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Abstract: Fractional calculus is an effective method used to analyze the dynamics of nonlinear systems 
and provide more precise results. In this study, firstly, the 4-dimensional Pang system is introduced and 
its dynamic analyses demonstrating the hyperchaotic structure are given. Then, fractional-order 
calculations of the system are presented and the dynamics of the system for different fraction orders are 
investigated. At this point, according to the results obtained from Lyapunov exponents and phase-space 
representation, the Pang system exhibits periodic, chaotic, and hyperchaotic behaviors in different 
fractional orders. The results obtained at the end of this study present that the system is hyperchaotic for 
the fractional order of 3.52 and it is also confirmed that more accurate results are obtained than the 
integer-order analysis. In the next part of the study, adaptive synchronization of the fractional-order 
system is performed. Three different cases are examined and it is demonstrated that synchronization is 
achieved in all cases. 
 
Anahtar Kelimeler: Fractional order systems, Synchronization, Hyperchaos 
 

4-Boyutlu Hiperkaotik Pang Sisteminin Kesir Dereceli Analizi ve Adaptif Senkronizasyonu  
 
Öz: Kesir dereceli hesaplamalar doğrusal olmayan sistemlerin dinamiklerini analiz etmekte kullanılan ve 

daha kesin sonuçlar elde edilmesini sağlayan etkili bir yöntemdir. Bu çalışmada, öncelikle 4 boyutlu Pang 

sistemi tanıtılmış ve hiperkaotik yapısını gösteren dinamik analizleri verilmiştir. Daha sonra sistemin 

kesir dereceli hesaplamaları yapılarak farklı kesir dereceleri için sahip olduğu dinamikler incelenmiştir. 

Bu kapsamda, Lyapunov üstelleri ve faz-uzayı gösteriminden elde edilen sonuçlara göre, Pang sistemi 

farklı kesir derecelerinde periyodik, kaotik ve hiperkaotik davranışlar sergilemektedir. Çalışmanın 

sonunda elde edilen sonuçlar, sistemin 3,52 kesir derecesi için hiperkaotik yapıda olduğunu göstermiştir. 

Elde edilen bu sonuç, tamsayı dereceli modele göre kesir dereceli yapı ile daha kesin sonuçlara 

ulaşıldığını doğrulamıştır. Çalışmanın ilerleyen kısmında, elde edilen kesir dereceli sistemin adaptif 
senkronizasyonu gerçekleştirilmiştir. Üç farklı durum incelenerek her durumda senkronizasyonun 

sağlandığı gösterilmiştir.  
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1. INTRODUCTION 
 

Chaotic systems were first introduced in 1963 by Edward Lorenz's work on weather 
forecasting (Lorenz, 1963). The fact that a nonlinear autonomous system has at least one 
positive Lyapunov exponent and the system has at least 3 dimensions indicates that the type of 
the system is chaotic. In addition, chaotic systems have characteristic features such as sensitivity 
to initial conditions, unpredictable dynamics, and complex system structure. Hyperchaotic 
systems, on the other hand, are similar to chaotic systems and exhibit more complex dynamics. 
Since the 1960s, many chaotic and hyperchaotic systems with different structures have been 
proposed and these systems have been applied in fields such as communication, encryption, 
control, and electronics (Abd El-Maksoud et al., 2019; Huang et al., 2021; Liao et al., 2022; 
Nwachioma & Pérez-Cruz, 2021; F. Wang et al., 2019; J. Wang et al., 2019). 

Integer order systems do not accurately and precisely reflect the dynamics of chaotic 
structures that are sensitive to initial values and parameters. For this reason, the dynamics of a 
model can be obtained more clearly by using fractional order calculations and it is possible to 
achieve more accurate results in applications such as control. The best-known first work on 
fractional order systems was done by Liouville and Riemann (Oldham & Spanier, 1974). 
However, other proposed methods such as the Caputo method (Caputo, 1967) and the 
Grünwald-Letnikov method (Scherer et al., 2011) are frequently used in the generation of 
fractional order systems. 

The degree of a system is expressed as the sum of all individual degrees, that is, the size of 
the system (Lu, 2006). In autonomous chaotic structures, the system size should be at least 3 as 
an integer and 4 in hyperchaotic models. However, it has been shown that this degree may be 
decreased with fractional order analyses. For instance, the well-known Chua circuit exhibits 
chaotic behavior with a system degree of 2.7 (Qammer, 1995). On the other hand, Wu et al. 
calculated the smallest system degree required to obtain the hyperchaotic dynamics as 2.88 (Wu 
et al., 2009). 

