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ABSTRACT 

 
Image hashing is an algorithm used to represent an image with a unique value. Hashing methods, which are 

generally developed to search for similar examples of an image, have gained a new dimension with the use of 

deep network structures and better results have started to be obtained with the methods. The developed deep 
network models generally consider hash functions independently and do not consider the correlation between 

them.  In addition, most of the existing data-dependent hashing methods use pairwise/triplet similarity metrics 

that capture data relationships from a local perspective.  In this study, the Central similarity metric, which can 
achieve better results, is adapted to the deep reinforcement learning method with sequential learning strategy, 

and successful results are obtained in learning binary hash codes. By considering the errors of previous hash 

functions in the deep reinforcement learning strategy, a new model is presented that performs interrelated and 
central similarity-based learning. 
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1. Introduction 

Today, millions of images are transferred to the web daily due to the increase in internet speeds and developments in web 

technologies. Due to this increase in the number of images on the web and the difficulties in accessing targeted images, many 

studies have been conducted to improve image search processes [1-8].  

In visual search processes, a unique code representing an image and hash codes are usually generated using an algorithm and 

operations are performed on the codes. Since similar codes are generated for similar images, the similarity of the images can 

be easily detected.  In traditional cryptographic algorithms, changes that do not perceptually distort the image (such as 

changing some pixel values, resizing the image, etc.) will generate different codes due to the nature of these algorithms. 

Therefore, the use of such algorithms is not suitable for image similarity detection. Some hashing methods use traditional 

hand-crafted feature extraction and deep hashing methods use deep network structures to generate hash codes. In hashing 

approaches, converting the input images into compact binary codes provides time and memory utilization advantages in 

image search processes. 

Image hashing algorithms aim to represent images with short hash codes. They are frequently used for detecting similar 

images or content, checking for copyright violations, performing fast and efficient searches in large media libraries, creating 

summaries of sensitive image data to hide the original image, providing biometric recognition such as face recognition, etc.  

These algorithms play a crucial role in areas ranging from content similarity detection to security measures. 

Traditional methods using handcrafted features could be more efficient in expressing visual content, which has a negative 

impact on performance in the visual search process.  The high performance of deep learning methods in image classification 
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https://orcid.org/0000-0001-5823-8773
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and object recognition has led to using these methods in hash code generation. Some deep hashing methods have been 

developed that utilize the feature extraction power of deep networks. These hashing methods treat all hash functions 

independently and do not consider the correlations of different hash functions. These studies usually utilize pairwise or triplet 

data similarity [9-11].  Accordingly, loss calculations are performed.  It has been stated in some studies that the sequential 

handling of hash codes will provide error correction capability in the learning process. Another study emphasized that the 

central similarity metric gives more successful results than triplet and pairwise metrics [12]. 

 

Deep reinforcement learning has achieved human-like performance in various studies and has been addressed in many fields.  

A standard reinforcement learning model consists of an environment and an agent interacting. [13] The agent evaluates the 

information coming from the environment and aims to choose an action that maximizes the sum of future rewards. In hash 

methods, if we consider the function to obtain the hash code as the agent, the actions generated can be expressed as 0 or 1.  

Rewards can be obtained by using a loss function to evaluate the quality of the generated hash code information. 

Maximization of these rewards can be achieved through reinforcement learning. Determining the reward function in a 

reinforcement learning problem is one of the most important problems. In a study conducted in this direction, the reward 

function was considered a triplet loss, which was found to give successful results [14]. As stated in [12], the central similarity 

loss function has a more discriminative aspect than triplet loss and pairwise loss.   Our study proposes a deep reinforcement 

learning method that provides the sequential decision-making process of hash functions and the central similarity reward 

function. 

This paper proposes a deep reinforcement learning model with a sequential learning strategy that considers global data 

distribution, data relationships and global similarity. The proposed model includes a feature extraction network and a policy 

network. In the policy network, the RNN structure is used to obtain the probabilities of the binary transformation of images 

into binary codes sequentially. In the proposed Sequential and Correlated Image Hash Code Generation with Deep 

Reinforcement Learning (SCIHCGRL) method, the central similarity is suggested as a reward function instead of pairwise 

or triplet functions used in previous studies. 

