] Yalçın N, Dedeturk M. Solutions of multiplicative linear differential equations via the multiplicative power series method. 

Sigma J Eng Natural Sci 2023; In press. 
[18] Goktas S. A New Type of Sturm-Liouville equation in the non-Newtonian calculus. J Funct Spaces 2021; 2021: pp. 1-8.  
[19] Goktas S, Yilmaz E,  Yar AÇ. Some spectral properties of multiplicative Hermite equation. Fundam J Math Appl 2022; 

5(1): 32-41. 
[20] Yilmaz E. Multiplicative Bessel equation and its spectral properties. Ric Mat 2021; 1-17. 
[21] Yalcin N, Celik E. Solution of multiplicative homogeneous linear differential equations with constant exponentials. New 

Trend Math Sci 2018; 6(2): 58-67. 
[22] Yalçın N. The solutions of multiplicative Hermite differential equation and multiplicative Hermite polyno-

mials. Rendiconti del Circolo Mat di Palermo Serie 2 2021; 70(1): 9-21. 
[23] Langer RE. On the asymptotic forms of the solutions of ordinary linear differential equations of the third order in a region 

containing a turning point. Trans Am Math Soc 1955; 80(1): 93-123. 
[24] Vallee O, Soares M. Airy Functions and Applications to Physics. New Jersey: Imperial College Press, 2010.  
[25] Swanson CA, Headley VB. An extension of Airy’s equation. SIAM J Appl Math 1967; 15(6): 1400-1412. 
[26] Fabijonas BR, Lozier DW, Olver FW. Computation of complex Airy functions and their zeros using asymptotics and the 

differential equation. ACM Trans Math Softw 2004; 30(4): 471-490. 
[27] Hamdan MH, Kamel MT. An Application of the Ni(x) Integral function to nonhomogeneous Airy’s equation. Math Meth 

Comput Tech Intelligent Sys 2010; 12: 212-216. 
[28] Turkyilmazoglu M. The Airy equation and its alternative analytic solution. Phys Scr 2012; 86(5): 055004. 
[29] Aghili A, Zeinali H. Solution to fractional Schrödinger and Airy differential equations via integral transforms. Br J Math 

Comput Sci 2014; 4(18): 2630. 
[30] Robin W. Series Solution of Second-Order linear homogeneous ordinary differential equations via complex integration. 

Int Math Forum 2014; 9(20): 967-976. 
[31] Alzahrani SM, Gadoura I, Hamdan MH. Ascending series solution to Airy’s inhomogeneous boundary value problem. Int 

J Open Problems Compt Math 2016; 9(1): 1-11. 
[32] Koklu K. A Solution of Airy Differential Equation via Natural Transform, Prime Archives in Applied Mathematics. 

Hyderabad, India: Vide Leaf, 2021; 1-8. 
[33] Bashirov AE, Kurpınar EM, Özyapıcı A. Multiplicative calculus and its applications. J Math Anal Appl 2008; 337: 36-

48. 
[34] Yalçın N, Çelik E. The solution of multiplicative non-homogeneous linear differential equations. J Appl Math 

Comput 2018; 2(1): 27-36. 
[35] Lanczos C. Linear Differential Operators. Princeton, NJ: D Van Nostrand Company, 16 Inc, 1964. 


