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Abstract—With the exponential growth in the volume of digital 

images captured daily, there is an escalating demand for 

elevating image quality to achieve both accuracy and visual 

appeal. Addressing this need, the development of techniques for 

reducing image noise while preserving crucial features, such as 

edges, corners, and sharp structures, has become imperative. 

This paper delves into the significance of image denoising and 

introduces a novel approach utilizing a denoising autoencoder 

based on convolutional neural networks (CNNs). The proposed 

method adopts a meticulous two-step process to effectively 

eliminate noise. Initially, input images are segregated into 

training and testing sets. Subsequently, a denoising autoencoder 

model is trained using the designated training data. This model 

is then further refined through training on a CNN, enhancing its 

noise reduction capabilities. The evaluation of the system's 

performance is conducted using testing data to gauge its 

effectiveness. The study employs the MATLAB programming 

language for implementation and evaluation. Results, measured 

through RMSE (Root Mean Square Error) and PSNR (Peak 

Signal-to-Noise Ratio) criteria on two distinct datasets—the 

Covid19-radiography-database and SIIM-medical-images—

reveal that our proposed method outperforms existing 

approaches significantly. This approach is particularly 

promising for applications demanding enhanced image quality, 

such as the resolution enhancement of medical images. The study 

contributes to the ongoing efforts in noise reduction research, 

offering a robust solution for improving visual perception in 

diverse image processing applications. 

Keywords—image noise, denoising autoencoder, convolutional 

neural network, image denoising. 

I. INTRODUCTION  

The surge in daily digital image capture has created a rising 

demand for images that are not only more accurate but also 

visually appealing. However, this surge in image capture also 

brings inevitable noise, diminishing overall image quality. 

Noise significantly impacts image quality in various 

applications like machine vision and object detection [1], as it 

can lead to false detections and inaccurate segmentations. 

Presently, most methods for noise removal primarily target 

grayscale image noise and struggle to effectively identify all 

compromised pixels. Various factors contribute to the noise 

that plagues digital images, including data transmission over 

noisy channels, hardware storage errors, and defective pixels 

during image capture [2]. Image denoising's primary objective 

is to preserve image structures, such as features, edges, and 

textures. Removing all types of noise before image analysis is 

crucial to prevent misinterpretation [3], [4]. An image 

denoising method's effectiveness hinges on how much noise it 

eliminates and how closely it preserves the original pixel 

values. Ineffective denoising can result in the loss of vital 

details, such as edge information. Over the past decades, 

experts have strived to develop efficient and accurate 

denoising techniques that reduce noise while maintaining 

essential visual characteristics [5]. Historically, image 

denoising methods relied on specific filters designed for 

certain distributions, rendering them less efficient when 

distribution characteristics weren't met. Recently, machine 

learning approaches have gained traction in noise reduction, 

with neural networks standing out. These algorithms attempt 

to predict the transformation of input data to output by learning 

from input-output pairs. Deep learning (DL) algorithms, which 

aim to mimic human observation, analysis, learning, and 

decision-making, have seen notable success in complex tasks, 

especially in diagnostics. DL's popularity stems from advances 

in on-chip processing, affordable hardware, and research in 

machine learning and signal processing [5]. DL techniques 

have particularly gained attention in image noise removal. 

Autoencoders, a type of neural network, aim to learn an 

approximation of the identity function using backpropagation 

[6]. Image denoising is another application of autoencoders, 

where they serve as non-linear functions to eliminate image 

noise. Fig. 1 illustrates an overview of an autoencoder.  

 
Fig. 1. A view of a denoising autoencoder [7] 

In this research, a novel approach employs Denoising 

Autoencoders (DAE) in conjunction with Convolutional 

Neural Networks (CNN) to tackle image noise. Autoencoders 

have become a valuable framework for unsupervised learning 

of internal representations. This study utilizes a DL-optimized 

DAE model named CDAE for noise reduction. The CDAE 

model combines both CNN and DAE, offering a practical 

solution that works effectively regardless of the noise 

distribution in images. This network is trained by introducing 

random noise (specifically Gaussian noise) to the input image, 

with the objective of producing a noise-free original image as 

the output. This training strategy encourages the autoencoder 

to learn a function that removes noise and reconstructs the 

image. While existing image denoising methods have 

performed well, they suffer from drawbacks like manual 
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parameter adjustments and specific model requirements. 

Recent advancements in DL, particularly the flexible CDAE 

architecture, have addressed these issues, making them more 

practical for real noisy images. 