2. Related Works 

Currently used hashing methods are classified into two main groups: data-dependent and data-independent. Data-dependent 

hashing methods can also be categorized into supervised, unsupervised, and reinforcement. Data-independent methods are 

based on the nearest-neighbor search method. Peng and Indyk presented Locality-Sensitive Hashing (LSH) [14, 15], where 

the basic idea is to summarize data and query points so that the probability of collision is much higher for points close to 

each other than for points far apart. The LSH method requires long codes or multiple hash tables. Lv [16] and Raginsky [17] 

have proposed several approaches to overcome these problems. 

Data-dependent methods are generally divided into two main groups: supervised methods where data labels are used in the 

learning process and unsupervised methods where data labels are not considered in the learning process. Reinforcement 

learning methods, in which data labels are used only for evaluation purposes and the learning strategy is not supervised, can 

also be considered a separate class. 

 

Studies on unsupervised methods are as follows: Spectral hashing (SH)[18], iterative quantization (ITQ)[19], topology 

preserving hashing (TPH)[30], locally linear hashing (LLH)[20], discrete graph hashing (DGH)[21], scalable graph hashing 

(SGH)[22] ordinal embedding hashing (OEH)[23], semi-paired discrete hashing (SPDH)[24], similarity adaptive discrete 

deep hashing (SADH)[25], multiview discrete hashing (MDH)[26], isotropic hashing (IsoH)[27]. In recent years, supervised 

methods have been used instead of unsupervised methods with more successful results. 

 

To strengthen feature extraction and feature learning in supervised methods, deep learning structures have started to be used 

and have improved classification performance by characterizing the non-linear features of the data more effectively. Based 

on the convolutional neural network structure CNNH [28], a two-stage method is preferred in this study. In the first stage, 

approximate hash code learning was performed by preserving pairwise semantic information and in the second stage, deep 

hash network training was performed using the learned hash codes as labels. The independence of the deep hash network 

from the first stage limits the derivation of better hash codes.  To overcome this problem, a network within a network (NINH) 

hash function and image features are presented as simultaneous inputs [29]. Furthermore, various studies use Deep Hashing 

methods [9,30-34]. 

Yuan et al. presented a new general similarity metric in [12], which offers a different approach to methods that aim to learn 

hash functions based on pairwise and triplet data relations. It has been stated that the use of pairwise and triplet-based 

functions uses only partial relationships between data pairs and may damage the identifiability of the generated hash codes, 

may have low efficiency in unbalanced data, low efficiency in generating profile similarity among the entire data set and high 

temporal complexity. It was observed that the proposed central similarity method achieved more successful results. 
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In this study, a deep reinforcement hashing method using the Central similarity metric is developed.  

2. Proposed Method 

Most image-hashing studies in the literature have been performed with supervised learning methods.  In this paper, we implement 

a new methodology for generating image hashes based on the methodology described in [14]. This work generates image hashes 

with several deep networks and deep reinforcement learning.  

In our proposed deep reinforcement learning-based approach, RNN network structures are chosen as an agent modeling the hash 

functions so that the previous hash functions' errors are considered during sequentially transferring images to binary codes. In 

addition, the Central Similarity metric, which can achieve more successful results, was adapted to the model and more effective 

results were obtained in learning binary hash codes. 

Reinforcement learning involves a challenge encountered by an agent that needs to acquire behavior by engaging in trial-

and-error interactions within a dynamic environment [13,35]. Within the conventional framework of deep reinforcement 

learning, the agent takes the current environmental state as input and produces an output action. This action influences the 

state of the environment, and the environment communicates with the agent using a scalar reinforcement signal referred to 

as a reward, which signifies the actions' effectiveness. The reinforcement learning objective is to train the agent to select 

actions that maximize the cumulative reward. Significant advancements have been made in various domains through deep 

reinforcement learning techniques. 