The basic principle of synchronization lies in the convergence of trajectories of two 
systems, commonly named master (drive) and slave (response) systems (Gularte et al., 2021). It 
can be also explained as adjusting the signals coming from the slave part to act as the master 
system (Yılmaz et al., 2022). Chaos synchronization has been studied to control nonlinear 
dynamical systems after the pioneering research of Pecora and Carroll (Pecora et al., 1997). 
Various approaches have been proposed since then to achieve synchronization. Adaptive 
synchronization (Sajjadi et al., 2020), projective synchronization (Al-Obeidi & AL-Azzawi, 
2019), complete synchronization (P. Wang et al., 2019), hybrid synchronization (Singh et al., 
2021) and sliding mode control (Liao et al., 2022; Vaidyanathan et al., 2021) are examples of 
leading methods used to synchronize both chaotic and hyperchaotic systems.  

Fractional order analysis has been implemented in chaotic and hyperchaotic systems due to 
its more realistic nature and giving more accurate results to physical phenomena (Meng et al., 
2021). Furthermore, synchronization of fractional order dynamical systems has also been 
intensively addressed in the literature. Bouridah and Wang have proposed an image encryption 
algorithm based on the synchronization of fractional order hyperchaotic systems (Bouridah et 
al., 2021; S. Wang et al., 2020).  In addition, chaos-based fractional order synchronization has 
also been investigated in different studies (Lin et al., 2021, 2022; Meng et al., 2021). 

The main contribution of this paper is to provide adaptive synchronization between an 
integer order and a fractional order hyperchaotic Pang system besides obtaining integer order 
synchronization and fractional order synchronization separately. The main features of the study 
can be described as follows: 

 Introducing four-dimensional hyperchaotic Pang system with phase portraits and 
Lyapunov exponents analysis. 
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 Applying fractional order analysis to four-dimensional Pang system and demonstrating 
hyperchaotic dynamics when the system degree is 3.52. 

 Implementing the adaptive synchronization method to a fractional order system and 
determining the suitable control function. 

 Synchronizing a fractional order hyperchaotic slave system to an integer order 
hyperchaotic master system besides illustrating the integer order and fractional order 
synchronization individually.  

In the next section of the study, the Pang system is introduced, and the dynamic analysis of 
the system is given. In Section 3, the Caputo method is explained, and fractional analyses of the 
system are performed. Here, the dynamics of the system for different fractional degrees are 
examined and the existence of periodic, chaotic, and hyperchaotic structures is shown with 
Lyapunov exponents and phase portraits. Then adaptive synchronization of the fractional order 
hyperchaotic Pang system is provided in Section 4 and simulation results for different cases are 
given in the following section. Finally, in Section 6, the results obtained from this study are 
evaluated. 

 
2. 4-DIMENSIONAL HYPERCHAOTIC PANG SYSTEM 

The 4-dimensional hyperchaotic system proposed by Pang (Pang & Liu, 2011) in 2010 is 
shown in Eq. (1):  

 
�̇� = 𝑎(𝑦 − 𝑥)          
�̇� = 𝑐𝑦 − 𝑥𝑧 + 𝑤   
�̇� = −𝑏𝑧 + 𝑥𝑦         
�̇� = −𝑘1𝑥 − 𝑘2𝑦   

            (1) 

 
Here, x, y, z, and w represent the state variables of the system, while a, b, c, k1, and k2 are system 
parameters and fixed values. When (a, b, c, k1, k2) are selected as (36, 3, 20, 2, 2), hyperchaotic 
behavior is observed in the system. The phase-space representation of the x-z and y-z planes of 
the system for the given constant values is presented in Figure 1. 
 

 
Figure 1: 

Phase-space representation of the Pang system: a) for the x-z plane, b) for the y-z plane 
 

Lyapunov exponents of the Pang system given in Eq. (1) are calculated for the values (a, b, c, 
k1, k2) = (36, 3, 20, 2, 2) and obtained as follows: 
 

λ L1 = 1.3963  λL2 = 0.1518  λL3 = 0.0029  λL4 = -20.4796 
 

a) b) 
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The positive results of λL1 and λL2 from the obtained Lyapunov exponents confirmed the 
hyperchaotic nature of Eq. (1). Furthermore, Lyapunov exponents are calculated for the 
gradually increasing k2 parameter in the system and the graph created is shown in Figure 2. 
When the k2 parameter is in the range of [0-27], the first and second Lyapunov exponents are 
positive and the system exhibits hyperchaotic behavior in this range. 
 