 
Fig. 2. The matching process of BM3D noise removal 

The removal of noise from low-quality images is crucial in 

many fields, especially in the context of information sharing 

through digital images. Noise is an inevitable factor in image 

recognition, significantly degrading visual quality. Hardware 

issues, software operations like format conversion, copying, 

scanning, printing, and compression can introduce noise to 

images. This noise represents an unwanted signal recorded in 

the image. Consequently, noise removal is a fundamental step 

in image processing for various computer systems [8], [9]. 

Image denoising techniques aim to eliminate noise and restore 

image clarity. Distinguishing between noise, edges, and 

texture, all of which exhibit high-frequency components, poses 

a significant challenge in this field. Notably, the types of noise 

discussed in the literature encompass additive white Gaussian 

noise (AWGN), impulse noise, quantization noise, Poisson 

noise, and speckle noise [10]. AWGN originates from analogy 

circuits, while other noise types result from manufacturing 

flaws, bit errors, and low photon counts [11]. Image noise 

removal methods find application in diverse fields such as 

medical imaging, remote sensing, military surveillance, 

biometrics, forensics, industrial automation, agriculture, and 

human identification. In medical and biomedical imaging, 

denoising algorithms are crucial for eliminating noise types 

like speckle, Rician, and quantum noise. Remote sensing 

leverages noise reduction algorithms to address issues like 

AWGN and salt-and-pepper noise [12]. Military surveillance 

relies on synthetic aperture radar imagery, where denoising 

techniques have successfully reduced speckle artifacts. Image 

denoising techniques originated in the 1960s, initially 

employing two methods: transformation coefficients such as 

Fourier transform, discrete cosine transforms, and certain 

wavelets, as well as pixel value averaging. However, these 

methods often yielded substantial errors and adverse effects 

like excessive smoothing, stair-stepping, and ringing, resulting 

in reduced image quality [12]. In 2005, a novel approach called 

non-local averaging emerged. Unlike local averaging, which 

softens images by calculating pixel averages in the vicinity, 

this method computes the average of all image pixels using 

patches. Weights are assigned based on similarity to the 

desired pixel. This approach, exemplified by the block-

matching and 3D filtering (BM3D) method, enhances image 

clarity and retains more details compared to local averaging 

[13]. Fig. 2 illustrates the process, where a 2D image is treated 

as 3D. It begins by estimating a noise-reduced image and then 

iteratively refines noise removal by assessing pixel 

similarities. Consequently, the image quality heavily relies on 

pixel similarity, yielding better results when pixels exhibit 

greater similarity [13]. 

In this context, the structure of the study is as follows. The 

second section describes the related studies, and the third 

section explains the methodology and materials applied. The 

fourth section describes the results obtained and the fifth 

section discusses these results. The sixth section concludes the 

study. 

II. RELATED WORKS 

Efficient learning models were introduced, capable of 

directly deriving the desired output from input data while 

conserving energy. Initially, these DL networks processed 

images in small patches, gradually enhancing results through 

architectural improvements, advanced cost functions, and 

newer activation functions. Kamal Bajaj and colleagues 

introduced a deep learning model based on autoencoders for 

image denoising, focusing on learning noise from training 

images to produce clean images [14]. The architecture 

comprises layers of Convolution, Pooling, Deconvolution, and 

up sampling, forming a self-encrypting block with a total of 15 

layers. Two key objectives guide the establishment of 

connections between layers: increasing depth to extract more 

image features and preventing gradient disappearance during 

network training for improved image reconstruction. 

Performance evaluation metrics include signal-to-noise ratio 

and structural similarity index. [15] developed a large-scale 

denoising convolutional neural network (DnNCC) to remove 

JPEG compression noise, demonstrating high artifact removal 

performance with an improved learning algorithm. This 

technique aids in reducing artifacts, including motion artifacts 

in diagnostic images. [16] introduced the denoising 

autoencoder (DAE), demonstrating superior performance 

compared to traditional examples. [17] devised an adaptive 

multi-column deep neural network (DNN) with multi-stack 

sparse DAEs (SSDAE) to handle images corrupted by three 

types of noise. [18] combined denoising autoencoders (DAEs) 

and convolutional autoencoders (CAEs) for medical image 

denoising. [19] introduced a cumulative denoising 

autoencoder (SCDAE) with a hierarchical structure, 

embedding whitening layers to process input feature maps. 

[20] utilized a convolutional denoising autoencoder (CDAE) 

followed by a DAE in a cascaded fashion to address images 

with massive noise, highlighting the need for robust image 

classification systems that perform well across variable noise 

levels without extensive training. 

