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Abstract : Numerous renewable and nonrenewable energy sources have been integrated into the grid by
utilities to keep up with rising demand. Problems with the generator, transmission lines, and distribution
networks are exacerbated by sudden load changes. The representation of load plays a crucial role in system
prediction, and based on research results, ZIP load models incorporating contingency criteria have proven
successful in predicting future load behavior. To forecast the severity of line losses and predict system
reactions, an Artificial Neural Network (ANN) is trained, while the NR technique utilizes the High Bridge
Line Stability Ranking Index (HLSRI) to predict contingency ranking during a single-line failure. Stability
and cost analysis, with and without the Unified Power Flow Controller (UPFC) and Interline Power Flow
Controller (IPFC), has been conducted using a mathematical model. Machine learning (ML) is employed to
rapidly identify the transmission linemost affected by an emergency. The J48method is used for data clustering
to determine the placement of compensatory devices. Additionally, the Particle Swarm Optimization (PSO)
method establishes an appropriate goal function to reduce fuel consumption and increase output. The research
emphasizes the critical role of power outages and fluctuating loads. The power grid’s status is determined
through power system security analysis. In this context, a broken transmission line or a change in load has the
potential to harm the electrical system.

Keywords : High bride Line Stability Ranking Index (HLSRI), Interline power flow controller (IPFC),
Machine Learning (ML), Unified Power Flow Controller (UPFC).

1 Introduction
The expansion of renewable energy sourcMultilayered electricity is required for modern life, emphasizing the essentiality of
electrical grid reliability. The security of the power system is crucial to ensure a dependable power supply to clients, without
compromising the safety of the power grid, user well-being, or profitability. Unfortunately, this intricate power system is
susceptible to various challenges such as transmission line failure, generator malfunction, load demand spikes, and transformer
destruction. The significance of electricity system safety cannot be overstated, as power system oscillations contribute to the
escalation of blackouts. The ramifications are profound, leading to business bankruptcies and significant disruptions in the lives
of average individuals. Identifying the underlying causes of blackouts is imperative, necessitating the development of a deliberate
plan to prevent their propagation to other lines. A contingency analysis, encompassing both operation andmaintenance, serves as
a rapid assessment tool for evaluating the system’s stability after an outage or abnormal state. The responsibility for addressing
any deviations from normal functioning that may arise when a problematic component is removed from the system lies with the
backup plan. A substantial disruption in line flow can trigger overloads in other lines, setting off a domino effect on adjacent
strings. Prompt action by the regulator is imperative when a line outage results in a surge in demand. Power system operators and
planners must consistently consider all potential consequences. The technique of contingency screening employs a diverse array
of static and time-dependent approaches to categorize prospective outcomes, ensuring a comprehensive evaluation of possible
scenarios [1] [2].

To meet increasing demand, several renewable and non-renewable energy sources have been incorporated into the electricity
system. The challenges posed by abrupt fluctuations in load exacerbate concerns related to generators, transmission lines, and
distribution networks. The accuracy of system predictions relies heavily on load modeling. This study demonstrates that ZIP
load models, coupled with contingency criteria, can effectively forecast load behaviour. In the event of a single line outage, the
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NR technique employs the HLSRI to anticipate contingency rankings. An ANN is then trained to anticipate the severity of the
outage and the system’s response. A mathematical model is employed to compare stability and costs with and without the UPFC
and IPFC.Machine learning swiftly identifies which transmission line is most vulnerable during emergencies by utilizing the J48
method to cluster data for compensatory device development. The PSO algorithm optimizes production capacity tominimize fuel
expenditures. The electrical system faces potential damage from both transmission line failures and load variations. This study
highlights transmission line breakdowns and load changes as primary concerns. A power system security study is conducted to
assess its current status.

2 Problem Formulation
2.1 Load Modeling
Most emergencies are caused by changes in load and load modeling aids in the analysis of diverse loads. Mathematically,
load modeling depicts the power-voltage relationship at a load bus. Power system research is impacted by it [3]. This study
encompasses two types of load models.

2.2 Constant Load Model
In the steady-state load model, Equations 1 and 2 illustrate the active and reactive power, respectively.