The deep reinforcement learning we used in this study is shown in Figure 1. In this network, the agent performs actions with 

stochastic policies and tries to maximize the amount of future reward with a reward-punishment system for each action. In 

reinforcement deep learning, the policy, state, action, and reward must be determined. In this study, the feature layer output 

of a CNN network and the historical information of an RNN network are used for the state. For the policy and actions to be 

implemented, an RNN network and a linear deep network layer are nested. An internal reward system is prepared for each 

action taken. 

 

 
Figure 1 The deep reinforcement learning architecture for image hashing. 

 
States:  

A state (𝑠), is a binary given in the output of Figure 2 and is defined as 𝑠 = (𝑓𝑣, ℎ𝑣). where 𝑓𝑣 is the image feature vector 

and ℎ𝑣 is the background information of the hash codes. In a pre-trained CNN network, the feature vectors of the original 

images are extracted. The historical information is obtained from the policy layer. 

The first 18 layers of the VGG-19 network were used as is to generate the 𝑓𝑣 in the state. The last fully connected layer 

output of the VGG-19 network is used as image features. The structure of this VGG-19 network is shown in Figure 3. 

Actions:  

There are two possible actions in a hashing problem. These actions are a=1 bit or a=0 bit. Therefore, the probability sum of 

the possible actions will be 1. This study, -1 is used instead of the 0-action resulting from the policy layer. The agent used 

generates the probability of action between -1 and 1 as the output of the policy layer. 
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Figure 2 Generation State 

𝑃(𝑎|𝑠, 𝜃) = {
1 − 𝑝𝑜𝑙𝑖𝑐𝑦(𝑠, 𝜃) 𝑎 = −1

𝑝𝑜𝑙𝑖𝑐𝑦(𝑠, 𝜃)      𝑎 = 1    
 (1) 

 

 

Figure 3 VGG – 19 Network Architecture 

The probability distribution of the policy layer is given in Equation 1. 𝑝𝑜𝑙𝑖𝑐𝑦(𝑠, 𝜃)  denotes the output of the policy layer, 

𝑠, 𝜃 denote the feature vector and the weights of the deep network respectively. 

In classical deep learning-based hashing methods, the output layer's output is the number of hash lengths to be obtained.  This 

work generates a sequential action using the past hash information. A policy layer can only output one bit of action.  However, 

a one-bit hash code does not provide enough information to correct previous action errors. 

In other words, generating a hash sequence where each bit is generated independently or generating it as a group 

independently reduces the correlation between the hash bits. Therefore, the previous action errors will be eliminated if the 

correlation between hash bits is utilized to generate hash bits. The RNN layer in our agent provides this. Instead of a one-bit 

hash code in our work, we used a sequential action with reduced correlation between pixels. 

𝐴𝑡
𝑖 = {𝑎1, 𝑎2, … , 𝑎𝑘} (2) 

 

In short, an action in reinforcement learning is a set of actions in our study. 

 

Rewards: 

 

An action set is rewarded with a single reward. Each action set is a set of k-ordered hash functions. 𝐴𝑡
𝑖  is the 𝑖-th action set 

at time 𝑡.   𝑘 is the number of actions and corresponds to the desired hash length. From probability theory, the action 

probability of a set of 𝑘 ordered actions are defined as 𝑃(𝐴𝑡
𝑖 |𝑠𝑡

𝑖 , 𝜃). 

 

𝑃(𝐴𝑡
𝑖 |𝑠𝑡

𝑖 , 𝜃) = ∏ 𝑃(𝑎𝑗|�̂�𝑗 , 𝜃)

𝑘

𝑗=1

 (3) 

𝑠𝑡
𝑖  is the 𝑖-th state at time 𝑡, 𝑎𝑗  is an element of the action set𝐴𝑡

𝑖  and �̂�𝑗 is the current input state entering the policy layer.  The 

details will be discussed in the next section. 
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A reward function was created for the performance of each action taken. In creating this function, the concept of hash center 

in [12] is used. For a dataset with 𝑚 classes, 𝑚 hash centers are created. We try to force the hash codes generated for classes 

in similar groups to resemble the hash centers generated for the class. 