3. FRACTIONAL PANG SYSTEM AND DYNAMIC ANALYSIS 

There are several methods used to obtain fractional order systems in the literature. The 
Riemann-Liouville method and the Caputo method are the most well-known methods and have 
been applied to different systems. In this study, the Caputo definition given in Eq. (2) is used to 
obtain the fractional order hyperchaotic Pang system: 

 

 
Figure 2: 

Lyapunov exponents calculated for varying k2 parameter of the Pang system. 
 

𝐷𝑡
𝑞𝑓(𝑡) = {

1

𝛤(𝑛−𝑞)
∫

𝑓(𝜏)

(𝑡−𝜏)𝑞+1−𝑛 𝑑𝜏,       𝑛 − 1 < 𝑞 < 𝑛
𝑡

0

𝑑𝑛

𝑑𝑡𝑛 𝑓(𝑡),                               𝑞 = 𝑛            
   (2)  

 
The expression 𝐷𝑡

𝑞 given in Eq. (2) represents the Caputo derivative operator, the value Γ(.) 
represents the Euler Gamma function, and the value n is an integer not less than the value q. If q 
= 1 in the given equation, the classical integer order system structure is obtained.  

The fractional equivalent of the Pang system formed by Caputo’s definition, is included in 
Eq. (3): 

 
𝐷𝑡

𝑞1𝑥 = 𝑎(𝑦 − 𝑥)       

𝐷𝑡
𝑞2𝑦 = 𝑐𝑦 − 𝑥𝑧 + 𝑤

𝐷𝑡
𝑞3𝑧 = −𝑏𝑧 + 𝑥𝑦     

𝐷𝑡
𝑞4𝑤 = −𝑘1𝑥 − 𝑘2𝑦

     (3) 
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where q1, q2, q3, and q4 represent fractional degrees and can take values in the range 0 < qi < 1. 
In order for the obtained fractional order system to have nonlinear dynamics, the system 
structure must be unstable. For this purpose, the characteristic equation of the system for the 
equilibrium point E (0, 0, 0, 0) and constant values (a, b, c, k1, k2) = (36, 3, 20, 2, 2) is 
calculated as follows: 
 

𝛥(𝜆)  =  (𝜆 +  3)(𝜆3  +  16𝜆2  −  718𝜆) 
 
Accordingly, the eigenvalues of the system are: 

λ1 = −3   λ2 = 19.964   λ3 = −35.964   λ4 = 0 
 

The fact that the eigenvalues consist of negative and positive numbers indicates that the system 
is unstable. 

Dynamic analysis of the fractional order system given in Eq. (3) is carried out for different 
fractional degrees using q1 = q2 = q3 = q4 = q values. Accordingly, phase portraits of the x-z 
plane obtained for fractional degrees q = 0.7, q = 0.88, and q = 0.89, respectively, are given in 
Figure 3. Phase space representation illustrates that the system is periodic when q = 0.7 and 
exhibits chaotic behavior when q = 0.88. On the other side, when the q fractional degree is 
changed to 0.89, the system switches to the hyperchaotic structure. With the time series graph 
given in Figure 4, the behavior of the System (3) for the periodic and hyperchaotic dynamics is 
shown. 

 

 
Figure 3: 

Phase portraits of the Pang system for different fraction degrees. a) when q = 0.7, periodic behavior; b) when q = 0.88, 
chaotic behavior; c) when q = 0.89, hyperchaotic behavior 

 

a) b) 

c) 
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Figure 4: 

Time series graph of fractional order Pang System: For q = 0.7 (above); for q = 0.89 (below) 
 

Lyapunov exponents of the System (3), which are analyzed for different fraction degrees, 
are also calculated and the result obtained for the fraction degree interval [0.7 1] is given in 
Figure 5. When the given graph is examined, it is seen that the Pang system has two positive 
Lyapunov exponents starting from the fraction degree q = 0.89. For this reason, for the Pang 
system to exhibit hyperchaotic behavior, the smallest fraction degree must be 0.89 and the 
system size must be at least 3.56. Lyapunov exponent values obtained for different fraction 
degrees of the system are presented in Table 1. Values given in this table demonstrate that by 
increasing the fractional degree, the system exhibits periodic, chaotic, and hyperchaotic 
dynamics, respectively. 