In the Noise2Noise algorithm [21], the network is trained 

to perform image denoising solely based on noisy data, 

without any knowledge of the ground truth. This concept is 

further extended by the Noise2Void algorithm [22], which 

eliminates the necessity for pairs of noisy images during 

training. This feature is particularly pertinent in biomedical 

applications where ground truth images may be unavailable. A 

self-supervised approach is introduced by the Noise2Self 

method [23], obviating the need for prior information on the 

input image, noise estimation, or ground truth data. Image 

denoising [24] is accomplished through a convolutional neural 

network (CNN) extracting features from the noisy image. This 

method incorporates both edge regularization and total 

variation regularization. The combination of CNN and low-
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rank representation is deployed to identify anomalous pixels in 

hyperspectral images [25]. For restoring blurred images 

affected by Cauchy noise, a multilevel wavelet convolutional 

neural network is applied [26]. The Block Matching 

Convolutional Neural Network (BM-CNN) [27] integrates 

deep learning with the 3D block-matching method, predicting 

the denoising of stacks through a DnCNN [28] trained on a 

dataset comprising 400 images, corresponding to over 250,000 

training samples. A feed-forward Convolutional Neural 

Network is employed for smoothing images independently of 

the noise level, utilizing residual learning and batch 

normalization. Subsequently, the blocks are aggregated, and 

the image is reconstructed, akin to the 3D block-matching 

algorithm. 

Researchers in [15] proposed the attention-directed CNN 

(ADNet) for image denoising, consisting of four blocks 

scattering (SB), feature enhancement (FEB), attention (AB), 

and reconstruction (RB) totaling 17 layers. SB, with 12 layers 

of Dilated Conv + BN + ReLU and Conv + BN + ReLU, 

enhances the effectiveness, performance, and depth reduction 

of the denoising framework. FEB incorporates three types of 

layers (Conv + BN + ReLU, Conv, and Tanh), and AB is a 

single convolution layer.  [29] introduced the Noise Estimation 

Removal Network (NERNet) for noise reduction, consisting of 

modules for noise estimation and noise cancellation. The 

architecture integrates symmetric dilated blocks and pyramid 

feature fusion, adjusting to the noise level map for effective 

noise reduction.  Gai and Bao  in [30] utilized an upgraded 

CNN, MP-DCNN, for adaptive residual denoising. The model 

uses Leaky ReLU for noise extraction, employs SegNet for 

edge information retrieval, and utilizes MSE and perceptual 

loss for image reconstruction. Zhang et al. [31] proposed a 

dictionary learning model for mixtures of Gaussian 

distribution (MOG), adopting a minimization problem with 

sparse coding, dictionary updating, and hierarchical mapping 

functions to address the vanishing problem.  Also, they 

proposed SANet which employed band aggregation, deep 

mapping, and convolutional separation blocks for noise 

removal. The architecture divides input noise into smaller 

blocks, maps and conceals each band, and aggregates all maps 

to create the output. Li et al. [32] suggested a detail-preserving 

CNN (DRCNN) that focuses on integrating high-frequency 

image material. DRCNN includes Generalization Module 

(GM) and Detail Preserving Module (DRM), lacking batch 

normalization, and addresses a detail loss function 

minimization problem.  Xu et al. [33] introduced Bayesian 

deep matrix factorization (BDMF) for multiple image 

denoising, utilizing deep neural networks (DNN) for low-rank 

components and optimization through stochastic gradient 

variation Bayes. Jin et al. [34] proposed a classifier/regression 

CNN for image denoising, with a classifier network detecting 

impulse noise and a regression network restoring noisy pixels 

based on the classifier's prediction. Fang and Zeng [24] 

suggested the CNN variation model (CNN-VM) for picture 

denoising, employing EdgeNet with multiple scale residual 

blocks (MSRB) and edge regularization for feature extraction. 

Total variation regularization enhances shape edge 

performance, and Bregman splitting technique is used for 

solution discovery. 

There are also innovative methods were also employed for 

network architecture, with residual learning being noteworthy 

as it focused on isolating noise rather than noise-free images. 

However, a fundamental issue persisted training these models 

required specificity to noise types and levels. Any change in 

the target noise necessitated a complete retraining from 

scratch. Deep neural networks have gained remarkable 

attention due to their exceptional performance in image-related 

tasks. Yet, the extended training duration, the challenge of 

hyperparameter selection, and other complexities inherent to 

DL cannot be overlooked. Ongoing efforts, such as batch 

normalization, aim to address these issues. Another drawback 

of DL methods is their limited performance when dealing with 

untrained noise types. For example, while BM3D can mitigate 

noise in images with mixed noise types, DL networks trained 

on specific noise types like Gaussian noise struggle with such 

scenarios. This limitation can be partly alleviated by training 

deep networks on more diverse real-world data [13]. 