Pi =
n∑

j=1

ViYijVj cos (θij + δj − δi) (1)

Qi = −
n∑

j=1

ViYijVj sin (θij + δj − δi) (2)

Active/reactive power is diagonal and half-diagonal is designed for Piand Qi.

2.3 Polynomial Load Model or ZIP Load Model
The term "ZIP" stands for "polynomial load model," with Z, I, and P representing constant impedance, current, and power,
respectively. The driving forces of the model are encapsulated in Equations 3 and 4. At Bus-i:

Pi =

 n∑
j=1

ViYijVj cos (δij + θj − θi)

 [
P1V 2

i + P2Vi + P3

]
(3)

Qi =

− n∑
j=1

ViYijVj sin (δij + θj − θi)

 [
P1V 2

i + P2Vi + P3

]
(4)

At Bus-j:

Pj =

[
n∑

i=1

VjYjiVi cos (δji + θi − θj)

] [
P1V 2

j + P2Vj + P3

]
(5)

Qj =

[
−

n∑
i=1

VjYjiVi sin (δji + θi − θj)

] [
P1V 2

j + P2Vj + P3

]
(6)

where active and reactive power values at buses i and j are Pi, Pj and Qi, Qj; Vi, Vj are nodal voltages at bus i, j; δij is the voltage
angle; Yji is the admittance; The parameters for the ZIP load are denoted by the letters P1, P2, and P3.

Active and reactive power in Bus-i and Bus-j are distributed both diagonally and off-diagonally. The solution to load models
is achieved through the Newton-Raphson power flowmethod, which yields accurate quadratic convergence results. The creation
of diagonal and off-diagonal elements in Equation 7 results in a Jacobian matrix. This matrix establishes a connection between
actual and reactive power and the minor variations in voltage magnitude and phase angle.[

∆P
∆Q

]
=

[
J1 J2
J3 J4

] [
∆δ
∆ |V |

]
(7)

In 8 and 9, the power residual is described in terms of the Jacobian matrices J1, J2, J3, and J4 that are integral to the Newton-
Rapson method.

∆Pki = Pschi − Pki (8)
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Figure 1: Classification of Contingencies

∆Qk
i = Qsch

i − Qk
i (9)

The new estimates for the voltage’s angle and magnitude are represented in equation 10 and equation 11.

δk+1
i = δki −∆δki (10)∣∣V k+1

i

∣∣ = ∣∣V k
i

∣∣− ∣∣∆V k
i

∣∣ (11)

These two load models analyze load behavior in IEEE-30 Bus systems. rating index helps locate severe lines.

3 Power System Contingency Ranking Approach
Contingency analysis is a standard practice in contemporary Energy Management Systems, where power grid planning can be
subject to variations based on the outcomes of system contingency analysis. The interruption of a single line has the potential to
overload adjacent branches and induce swift changes in the voltage profile. The assessment of power system security involves
assigning severity rankings. The investigation is streamlined, as depicted in Figure 1.

3.1 A New Proposed Ranking Index
The proposed measure, referred to as HLSRI, is derived from the line and fast voltage stability indexes. In equation 12, it is
depicted as HLSRI, as illustrated in [3].

HLSRI = 4XQn

[Vm]2

[
|Z |2
XLine

β − XQn

[sin(θ−δ)]2
(β − 1)

]
≤ 1,

where β =

{
1 δ < δC
0 δ ≥ δC

}
,

(12)

where δ is a modifier and β is a toggling function.
The stability of the system is compromised when the HLSRI value approaches 1; conversely, it is considered safe and stable

under other circumstances. The introduced index has been implemented on the IEEE 30 bus system utilizing the Newton-
Raphson method. The test system comprises six generators, 24 load buses, and 41 transmission lines, and it is derived from
historical data provided by IEEE.

3.2 Artificial Neural Networks
Various factors contribute to the variability of power systems. Traditional offline methods were unable to provide continuous
monitoring of system security. Enhancing security monitoring and online implementation involves training an ANN to handle
unforeseen requirements. This approach aims to predict the size of emergency systems and employs active power and voltage
performance indicators to rank potential outcomes, facilitating a quick and accurate assessment of security. The evaluation of
system operation and the ranking of severity are integral components of this process. The block diagram in Figure 2 illustrates the
structure of the ranking module. Module inputs include active and reactive power, voltage magnitudes (V), and N-1 line outage
contingencies. These inputs encompass all operational conditions (K i). The module utilizes the Radial Basis Function Network
(RBFN) method, where nodes estimate performance. Figure 3 provides an example of an ANN-RBFN model employed for
forecasting performance indices. Thismodel considers alternative outcomes to forecast operational security posture performance
indicators.

