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Abstract 

Recent advances in diabetes technology, especially continuous glucose monitoring (CGM) systems, provide reliable sources of glucose 

data. These data have accelerated advanced glucose prediction models for diabetics with technological advances in artificial intelligence 

and data-driven techniques. However, despite these advancements, accurately predicting glucose levels still is a challenge as the models 

struggle to learn contextual patterns in complex sequential data. In this paper, we propose a novel multilayer GRU-based model, 

including a convolutional layer for feature extraction from sequences of glucose values under the encoder-decoder framework. The 

open-access D1NAMO dataset was used to train and test the proposed multi-layer GRU-based model. The proposed model achieved a 

Root Mean Square Error of 9.88 mg/dL, Mean Absolute Error of 6.46 mg/dL, Coefficient of Determination of 0.92, and Mean Absolute 

Percentage Error of %4.83 for 30-min glucose prediction.  Furthermore, the Parkes Error Grid was used as a clinical benchmark to 

assess the robustness of the prediction model. The proposed model demonstrates superior performance compared to state-of-the-art 

glucose prediction models. 

Keywords: Artificial Intelligence, Deep Learning, Glucose Prediction, Gated Recurrent Unit. 

Tip 1 Diyabette Çok Katmanlı GRU Tabanlı Glikoz Tahmini  

 
Abstract 

Diyabet teknolojisindeki son gelişmeler, özellikle de sürekli glikoz izleme (CGM) sistemleri, güvenilir glikoz veri kaynakları 

sağlamaktadır. Bu veriler, yapay zeka ve veri odaklı tekniklerdeki teknolojik ilerlemelerle diyabet hastaları için gelişmiş glikoz tahmin 

modellerini hızlandırmıştır. Ancak, bu gelişmelere rağmen, modeller karmaşık sıralı verilerdeki bağlamsal örüntüleri öğrenmekte 

zorlandığından, glikoz seviyelerini doğru bir şekilde tahmin etmek hala bir zorluktur. Bu makalede, kodlayıcı-kod çözücü çerçevesi 

altında glikoz değerleri dizilerinden özellik çıkarımı için bir konvolüsyonel katman içeren yeni bir çok katmanlı GRU tabanlı model 

öneriyoruz. Önerilen çok katmanlı GRU tabanlı modeli eğitmek ve test etmek için açık erişimli D1NAMO veri seti kullanılmıştır. 

Önerilen model, 30 dakikalık glikoz tahmini için 9,88 mg/dL Ortalama Karekök Hatası, 6,46 mg/dL Ortalama Mutlak Hata, 0,92 

Belirleme Katsayısı ve %4,83 Ortalama Mutlak Yüzde Hatası elde etmiştir.  Ayrıca, tahmin modelinin sağlamlığını değerlendirmek için 

klinik bir ölçüt olarak Parkes Hata Izgarası kullanılmıştır. Önerilen model, son teknoloji glikoz tahmin modellerine kıyasla üstün 

performans göstermektedir. 

 

Anahtar Kelimeler: Yapay Zeka, Derin Öğrenme, Kan Şekeri Tahmini, Kapılı Tekrarlayan Hücre. 
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1. Introduction 

Effective management of blood glucose levels is critical to reducing the impact of diabetes, as inadequate control can lead to serious 

long-term complications, including hypertension and stroke (Mercan et al., 2020; Mercan & Kılıç, 2020). To prevent these 

complications, continuous glucose monitoring (CGM) systems have emerged in recent years (Kılıç et al., 2022; Palaz et al., 2021). 

CGM systems primarily act as alarms and offer benefits such as the prevention of potentially dangerous hypoglycemia or hyperglycemia 

and the optimization of insulin dose requirements. However, a limitation of these systems is that they only generate alerts when glucose 

levels deviate from the target range. This means that the body may be exposed to high or low glucose levels for a period of time until 

the necessary action is taken to address the situation (Kılıç, 2021; Strollo et al., 2021).  The development of AI-based models has 

improved the proactive management of diabetes through glucose prediction. Machine learning (ML) and deep learning (DL) 

architectures, which are sub-branches of artificial intelligence, are prominent in the development of glucose prediction models. ML 

algorithms are capable of producing results with limited computational resources and relatively small datasets. On the other hand, DL 

architectures require training on high-performance computing systems and larger datasets (Çaylı et al., 2021; Doǧan et al., 2022). The 

training process of both ML and DL architectures involves the extraction of discriminative features from the dataset. In ML, this feature 

extraction process is typically performed manually, whereas in DL the features are extracted automatically (Akosman et al., 2021; Şen 

et al., 2022). 