The hash center for all classes is defined as 𝐻𝐶 = {𝑐1,𝑐2, … 𝑐𝑚} and  𝑐𝑖 is defined as a k-element array of {-1,1}. Equation 

4.1 is a reward function for action set 𝑖 at time 𝑡, 

 

𝐽𝑡
𝑖(𝐴𝑡

𝑖 , 𝑐𝑖) = 1 − 𝐵𝐶𝐸(𝐴𝑡
𝑖 , 𝑐𝑖) (4.1) 

  

𝐵𝐶𝐸 = 𝐿(𝜃) = −[𝐴𝑡
𝑖 ∗ 𝐿𝑜𝑔(𝑐𝑖) + (1 − 𝐴𝑡

𝑖 ) ∗ 𝑙𝑜𝑔(1 − 𝑐𝑖)] (4.2) 

 

Equation 4.2, BCE is a creation that calculates the Binary Cross Entropy between the target and input probability. In this study 

input is model output and target is generated with central similarity hash codes. 

The pseudo-code for creating the hash center is given in Algorithm 1. 

 

Algorithm 1 Generation of Hash Center [12] 

 
For single-label datasets, hash centers are created as in Algorithm 1. For multi-label datasets, hash center {𝑐1,𝑐2, … 𝑐𝑚} is 

created for each class. If an image is associated with two or more labels (classes), the hash center centroid of the corresponding 

image is used. For example, a dataset contains {𝑙1,𝑙2, … 𝑙𝑚}  labels. If an image has a label such as 𝑙1,𝑙3, 𝑙6, the centroid of 

these three centers is calculated by using the hash centers 𝑐1,𝑐3, 𝑐6 of these labels. In the multi-label dataset, the generated 

hash center centroid is used instead of 𝑐𝑖 in the reward function. 

Two sequential rewards are used to find correct hash codes. The first one, 𝑅𝑡
𝑖 , is the internal cluster reward for the 𝑖-th action set 

and is concerned with hash code accuracy at the cluster level. The second reward 𝑅𝑖 is the global reward and is concerned with the 

accuracy of all hash codes of image i. 

 

𝑅𝑡
𝑖 = −𝐽𝑡

𝑖(𝐴𝑡
𝑖 , 𝑐𝑖) 

𝑅𝑖 = −𝐽𝑖(𝐴𝑖 , 𝑐𝑖) 
(5) 

 

A. Deep Reinforcement Learning Approach for Image Hashing 

The general structure of the study in Figure 4 shows the Agent and Environment, which are the components involved in 

reinforcement learning. The Environment prepares image features and hash center representations and executes the reward 

function. The Agent contains a policy layer and executes the implementation of the policy. The state is formed with the image 

feature obtained from the Environment and the history information formed in the policy layer. 

Image features and hash centers are obtained in Environment with VGG19 and Algorithm 1. A single RNN cell is used in 

the policy network. RNN cells separate themselves from normal neurons in that they have a state and thus can remember 

information from the past. The RNN converts image features into local states. By applying a linear layer to the local states, 

policy values between -1 and 1 are obtained. The basic idea behind the application of RNN is to continue the training without 

ignoring the past information and to generate the actions in this process. 
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Figure 4 Proposed Method Schema 

The schematic of the policy network created for generating actions as a set and reducing the correlation of actions is given in 

Figure 5.  Here, instead of an RNN network, a single RNN cell is used to generate actions with the desired number of hashes.  

Background knowledge is applied in this part to eliminate previous action errors. The input of the RNN memory cell is the 

current input image features 𝑥𝑡 and the previous RNN cell's ℎ𝑡−1 history information obtained from the previous step.  The 

RNN cell generates the desired number of hashes (𝑘)  from a single RNN cell using the background information obtained 

from its inputs and an inner loop. A single action is obtained by applying a linear layer to the ℎ𝑛 obtained in each loop. At 

the output of the loop, the current RNN cell history ℎ𝑡  and 𝑘  actions are generated. 

 

 
Figure 5 Diagram of the policy network where actions are generated as a cluster. 

For (𝑥𝑡 , ℎ𝑡−1 ) as a state, the RNN layer converts the inputs into outputs with the activation function applied to the cell. 