The Radial Basis Function Network method is employed to train the IEEE test system in predicting the HLSRI and security
within the realm of ANN. The values generated by the proposed index in ANN closely approximate those obtained through the
NR method. The values produced by the proposed index are being considered. The processing of the proposed index is carried
out using machine learning techniques.
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Figure 2: Block diagram of Ranking Module

Figure 3: RBFN Model for the prediction of performance indices

4 Methodology
4.1 Machine Learning
Contingency analysis stands as a widely employed practice in modern energy management systems, wherein the outcomes of
this analysis can significantly impact the power grid planning process. The potential repercussions of a disruption in a solitary
power line are extensive, as it may lead to undue burdens on neighboring branches, thereby causing sudden fluctuations in
voltage profiles. The assessment of the power system’s security is carried out through a contingency ranking rooted in severity.
The three fundamental steps involved in streamlining the analysis process are depicted in Figure 1 [4] [5].

Figure 3 illustrates the classification of J48. The diagram in Figure 4 is conclusive. A single branch extends from the 5-foot
tree, featuring three leaves. The HLSRI range fluctuates, while decision tree size and leaf count remain consistent. The ranking
is determined by three states of the test system.

Figure 4: Data processing and Classification of Transmission Line Severity
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Figure 5: J48 Classifier tree Visualizer with HLSRI for IEEE 30 Bus

Table 1: Confession matrix of IEEE30 bus system
Classifier Type Training (70%) Testing (30%)

Machine Learning -HLSRI Actual

Pr edicted 1 0 0
0 6 0
0 0 5

 Actual

Pr edicted 0 2 0
0 12 0
0 1 14


ANN-RBFN Actual

Pr edicted 2 0 0
0 8 0
0 0 3

 Actual

Pr edicted 0 3 0
0 13 0
0 1 11


===J8-Classifier model ====
J48 tree Structure for IEEE 30

1) Stresse line or Critical (7.0) : HLSRIIEEE30> 0.0461
2) Semi-Stresse line (10.0) : 0.0296 >HLSRI IEEE30≤ 0.0461
3) Normal line (24.0) : HLSRI IEEE30< 0.0296

Visualize by Weka-J48

In Machine learning and ANN-RBFN methods, 70 % of data is trained and % of data is tested and a comparative graph of
line no. Vs HLSRI for ML- HLSRI and ANN-RBF of IEEE 30 Bus system as shown in Figure 5 and Confession Matrices for
IEEE-30 as shown in Table 1.

The computational time of the test system by using the Machine learning- J48 algorithm is 0.006 sec when compared to
RBFN.

5 Designing Custom Power Devices Mathematically
FACTS appliance control limitations are predicted via injection models (Basu 2008). Interline power flow controller (IPFC)
and Unified power flow controller (UPFC) assist test system power flows and stability during contingencies better than other
FACTS devices. UPFC and IPFC’s mathematical modeling is summarized here. [6]–[8]

5.1 Shunt and Series Controller
There are two controllers at work in a unified power flow system. Which is linked to the transmission line through DC link
capacitors shared by the shunt and series VSCs. The series compensator (SSSC) is a term used in a 2007 study by Vural et al.
The arrangement converter’s yield voltage is added to the nodal voltage at bus i to get the final nodal voltage at bus j. How the
power’s intensity is controlled is shown by the δCR phase angle, and The yield voltage specifies the voltage’s direction. VcR] A
three-stage UPFC is supported by two voltage sources and power restrictions.

EVR = VCR(CosδCR + jSinδCR) (13)

Re = {−EVRIVR + EVRIm} (14)

Active and reactive power equations are as follows at bus i.