 
Figure 5: 

Lyapunov exponents for the interval of q = [0.7 1] of the Pang system. 
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Table 1. Values of Lyapunov Exponents Calculated for Different Fraction Degrees of the 
Pang System and System Structure 

 
 

 

 

 

 

 

 

 

 

 

 

 
3.1. The Effect of k2 Change on the System When q = 0.89 

 
After obtaining the hyperchaotic structure for the value of q = 0.89 in the fractional order 

system, the dynamic structure is examined according to the change of the system parameters. 
Lyapunov exponents are calculated again by keeping the (a, b, c, k1) = (36, 3, 20, 2) values 
constant and changing the k2 parameter within the range of [0 40]. In the graph given in Figure 
6, λL1 and λL2 are positive for k2 = [1 11] U [12.5 18] values, and the system has hyperchaotic 
dynamics in this range. On the other hand, for the values of 18 < k2 < 36, it is observed that the 
system is in a chaotic structure. 

 

 
Figure 6: 

Lyapunov exponents (with q = 0.89 fractional order) for the k2 parameter of the Pang system, 
which varies in the range [0 40]. 

Fractional Order λL1 λL2 λL3 λL4 System Structure  

q = 0.70 -0.01 -3.96 -3.99 -7.31 Periodic 

q = 0.75 0.03 -2.56 -3.83 -7.89 Chaotic   

q = 0.80 0.03 -1.43 -2.72 -8.15 Chaotic   

q = 0.88 0.12 -0.19 -0.44 -9.06 Chaotic   

q = 0.89 0.42 0.23 -0.07 -9.38 Hyperchaotic 

q = 0.95 0.92 0.39 0.00 -10.74 Hyperchaotic 

q = 1 1.39 0.15 0.00 -20.48 Hyperchaotic 
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3.2. The Effect of k2 Change on the System When q = 0.88 
 

In this part, k2 parameter of the system is changed for the fraction degree q = 0.88, and the 
Lyapunov exponents are calculated again. In the graph shown in Figure 7, when k2 is in the 
range of [0 4], only λL1 is positive and the system is chaotic. However, when the k2 value 
continues to increase and is brought to the [5 10] range, λL2 also becomes positive, and thus two 
positive Lyapunov exponents are obtained in the system. Although System (3) appears chaotic 
at q = 0.88 according to the values in Table 1, it has also been revealed that a hyperchaotic 
structure can be formed when the k2 value is changed for the same system. Thus, in the 
fractional degree system given in Eq. (3), when q = 0.88, a = 36, b = 3, c = 20, and k1 = 2, 
when k2 = [5 10] U [17 20], a hyperchaotic structure is obtained. 

 

 
Figure 7: 

Lyapunov exponents (with q = 0.88 fractional order) for the k2 parameter of the Pang system, 
which varies in the range [0 40]. 

 
4. ADAPTIVE SYNCHRONIZATION OF FRACTIONAL ORDER HYPERCHAOTIC 

PANG SYSTEM 
 
This section deals with the adaptive synchronization of the fractional order hyperchaotic 
Pang system with different levels of fractions. First, define the master and slave systems for 
synchronization given as Eq. (4) and (5), respectively: 
 

𝐷𝑡
𝑞1𝑥𝑚 = 𝑎(𝑦𝑚 − 𝑥𝑚)             

𝐷𝑡
𝑞2𝑦𝑚 = 𝑐𝑦𝑚 − 𝑥𝑚𝑧𝑚 + 𝑤𝑚

𝐷𝑡
𝑞3𝑧𝑚 = −𝑏𝑧𝑚 + 𝑥𝑚𝑦𝑚        

𝐷𝑡
𝑞4𝑤𝑚 = −𝑘1𝑥𝑚 − 𝑘2𝑦𝑚      

    (4) 

 
and the slave system is: 
 