Due to their capacity to learn complex representations directly from the data, DL architectures require longer training times and 

larger datasets compared to ML approaches. This is because DL architectures can capture complex patterns and dependencies in the 

data, resulting in higher accuracy. The longer training process allows DL architectures to iteratively refine their internal representations, 

leading to improved performance. Furthermore, DL architectures exhibit enhanced robustness to noise and variation in the input data. 

The robust behavior exhibited by DL architectures can be attributed to their hierarchical nature. DL architectures are designed with 

multiple layers to enhance their capability to capture and represent complex patterns and dependencies within the data (Çaylı et al., 

2023; Kılıç et al., 2014).  McShinsky et al. investigated the impact of different algorithms on the prediction process (McShinsky & 

Marshall, 2020). Kalman filter, ML algorithms, and DL algorithms were among the algorithms evaluated in the study, which found that 

the Lasso algorithm outperformed other algorithms for 30-minute glucose prediction (Saiti et al., 2020). Saiti et al. investigated three 

ensembles combining ARX and SVR models with meta-algorithms (linear meta-regressor, bagging, boosting) for glucose prediction. 

The results showed better predictive accuracy in all ensembles compared to standalone ARX and SVR models. This highlights the 

efficacy of ensembles in improving glucose prediction accuracy. Alfian et al. found that an XGBoost model achieved the highest 

accuracy among the models tested, indicating its potential for glucose prediction (Alfian et al., 2020). Wang et al. used a LightGBM 

model and Bayesian to optimize its parameters. Their experiments showed that the optimized LightGBM model outperformed both the 

XGBoost and CatBoost models (Wang & Wang, 2020). Song et al. used a combination of Empirical Mode Decomposition and Long-

Short Term Memory (LSTM) network for glucose prediction. The proposed model effectively handled rapid changes in glucose trends 

and outperformed a standalone LSTM model (Song et al., 2019). Zhu et al. proposed an extended recurrent neural network (RNN) 

model for short-term glucose prediction with a 30 PH. This model effectively captured long-term dependencies within the glucose data, 

resulting in improved prediction accuracy (Zhu et al., 2020). 

Different from previous work, our research aims to capture meaningful patterns in sequential data and use these patterns to make 

accurate predictions. Here, we propose a prediction model that includes a convolutional layer-based encoder and a multi-layer GRU-

based decoder. The encoder extracts important patterns and features from sequential data, while the decoder is used to build a robust 

prediction model based on these extracted features.  

The rest of this paper is structured as follows: Section 2 provides comprehensive details on DL-based models, including their 

underlying principles and methods. The dataset and comparison with state-of-the-art approaches are presented in Section 3. Finally, 

Section 4 concludes the paper with a brief summary. 

2. Methods 

2.1. Recurrent Neural Network 

RNNs are a type of artificial neural network model that is specifically designed for processing sequential data, such as time series 

data. Unlike traditional feedforward neural networks, RNNs have the ability to capture temporal dependencies and make use of 

information from previous steps to influence the computations in subsequent steps (Saeed et al., 2022).  In this way, a temporal 

correlation between inputs can be established, and past knowledge can influence the decisions of the network. This ability allows 

feedback between layers, giving RNNs a memory-like property. Despite this advantage, RNNs are challenged by vanishing or exploding 

gradients. This problem occurs because of the need to backpropagate gradients over long sequences, resulting in a gradual shrinkage of 

gradient values layer by layer until they eventually disappear after a few steps (Hossain et al., 2019). Several variants of RNNs have 

been developed to address vanishing or exploding gradients, including LSTM and GRU (Çaylı et al., 2022). These variants have special 

gating mechanisms that facilitate information flow control and mitigate the problem of vanishing gradients. 

2.2. Long-Short Term Memory 

The LSTM model represents a distinct variant of artificial neural networks that have demonstrated remarkable efficacy in the field 

of time series data analysis. LSTM networks are characterized by their ability to detect and model complex long-term dependencies 
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within sequential data (Van Geffen et al., 2020). Fundamentally, an LSTM network functions as an interconnected collection of cells, 

where each cell contains a special "memory cell" and three different "gates". These gates actively regulate the input, output, and memory 

operations of the LSTM, thereby facilitating its ability to effectively process and retain relevant information. The key feature of LSTMs 

is their ability to retain important information over long sequences by mitigation of the vanishing gradient problem. The memory cells 

allow LSTMs to accumulate information over time while selectively updating and preserving relevant context. This ability allows 

LSTMs to capture complex patterns and dependencies in sequential data better than traditional RNNs. 