Pi = {V 2
i Gii + ViVj[GijCos(θi − δj) + BijSin(θi − δj)] + ViVCR[GijCos(θi − δCR) + BijSin(θi − δCR)]+

ViVCR[GVRCos(θi − δCR) + BijSin(θi − δCR)]}
[
P1V 2

i + P2Vi + P3

] (15)

Qi = {−V 2
i Bii + ViVj[GijSin(θi − δj) − BijCos(θi − δj)] + ViVCR[GijSin(θi − δCR)− BijSin(θi − δCR)]+

ViVCR[GVRSin(θi − δCR)− BijCos(θi − δCR)]}
[
P1V 2

i + P2Vi + P3

] (16)

where Gij and Bij are the conductance and susceptance between bus i and bus j, respectively. The above Equation 15 and 16
modified UPFC with ZIP load model.
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5.2 Interline Power Flow Controller
The IPFC typically makes use of many DC-to-AC converters, all of which provide series compensation for a different line.
The IPFC includes several static synchronous series compensators (SSSC). All of the converters have high reactive power
transmission and storage capacities (Zhang et al. 2006b). A series converter connected between bus i and bus j can provide
complicated power, as described by Equations 17, 17, 18, 19, and 20 in that order [9].

Pij = {V 2
i Gii−

n∑
j = 1
j ̸= i

ViVij(GijCosθij− BijSinθij)+
n∑

j = 1
j ̸= i

ViVseij(GijCos(θij−θseij) − BijSin(θij−θseij))}
[
P1V 2

i + P2Vi + P3

]

(17)

Qij = {V 2
i Bii−

n∑
j = 1
j ̸= i

ViVij(GijSinθij− BijCosθij)−
n∑

j = 1
j ̸= i

ViVseij(GijSin(θij−θseij)− BijCos(θij−θseij))}
[
P1V 2

i + P2Vi + P3

]

(18)

Pji = {V 2
i Gii−

n∑
j = 1
j ̸= i

ViVji(GijCosθji− BijSinθji)−
n∑

j = 1
j ̸= i

ViVsei j(GijCos(θij−θseij)− BijSin(θij−θseij))}
[
P1V 2

i + P2Vi + P3

]

(19)

Qji = {V 2
i Bii−

n∑
j = 1
j ̸= i

ViVji(GijCosθji− BijSinθji)−
n∑

j = 1
j ̸= i

ViVsei j(GijSin(θij−θsei j) − BijCos(θij−θseij))}
[
P1V 2

i + P2Vi + P3

]

(20)
where Vi and Vj stand for the maximum allowed bus i and j voltages (p.u.), and Vseijk and the conjugate of Iijk stand for the
maximum allowed bus i, j, and k series voltage and the reference current. Mathematical expressions of IPFC incorporated in
ZIP load model to assess its behavior and the above Equations 17, 17, 18, 19, and 20 modified IPFC mathematical expression
with ZIP load model.

6 Objective Function
The novel approach lowers the consumption of fuel by using the objective function and stress on the transmission line. Optimal
fuel and compensation device costs must be considered together to arrive at a workable solution. The desired function is shown
here in Equation 21.

objective function(F) = min(F1 + F2 + F3) (21)

A set of individual iterations for an objective function (F) are designated by the respective numbers F1, F2, and F3 in this
case. The main aim of the objective function is to reduce the fuel cost and cost of the compensation devices and effective
utilization of generator capacity.

6.1 Optimization of Real Power Loss
The amount of active power being lost has been reduced to an absolute minimum at this stage. Reducing real power loss in
transmission lines is demonstrated by Equation 21, which illustrates the preliminary objective function effectively.

F1 = PLoss =
n∑

k=1,J ̸=i

Gkj[V 2
k + V 2

j − 2VkVjCos(δk − δj) (22)

where PLoss is power loss, NLine is transmission lines, Gkj is conductance at bus k and j’s, Vk and Vj are voltages andδkδj,
angles.

6.2 Investments in FACTS Equipment
Here, the investment expressed in $/h for UPFC and IPFC is analyzed using Equation 23.