𝐷𝑡
𝑞1𝑥𝑠 = 𝑎(𝑦𝑠 − 𝑥𝑠) + 𝑢1          

𝐷𝑡
𝑞2𝑦𝑠 = 𝑐𝑦𝑠 − 𝑥𝑠𝑧𝑠 + 𝑤𝑠 + 𝑢2

𝐷𝑡
𝑞3𝑧𝑠 = −𝑏𝑧𝑠 + 𝑥𝑠𝑦𝑠 + 𝑢3       

𝐷𝑡
𝑞4𝑤𝑠 = −𝑘1𝑥𝑠 − 𝑘2𝑦𝑠 + 𝑢4   

    (5) 
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where ui(t) (i = 1, 2, 3, 4) represents the control function. The convenient choice of ui(t) 
function synchronizes slave system to the master system. Therefore, the error function 
between (4) and (5) should be calculated and minimized as given:  
 

𝑒1 = 𝑥𝑠 − 𝑥𝑚         𝑒2 = 𝑦𝑠 − 𝑦𝑚         𝑒3 = 𝑧𝑠 − 𝑧𝑚          𝑒4 = 𝑤𝑠 − 𝑤𝑚      
  

The error dynamic system can be described as:  
 

𝐷𝑡
𝑞1𝑒1 = 𝑎(𝑒2 − 𝑒1) + 𝑢1                          

𝐷𝑡
𝑞2𝑒2 = 𝑐𝑒2 + 𝑥𝑚𝑧𝑚 − 𝑥𝑠𝑧𝑠 + 𝑒4 + 𝑢2

𝐷𝑡
𝑞3𝑒3 = −𝑏𝑒3 − 𝑥𝑚𝑦𝑚 + 𝑥𝑠𝑦𝑠 + 𝑢3      

𝐷𝑡
𝑞4𝑒4 = −𝑘1𝑒1 − 𝑘2𝑒2 + 𝑢4                    

     (6) 

 
Following the control function ui(t) is defined: 
 

𝑢1 = 𝑉1(𝑡)                                  
𝑢2 = −𝑥𝑚𝑧𝑚 + 𝑥𝑠𝑧𝑠 + 𝑉2(𝑡) 
𝑢3 = 𝑥𝑚𝑧𝑚 − 𝑥𝑠𝑧𝑠  + 𝑉3(𝑡)   

𝑢4 = 𝑉4(𝑡)                                  

    (7) 

 
where Vi(t) is the control input.  
 
Substituting Eq. (7) to Eq. (6) gives the error dynamics with control input: 
 

𝐷𝑡
𝑞1𝑒1 = 𝑎(𝑒2 − 𝑒1) + 𝑉1(𝑡)       

𝐷𝑡
𝑞2𝑒2 = 𝑐𝑒2 + 𝑒4 + 𝑉2(𝑡)           

𝐷𝑡
𝑞3𝑒3 = −𝑏𝑒3 + 𝑉3(𝑡)                 

𝐷𝑡
𝑞4𝑒4 = −𝑘1𝑒1 − 𝑘2𝑒2 + 𝑉4(𝑡) 

        (8) 

 
According to Eq. (8), control inputs can be obtained as: 
 

(𝑉) = (

𝑉1

𝑉2

𝑉3

𝑉4

) = (

𝑎 − 1 −𝑎 0 0
0 −1 − 𝑐 0 −1
0 0 𝑏 − 1 0

𝑘 − 1 𝑘 − 1 0 0

) (

𝑒1

𝑒2

𝑒3

𝑒4

)             (9) 

 
Finally control inputs are formed for the parameter values (a, b, c, k1, k2) = (36, 3, 20, 2, 2) 
as given: 
 

(𝑉) = (

35 −35 0 0
0 −21 0 −1
0 0 2 0
1 1 0 0

) (

𝑒1

𝑒2

𝑒3

𝑒4

)       (10) 

 
Calculated control function is used in the slave system to control its dynamics and hence 
synchronize to the master system.  
 
 
 



Yılmaz Bingöl G., Günay E.: Frac. Ord. Analys. Of The 4-Dim. Hypcht. Png. Systm. And Its Adapt. Sync. 
 

94 

5. SIMULATION RESULTS 
 
For the numerical simulation, adaptive synchronization is observed in three separate cases, 
summarized in Table 2, according to the fraction degrees. System parameters are defined as 
(a, b, c, k1, k2) = (36, 3, 20, 2, 2) for all cases.  
 