Equation 6 is used for the first cycle and Equation 7 for the other cycles. 

 

ℎ𝑛 = tanh (𝑊𝑖ℎ𝑥𝑡 + 𝑏𝑖ℎ + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎℎ) (6) 

ℎ𝑛 = tanh (𝑊𝑖ℎℎ𝑛−1 + 𝑏𝑖ℎ + 𝑊ℎℎℎ𝑛−1 + 𝑏ℎℎ) (7) 

 

The output of the policy network is the action set and the final history is ℎ𝑡 = ℎ𝑛. In the equations  𝑥𝑡 and ℎ𝑡 are the input 

and hidden vectors, where 𝑡 is the 𝑡 th step value. 𝑊𝑖ℎ is the weight matrix generated for the input values 𝑥𝑡 and ℎ𝑛−1. 𝑊ℎℎ 

are weight matrices generated against ℎ𝑛.   𝑏𝑖ℎ and 𝑏ℎℎ  are bias terms. 

In the given policy network, the input image and the past RNN memory cell are used in the first state (first cycle) to generate 

actions for an image. In other cases (cycles), the image features information can be stored in the RNN hidden states and 
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replace past action information. This way, historical information is utilized to generate hash codes and correction of past 

action errors is realized. The ℎ𝑡  at the last stage of the cycle gives the history information for the next steps in Figure 1. 

The policy layer, the linear layer, which is the fully connected layer, is defined as in Equation 8. The output of the linear layer 

includes a linear network and an activation function. 

 

𝑎𝑛(𝑥) = tanh (𝑊ℎ
𝑇ℎ𝑛 + 𝑏) (8) 

 

ℎ𝑛 is the RNN layer output, 𝑊ℎ
𝑇  is the policy layer weights and v is the bias term. At each step 𝑡, the output of the linear 

policy network is mapped between -1 and 1. With a threshold value, the map values are converted into hash codes.  In this 

study, the threshold value will be 0 since probability values between -1 and 1 will occur.      ( 𝑖 = 1 … 𝑘 )     

 

𝑏𝑖(𝑥) = {
−1 𝑎𝑖(𝑥) < 0

1 𝑎𝑖(𝑥) ≥ 0
 (9) 

B. Environment vs Agent 

In our study, three networks are trained. A stochastic gradient descent algorithm is used to update the parameters of the 

networks. The first network is used in the CNN network in the environment. The training parameter. 𝜃𝑓 is updated at each 

step. While in other deep hashing methods, the generation of image features is mostly performed once, in this work the 

weights of the network are updated again at each step. The objective function is 𝐽𝑡
𝑖(𝐴𝑡

𝑖 , 𝑐𝑖) and the parameter 𝜃𝑓 is updated as 

in Equation 10. 

 

𝜃𝑓 = 𝜃𝑓 − 𝛼𝑓∇𝜃𝐽𝑡
𝑖(𝐴𝑡

𝑖 , 𝑐𝑖 , 𝜃𝑓) (10) 

 

The goal of reinforcement learning is to find an optimal behavior strategy for the agent to obtain optimal rewards. This study 

aims to determine the optimization parameters for maximum reward. 

max 𝐺 (𝜃) = 𝐿𝑔(𝜃) + 𝑅𝑔(𝜃) (11) 

θ represents the model parameters, 𝐿𝑔 is the reward of the action set and 𝑅𝑔 is the reward of the objective function in the 

model. The model parameters are iteratively updated for the maximum reward. 

 

In this work, hashing is considered as a dynamic Markov chain.  The conditional probability distribution of the Markov chain 

is expressed as 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡).  𝑠𝑡  𝜖 𝑆, 𝑎𝑡  𝜖 𝐴 and  𝑠𝑡+1 𝜖 𝑆;  represent the state and action at time t and the next state, 

respectively. The objective is to learn the stochastic policy 𝜋𝜃(𝑎𝑡|𝑠𝑡) conditional on the training parameter θ. A trajectory 

with t=1, 2,...,T 

 

𝑝𝜃(𝜏) = 𝑝𝜃(𝑠1, 𝑎1, 𝑠2, 𝑎2, … , 𝑠𝜏 , 𝑎𝜏, 𝑠𝜏+1) == 𝑝(𝑠1) ∏ 𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)𝑇
𝑡=1      (12) 

 

Let 𝑔𝑡 = 𝐺(𝑎𝑡 , 𝑠𝑡+1)  be the reward at time t. The objective function can find the value of 𝜃∗  that satisfies the optimal policy. 