F2 = CostUPFC + CostIPFC (23)
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Figure 6: A Comparative graph of line no. Vs HLSRI for ML- HLSRI and ANN-RBF of IEEE 30 Bus system

Table 2: Confession matrix of IEEE30 bus system
Overloading Total Generation Capacity (MW) Total Active Power Loss (MW) Fuel Cost($/hrs) Total Generation Capacity (MW)
1 17.04 312.23 283.4 614.48
1.3 36.16 439.29 368.42 868.61
1.5 53.70 527.91 425.1 1045.85

where

CostUPFC = 0.0003s2 − 0.026911s+ 188.22
CostIPFC = CostIPFCA + CostIPFCB
CostIPFCA = 0.00015s2i − 0.0134si + 94.11
CostIPFCB = 0.00015s2j − 0.0134sj + 94.11

s = |Q2| − |Q1| ; si = |Qi2| − |Qi1| ; sj = |Qi2| − |Qi1|

After MVAR line compensation has been established, the reactive power flow (Q2) will be higher than the reactive power
flow (Q1) in the line. The reactive power flow down the line is represented by Qi1 and Qi2, and the cost function Sij of the
converters linked to buses i and j.

6.3 Cost Reduction of Fuel
Reduced fuel costs in the generator have finally been realized. The cost of fuel for the generator can be thought of as the quadratic
of the sum of the costs involved in using fuel functions that are themselves convex (Lagrange Iteration Method(LIM)). Equation
24 depicts the generators’ quadratic fuel cost function.

F3 = Min cos tf (x)
Ng∑
i=1

[aip2gi + bipgi + cipgi] (24)

Ng is the total number of generators; The bus index is I, the ith generator’s fuel cost coefficients are bi and ci, and its maximum
active power output is Pgi.

7 Results and Discussion
7.1 Case-1: Machine Learning Algorithm Applied For the Test System
Location of the FACTS device using ML and fuel cost calculated with the exiting generator capacity and it is tabulated below.
In this study, we analyze the IEEE 30 bus system using the ZIP load model and demonstrate its behavior under varying loads
and interruptions to the power supply.
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Figure 7: Bus No. vs voltage for IEEE-30 Bus

Table 3: Power transfer Capability of FACTS devices
Conditions Custom power devices-UPFC Custom power devices-IPFC

Location Base case P(MW) Location Base case P(MW)

Line outage
2-4 6-10 15.286 23.425 6-10-28 15.2861 18.104
3-4 14-15 1.611 11.069 14-15-23 1.611 1.957
2-5 15-18 5.9258 11.452 15-18-23 5.9258 7.758

Overloading
1 6-10 15.286 23.425 6-10-28 15.286 18.104
1.3 15-18 8.342 13.559 15-18-23 8.3423 9.702
1.5 15-18 9.990 12.879 15-18-23 9.990 10.777

Table 2 shows the base case results of the IEEE 30 bus system and Table 3 shows the power transfer enhancement using
custom power devices. The below Table 4 shows the fuel cost with generation capacity during line outage conditions and
overloading conditions.

From Table 4, it is clear that the optimum location of FACTS device-based HLSRI is generated from the J48 algorithm of the
machine learning tool. The minimum fuel cost was achieved with the help of objective functions, and it fulfills the requirement.
i.e., minimization of loss and enhancement of power transfer capability with minimum fuel cost.

7.2 Case-2: Machine Learning Algorithm With PSO Applied For The Test System
In Case 1, a standard IEEE 30 bus system was analyzed, and out of its six generators, only two were used to meet the system’s
overall demand. As a result, losses have risen.

Table 4: Power Losses and Fuel costs of FACTS devices
Conditions Custom Power Devices -UPFC Custom Power Devices -IPFC

Location Total Ploss
(MW)

Total Generation
Capacity (MW)

Fuel
Cost($/hr)

Location Total Ploss
(MW)

Total Generation
capacity (MW)

Fuel
Cost($/hr)

Outage
2-4 6-10 16.46 290.67 571.36 6-10-28 15.90 290.7 571.42
3-4 14-15 16.40 288.55 567.12 14-15-23 16.15 290.4 570.83
2-5 15-18 15.91 285.69 561.40 15-18-23 15.84 292.33 574.69

Over-
loading

1 6-10 16.46 290.67 571.36 6-10-28 15.90 290.70 57.421
1.3 15-18 30.83 386.53 763.08 15-18-23 30.62 384.8 759.62
1.5 15-18 45.29 462.79 915.60 15-18-23 43.94 455.65 901.32
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Table 5: Cost of the custom power devices
Condition Location UPFC Cost ($/h) IPFC Cost ($/h)