Table 2. Summary of the parameters for different type of synchronization 
 

Synchronization 
cases 

Fraction degree (q) Initial conditions (x0, y0, z0, w0) 
Master Slave Master Slave 

Integer order  1 1 (1, 1, 1, 1) (1.1, 1.1, 1.1, 1.1) 

Fractional order  0.89 0.89 (1, 1, 1, 1) (1.1, 1.1, 1.1, 1.1) 

Integer vs. 
fractional order 1 0.89 (1, 1, 1, 1) (1, 1, 1, 1) 

 
5.1. Adaptive synchronization of integer order system 

 
For the case of integer order synchronization, fraction degrees of both master and slave 

systems are assigned as q = 1. Initial conditions of the master system are (xm0, ym0, zm0, wm0) 
= (1, 1, 1, 1) while (xs0, ys0, zs0, ws0) = (1.1, 1.1, 1.1, 1.1) for the slave system. 
Synchronization results based on the time series of x variables for master and slave systems 
are illustrated in Figure 8. It is seen that the behavior of xm and xs is almost the same as time 
changes. Furthermore, Figure 9 also demonstrates the synchronization of two systems with 
phase-space representation on x-y planes. 

 

  
Figure 8: 

Time series of x variables for master (xm(t)) and slave (xs(t)) systems when q = 1. 
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Figure 9: 

Phase-space representation on x-y plane when q = 1: a) master system, b) slave system. 
 

5.2. Adaptive synchronization of fractional order system 
 

The case of fractional order synchronization is carried out when fraction degrees for the 
master and slave systems are equal to 0.89. Initial conditions of the master and slave systems 
are defined as (1, 1, 1, 1) and (1.1, 1.1, 1.1, 1.1), respectively. Synchronization results are 
given in Figures 10 and 11 based on the time series analysis and phase-space representation, 
respectively.  

 
Figure 10: 

Time series of x variables for master (xm(t)) and slave (xs(t)) systems when q = 0.89. 
 

a) b) 
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Figure 11: 

Phase-space representation on x-y plane when q = 0.89: a) master system, b) slave system. 
 

5.3. Adaptive synchronization of integer order vs. fractional order system 
 

The last case for the synchronization is obtained for different numerical values of the 
fraction degree. Under the circumstances, the master system is considered an integer order 
system where the fractional degree equals 1. On the other hand, the slave system is a 
fractional order system with q = 0.89. The situation here is to synchronize a fractional order 
system to an integer order system. Initial conditions of these two systems are defined as (xm0, 
ym0, zm0, wm0) = (xs0, ys0, zs0, ws0) = (1, 1, 1, 1). Simulation results including the time series 
analysis and the phase portraits are given in Figures 12 and 13, respectively.  

 

 
Figure 12: 

Time series of x variables for master (xm(t)-q = 1) and slave (xs(t)-q = 0.89) systems. 

a) b) 
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Figure 13: 

Phase-space representation on x-y plane: a) master system (q = 1), b) slave system (q = 
0.89). 
 

 
6. CONCLUSION 

 
In this study, fractional order analyses of the 4-dimensional hyperchaotic Pang system are 

performed based on the Caputo method. First of all, Lyapunov exponents of different fraction 
degrees are calculated and it is determined which dynamics the system has at which fraction 
degree. Then, for the fraction degree q = 0.89, where it exhibits hyperchaotic behavior, the k2 
system parameter is changed within a certain range and the Lyapunov exponents are calculated 
again. From here, it has been observed that even if the k2 parameter of the system is changed, it 
remains in a hyperchaotic structure over a wide range. In addition, it has been revealed by the 
analysis that the Pang system has chaotic dynamics at fractional order q = 0.88. However, when 
the k2 value is changed in the same range, hyperchaotic dynamics are observed in the system at 
the [5 10] values of k2, although the fractional degree remains constant. The conclusion drawn 
from this is that the required system size for the fractional Pang system to exhibit hyperchaotic 
dynamics is at least 3.52. In this study, the structure of dynamics determined by Lyapunov 
exponents is also confirmed by phase-space representation. 

Adaptive synchronization of the hyperchaotic Pang system is also investigated after 
fractional order analyses. The point of motivation is to provide synchronization between an 
integer order and a fractional order system besides obtaining integer order synchronization and 
fractional order synchronization separately. Simulation results demonstrate that an integer order 
master system forces a fractional order slave system to behave as itself and synchronization for 
all three cases is achieved.   
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