𝜃∗ = arg 𝑚𝑎𝑥𝜃 𝐽(𝜃) (13) 

 

Objective function 𝐽(𝜃), 

                                                   𝐽(𝜃) = 𝐸𝜏~𝑝𝜃(𝜏)[∑ 𝑔𝑡
𝑇
𝑡=1 ] = 𝐸𝜏~𝜋𝜃(𝜏)[∑ 𝑔𝑡

𝑇
𝑡=1 ]  (14) 

 

For the expected total reward of each set of actions taken, the Monte-Carlo Policy Gradient is used to optimize the model 

parameter. Gradient-based policy methods aim to model and optimize the policy directly. Policy gradient methods estimate 

the gradient in one iteration to maximize the expected total reward. 
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The policy gradient is expressed as ∇𝜃𝐽(𝜃) = ∇𝜃𝐸𝜏~𝜋𝜃(𝜏)[∑ 𝑔𝑡
𝑇
𝑡=1 ]. In this study, Equation 15 is preferred among the many 

policy gradient definitions in the literature. 

∇𝜃𝐽(𝜃) = 𝐸𝜏~𝜋𝜃(𝜏)[∇𝜃 log 𝜋𝜃(𝜏) 𝑔(𝜏)] (15) 

 

Expected total reward of the action set. 

 

𝐿𝑔(𝜃) = 𝐸𝜏~𝑝𝜃(𝜏) [∑ 𝑔𝑡

𝑇

𝑡=1
] == ∑ log[𝜋𝜃(𝑎𝑡|𝑠𝑡)] 𝑔𝑡

𝑇

𝑡=1
 (16) 

 

 

𝑠𝑡 is the 𝑘 th time in the loop in the RNN layer with the outputs of the RNN cell, 

𝐿𝑔(𝜃) = ∑ ∑ log [P(𝑎𝑖,𝑡|�̂�𝑖,𝑡 , θ)]𝑔𝑡

𝑘

𝑖=1

𝑇

𝑡=1
 (17) 

 

𝑅𝑔 is the global reward elated to the accuracy of all generated hash codes. Gradient descent algorithm is used to optimize the 

global reward.   In model training we can calculate the sub-gradient for 𝐴𝑡
𝑖 , 𝑐𝑖   is 

𝜕𝐽𝑡
𝑖(𝐴𝑡

𝑖 ,𝑐𝑖)

𝜕𝜃
  by  Equation 4.1. The hash codes 

generated with this training strategy are forced to be like those generated with Central Similarity.   

The pseudo-code of the proposed method is roughly shown below. 

Algorithm 2 Pseudo code of proposed method  
1 

 

2 

 

4 

 

5 

 

6 

 

7 

8 

Generate hash center of classes 

While(1) 

Create a history vector (hv) and assign all 

zeros. 

Generate image feature (fv) from CNN and 

define state s=(fv,hv). 

Generate actions from RNN. The input of RNN 

is state (s).  

Calculate the loss between the hash vector 

and actions. 

Calculate Backward-Propagation of Image 

Adjust the learning rate every N epoch. 

If loss < 0.001 break 

End  

 

 

3. Experiment Results  

CIFAR10 and NUS-WIDE datasets, which are generally accepted in the literature, were used in this study. The CIFAR10 

dataset contains about 60000 images of size 32 x 32, while NUS-WIDE consists of about 265000 images collected in Flicker 

and manually annotated with 81 concepts.  For CIFAR10, we randomly select 1000 images as a query set and further 

randomly select 5000 images to form the training set. For NUS-WIDE datasets, we choose the 21 most prevalent concepts 

for our experimentation. Our query set consists of 2100 images, with 100 images per concept. Additionally, we randomly 

select an extra 10000 images for the training set. 