Line outage
6-10 187.58 188.12
14-15 188.17 188.15
15-18 188.01 188.09

Overloading
6-10 187.58 188.12
15-18 187.75 188.10
15-18 188.07 188.11

Table 6: Base case Results for different Loadings
Conditions Total Generation Capacity (MW) Total Active Power Loss (MW) Fuel Cost ($/hr)

ML ML+PSO ML ML+PSO ML ML+PSO

Overloading
1 312.230 298.0564 17.0411 6.8581 614.483 576.9212
1.3 439.297 403.3304 36.161 16.8133 868.6166 787.4691
1.5 527.917 491.1514 53.7077 29.7025 1045.856 963.1111

In the case-2 location of the FACTS, the device was identifiedwithML, and fuel cost was calculated with optimum utilization
of generator capacity using the Particle Swarm Optimization (PSO) algorithm for the modified IEEE30 bus system, and it is
tabulated below [10].

Table 6 shows a comparative analysis of the Machine learning algorithm and Machine learning algorithm with PSO for
optimum utilization of generator capacity. The total generation capacity, Loss, and fuel cost tabulated.

Table 7 shows the power flow enhancement during contingency and overloading conditions with compensation.
Tables 8 and 9 show the optimal generation capacity utilization with minimum fuel cost by using ML along with PSO for

UPFC and IPFC compensation, and it is clear that the minimum fuel cost achieved by using ML for objective functions fulfills
the requirement.

8 Conclusions
In this paper, the integration of various renewable and nonrenewable energy sources into the grid by utilities to meet escalating
demand is challenged by issues in generators, transmission lines, and distribution networks, particularly during sudden load
changes has been investigated with mathematical modelling and analysis. The success of predicting future load behavior lies
in the crucial role of load representation, with ZIP load models incorporating contingency criteria proving effective. ANNs
are trained to forecast line losses and system reactions, while the HLSRI is employed in nonlinear techniques for contingency
ranking. The study underscores the significance of power outages and load fluctuations, emphasizing the critical role they play
in determining the power grid’s status.
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Table 7: Power Losses and Fuel Costs of UPFC devices
Conditions Custom Power Devices-UPFC Custom Power Devices-IPFC

Location ML- P(MW)-base case ML+PSO P (MW) Location ML- P(MW)-base case ML+PSO P(MW)

Line outage
6-10 12.408 17.150 6-10-28 12.408 12.280
14-15 1.943 6.712 14-15-23 1.943 2.566
15-18 6.597 8.273 15-18-23 6.597 11.556

Over-
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1 6-10 12.408 17.150 6-10-28 12.408 12.280
1.3 15-18 8.824 10.140 15-18-23 8.824 13.304
1.5 15-18 10.651 11.378 15-18-23 10.651 19.021

Table 8: Power Losses and Fuel Costs of UPFC devices
Custom Power Devices -UPFC Compensation

Conditions Total Active power Loss (MW) Total Generation capacity (MW) Fuel Cost ($/hr)
Algorithms ML ML+PSO ML ML+PSO ML ML+PSO

Line outage
16.464 6.659 290.674 285.370 571.369 551.549
16.406 6.781 288.553 285.553 567.127 551.916
15.919 6.773 285.691 286.439 561.403 553.688
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16.464 6.659 290.674 285.370 571.369 551.549
30.838 15.827 386.534 380.847 763.089 742.502
45.293 25.154 462.794 447.206 915.609 875.222
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Table 9: Power Losses and Fuel Costs of UPFC devices
Custom power devices -IPFC Compensation

Conditions Total Generation capacity (MW) Fuel Cost($/hr)
Algorithms ML ML+PSO ML ML+PSO ML ML+PSO

Line outage
15.907 6.601 283.952 284.233 571.421 549.276
16.151 6.69 287.724 284.797 570.833 550.403
15.849 6.76 284.110 284.466 574.697 549.740

Overloading
15.907 6.601 283.952 284.233 571.421 549.276
30.628 15.813 384.8 378.773 759.621 738.355
43.949 24.099 455.65 437.397 901.321 855.602
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