2.3. Gated Recurrent Unit 

The GRU is a type of RNN that offers a more simplified and efficient alternative to LSTM networks (Cho et al., 2014). In particular, 

GRU incorporates a distinctive architectural design in which the forget and input gates are merged into a single updating gate (Chen, 

2016). The GRU network structure differs from the LSTM network structure by incorporating two gate structures, namely the update 

gate and the reset gate (Uslu et al., 2022). The update gate determines the degree to which information from the previous time step is 

integrated into the current time step, allowing the network to selectively retain or discard relevant information. On the other hand, the 

reset gate controls the extent to which information from the previous time step is disregarded, enabling the network to reset its internal 

state and adapt to new input (Aydın et al., 2022; Li et al., 2021). The primary advantage of GRUs is their ability to effectively capture 

and utilize important contextual information while reducing the computational burden associated with memory cells (Keskin et al., 

2021). 

2.4.  Attention Layer 

The attention layer is a component in neural network architectures that allows the network to selectively focus on specific parts of 

the input data.  The primary purpose of attention layers in neural networks is to facilitate the identification and highlighting of significant 

features within datasets characterized by temporal sequences. These attention layers play a crucial role in breaking down larger and 

more complex tasks into smaller, more manageable attentional domains (Niu et al., 2021). Attention mechanisms allow networks to 

actively focus on the most informative and relevant aspects of the data while ignoring extraneous details, enabling more efficient 

processing of complex data structures. 

2.5.  Convolution Layer 

The convolutional layer is a fundamental building block of neural networks, specifically designed to extract meaningful and 

discernible features from input data.  This layer identifies emerging patterns at different locations and features within the learned filters 

applied to the input data and generates feature maps that encapsulate these high-level features as output. 

The convolutional layer in a neural network applies a filter matrix, often called a kernel, to the input data for converting sequential data 

into a numerical representation. This involves shifting the kernel over the input data and calculating the dot product between the kernel 

and the corresponding region of the input data (Shi et al., 2015). This iterative process produces an output value for each region of the 

filter matrix superimposed on the input data. Different filter matrices are used to capture different features of interest. 

2.6.  Proposed Prediction Model 

This subsection presents the proposed model for glucose prediction using a convolutional layer-based encoder and a two-layer GRU 

architecture-based decoder with input variables generated using a sliding window approach. The sliding window approach divides the 

sequential glucose data into smaller subsequences, each representing a fixed time window length. Moving the window gradually through 

the sequential data encapsulates the temporal information within the window generating new input variables at each time step. These 

input variables include previous glucose levels, which are then used as input to the encoder. The convolution layer-based encoder 

generates feature maps for the decoder capturing dependencies in past glucose levels. The GRU architecture includes gating mechanisms 

that selectively maintain and update relevant information at each time step, facilitating efficient dissemination of information throughout 

the network. The two-layer configuration increases the representational capacity of the model, enabling understanding of complex 

relationships and more accurate glucose predictions (Fetiler et al., 2021). The proposed model uses the feature maps generated by the 

encoder as input to the first GRU layer. This layer plays a critical role in extracting temporal features from the input sequences, which 

are then passed to the second GRU layer. These features are further improved by the second GRU layer to produce the final predictions. 

The latent states of the second layer are then used as input to a fully connected output layer responsible for generating the 30 PH glucose 

prediction. The proposed approach aims to achieve improved accuracy in predicting glucose levels within the desired PH using the 

multilayer GRU-based encoder-decoder framework. 

3. Experimental Evaluations 

3.1. Dataset 

In this paper, the open-access D1NAMO dataset is used to train and test the proposed model (Dubosson et al., 2018). This dataset 

includes a diverse array of physiological signals, including electrocardiogram (ECG), respiratory, and accelerometer data, as well as 

vital glucose measurements and precisely annotated food images. The dataset shown in Figure 1 was collected from a cohort of twenty 

healthy subjects and nine people diagnosed with type 1 diabetes in real-life settings through four days of observation. Data collection 

was performed using Zephyr BioHarness three wearable devices, ensuring the accuracy and reliability of the information collected.  

The proposed approach described in Subsection 2.6 used glucose data from eight type 1 diabetics with patient numbers 001-008 

contained in the D1NAMO dataset. 
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Figure 1. D1NAMO Dataset value distribution

3.2. Evaluation Metrics 

The evaluation of the developed prediction model included incorporating four statistical metrics and one clinical metric. The 

statistical metrics used for evaluation included Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and Coefficient of Determination (𝑅2). In addition, the Parkes Error Grid (PEG) was used as the clinical 

metric for evaluation. 