The Hamming radius refers to the maximum number of bit positions by which two binary strings of equal length can differ 

from each other while still being considered within a specified distance from each other. In other words, it measures the 

extent of dissimilarity between two binary strings regarding the differing bit positions. 
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Figure 6 Precision within Hamming radius 2 using hash lookup for CIFAR Dataset 

In this study, CNNH [28], DSH [31], HASHNET [9] and NINH [28], which are deep hashing approaches, were compared 

with the proposed method. When Figure 6 is analyzed for the images of the CIFAR10 dataset using Hamming Radius 2, the 

precision of the proposed method outperforms the other methods for all bit values. In addition, when the length of the hash 

codes increases, the number of images sharing the same Hamming code will decrease, so the image-matching process with 

Hamming radius 2 is unsuccessful for most algorithms. When Figure 6 is analyzed, it can be observed that the proposed 

method also performs better for longer hash codes. 

 

Figure 7 Precision within Hamming radius 2 using hash lookup for NUS-WIDE Dataset 

In Figure 7, for NUS-WIDE, the proposed method outperforms the other methods at all hash code lengths. 

The Mean Average Precision (MAP) is computed as the arithmetic mean of the Average Precisions (AP) obtained for each 

query within a given dataset. It is a metric commonly employed to assess the performance of information retrieval systems.  

It provides a single value that summarizes the overall performance of a retrieval system. Higher MAP values indicate better 

retrieval performance. As can be seen from Table 1, the MAP value is calculated for each hash code length. This value gives 

us for how good our model is. 

𝐴𝑃 =
1

𝑅
∑

𝑖

𝑅𝑖

𝑛

𝑖=1

× 𝑟𝑒𝑙𝑖  (16) 
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𝑀𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖 

𝑛

𝑖=1

 

𝑅 represents the overall count of true positive instances, 𝑛 stands for the total number of images under consideration, 

𝐴𝑃𝑖 denotes the precision at point 𝑖, and 𝑟𝑒𝑙𝑖functions as a relevance indicator. The relevance function, characterized as an 

indicator function, assumes a value of 1 when the document at rank 𝑖 is considered relevant, and it takes a value of 0 otherwise. 

 Table 1. MAP Values of Hash Bits 

Methods CIFAR10 NUS-WIDE 

 24 bit 32 bit 48 bit 24 bit 32 bit 48 bit 

NINH 0.818 0.832 0.830 0.827 0.827 0.827 

HashNet 0.823 0.840 0.843 0.833  0.830 0.840 

DSH 0.712 0.751 0.720 0.804 0.815 0.800 

CNNH 0.692 0.667 0.623 0.784 0.790 0.740 

Proposed 0.857 0.868 0.865 0.859 0.862 0.865 

In this study, MAP values of the proposed method and other methods are calculated for 24, 32 and 48 bit hash codes. MAP 

scores are calculated for hash codes of different lengths on the CIFAR10 dataset. The proposed method outperforms the other 

methods for all hash bit lengths. It is seen that the proposed method has the highest average MAP value of 0.863 and 

consistently outperforms the other methods.  Similarly, for the NUS-WIDE dataset, When the MAP values are analyzed, the 

proposed method performs better at all hash bit lengths. 

Conclusion 

In this paper, we have proposed a Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning 

(SCIHCGRL). To consider, the errors of previous hash functions in the deep reinforcement learning strategy, the RNN model 

is used, and a new model is presented that performs central similarity-based learning involving the correlation of hash 

functions. Thus, since the errors of the previous hash functions are considered during the sequential transfer of the images 

into binary codes, more efficient results are obtained in learning binary hash codes by adapting the Central Similarity metric 

to the model, which can achieve more successful results. Comparisons using CIFAR-10 and NUS-WIDE and datasets show 

that the proposed method gives better results.  

 

Future work can be done to improve the time complexity of the algorithm. In addition, the proposed method can also be 

applied to videos by considering various properties of video media (correlation between video frames etc.). 
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