RMSE, MAE, and MAPE are statistical metrics commonly used to measure the discrepancy between predicted and actual values 

in a model. RMSE calculates the root mean square of the squared differences, emphasizing larger errors. MAE calculates the mean of 

the absolute differences, focusing on error sizes. MAPE measures the average percentage difference between predicted and actual 

values. 𝑅2 is a statistical measure that quantifies the proportion of the total variance in the dependent variable that can be accounted for 

by the independent variables in a regression model. It serves as an indicator of the adequacy of the regression model to fit the observed 

data.  The formulas for RMSE, MAE, MAPE, and 𝑅2 can be expressed as follows: 
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n

i=1

 

 

(2) 

 
MAPE =

1

n
∑|

yi − yî
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where 𝑛 represents the total number of observations, 𝑖 represents the index of each observation, 𝑦𝑖  denotes the actual values, 𝑦�̂�  
represents the predicted values, and �̅� represents the mean of the actual values. 

 

Table 1 presents 30-minute glucose predictions from different 2-layer RNN-based architectures. It can be clearly seen that the 

stacked GRU-EnDe model without the attention layer achieves the lowest RMSE value.  Increasing the number of layers in the models 

is positively correlated with predictive ability. However, the inclusion of the attention mechanism has the opposite effect on the overall 

performance. To further establish the reliability of these predictions, a PEG analysis was performed on patient 003, as shown in Figure 

2. The PEG analysis performed on this patient demonstrates the agreement between the predictions generated by the proposed method 

and the actual observations, thus significantly enhancing its reliability and ensuring its safety. To enable a meaningful comparative 

analysis of the proposed model with prior research, we conducted a thorough review of experimental studies that have used the 

D1NAMO dataset. It was observed that only one study used the D1NAMO dataset and Table 2 provides an overview of this study. In 

particular, the proposed method outperformed the only study available for comparison.  The RMSE obtained for a prediction horizon of 

30 min was reported as 12.14 mg/dL. This relatively poor performance can be attributed to the limitations of traditional ML approaches 

in capturing the complex temporal features inherent in time series data. ML models often face challenges in capturing the dynamics and 

interdependencies present in complex datasets, leading to reduced prediction accuracy compared to DL-based prediction models. 
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Table 1. Statistical results for 30 PH glucose prediction with Stacked RNN-based models 

                                                     Methods RMSE MAE MAPE                   𝑅2 

Without  

Attention 

RNN 10.14 6.75 5.05 0.92 

LSTM 10.25 6.97 5.22 0.92 

GRU 10.30 7.04 5.27 0.92 

BRNN 10.17 6.79 5.07 0.92 

BiLSTM 10.28 7.00 5.25 0.92 

BiGRU 10.31 7.05 5.28 0.92 

RNN-EnDe 11.11 7.47 5.30 0.91 

LSTM-EnDe 11.13 7.53 5.37 0.91 

GRU-EnDe 10.98 7.37 5.31 0.91 

With Attention 

RNN 10.41 7.06 5.31 0.92 

LSTM 10.59 7.37 5.55 0.92 

GRU 10.47 7.28 5.47 0.92 

BRN 10.68 7.30 5.39 0.91 

BiLSTM 10.56 7.34 5.53 0.92 

BiGRU 10.38 7.19 5.40 0.92 

RNN-EnDe 11.03 7.52 5.36 0.91 

LSTM-EnDe 11.26 7.68 5.49 0.91 

GRU-EnDe 11.02 7.54 5.43 0.91 

 

4. Conclusion 

This paper presents a novel prediction model for glucose prediction using the Stacked GRU-based encoder-decoder model.  The 

evaluations on the D1NAMO dataset show the remarkable accuracy and reliability of the proposed model for 30 PH glucose prediction. 

The proposed model shows promising results with an RMSE of 9.88 mg/dl, MAE of 6.46 mg/dl, 𝑅2 value of 0.91, and MAPE of 4.83% 

for 30 min PH. These metrics show that the proposed model is superior to the compared studies for glucose prediction. In addition, the 

PEG of patient 003 shows that the glucose predictions obtained are within acceptable limits, demonstrating the robustness and reliability 

of the proposed method. In future work, the developed prediction model will be embedded in an Android application, allowing users to 

conveniently access and use the predictive capabilities of the model.  This application enables users to make informed choices about 

their diet, physical activity, and overall health management. 

Table 2. Comparison between proposed model and state-of-the-art for the glucose prediction 

Methods RMSE 

 

AR, SVR [15] 

 

12.14 

 

Proposed Model 

 

9.88 
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Figure 2. PEG of patient 003 
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