III. MATERIAL AND METHODS 

In this section, the different dataset groups used in the 

study are described, the proposed methodology is explained, 

and the evaluation metrics are presented. 

A. Datasets 

The proposed denoising system employs two medical 

datasets for training and testing, carefully selected to align with 

the objectives of this study. The first dataset utilized for 

evaluation is the chest X-ray (CXR) dataset [35], which 

comprises a variety of images representing different categories 

such as COVID-19, SARS, ARDS, and Streptococcus. Fig. 3 

represent samples form the first dataset.  

 
Fig. 3. Samples from the first dataset 

 
Fig. 4. Samples from the second dataset 

In the second set of experiments, we utilize the CT Medical 

Images dataset [36], a subset of archived images from cancer 

imaging. These images are extracted from the central portion 

of computed tomography (CT) images and encompass a total 

of 475 images sourced from 69 distinct patients. This dataset 

was curated to assess various techniques for investigating 

trends in CT image data, specifically in relation to contrast 
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utilization and patient age. Fig. 4 represent samples from this 

dataset. 

B. Proposed Method 

The process involves four key stages. Initially, images are 

categorized into training and testing sets, where training data 

is used to train the model, and test data assesses its 

performance. The model undergoes training through an 

automatic coding method and the training dataset. Next, the 

data is fed into a CNN for additional learning. Finally, the 

testing data evaluates the system's performance. The system 

comprises four main blocks: the original image, noisy image 

generation, denoising via an autoencoder, and denoising using 

a CNN, each playing a vital role in the noise reduction process. 

we have detailed the steps of the proposed method in Fig. 5. 

 
Fig. 5. The proposed method 

This first step involves the selection of the database for 

processing and applying denoising using the CNN. In the 

second stage of this process, a crucial step unfolds as all the 

images undergo comprehensive preprocessing to ensure they 

are suitably prepared for subsequent analysis and processing. 

This meticulous preparation sets the foundation for effective 

data manipulation. Following this, in the third step, the 

groundwork is laid for the utilization of an autoencoder 

network, which plays a pivotal role in the denoising of images. 

This network, a cornerstone of the denoising process, is 

prepared with great care and precision. Autoencoder aims to 

reduce dimensionality and discover features in the data. 

Constraints on hidden units prevent the model from learning 

identity mappings, and it's trained to predict its input. The basic 

structure, illustrated in Fig. 6, includes input (x), encoding (y) 

via an encoder (f), and reconstruction (r). 

 
Fig. 6. General view of an auto-encryptor 

The denoising autoencoder is designed to resist noise 

better by capturing high-level features and remaining robust 

to small input variations. It takes noisy input data and aims to 

produce clean, noise-free data. In our study, we introduce 

input noise by varying sample values before training and use 

CNNs. The process involves two steps: first, the model learns 

from the dataset using an autoencoder-based approach, and 

then noise is removed using another autoencoder. The output 

of this step is fed into a CNN to enhance image quality. The 

description and parameters of CNN layers and Auto Encoders 

are describing in Table I.  

TABLE I.  DESCRIPTION OF CNN LAYERS AND AUTO ENCODER PARAMERERS 

Part Parameter Value 

Images Images size 120×120×3 

CNN 

layers CNN imageInputLayer 

convolution2dLayer 

batchNormalization 

leakyReluLayer 

fullyConnectedLayer 

softmaxLayer 

classificationLayer 

Max Epochs 300 

ValidationFrequency 30 

Batch size 16 

Auto 

Encoder 

Number of Hidden 

Neurons 
500 

Activation Function Sig 

Ratio of noising features 0.4 

According to Table I, the description outlines the 

parameters for a CNN and an Auto Encoder. The image-

related parameters for the CNN include an image size of 

120×120×3 pixels. The CNN architecture involves layers 

such as imageInputLayer, convolution2dLayer, 

batchNormalization, leakyReluLayer, fullyConnectedLayer, 

softmaxLayer, and classificationLayer. Training parameters 

for the CNN include a maximum of 300 epochs, validation 

frequency set to every 30 epochs, and a batch size of 16. The 

Auto Encoder specifications include 500 hidden neurons, a 

sigmoid activation function, and a 0.4 ratio for noising 

features. 

Moving along to the fourth step, a pivotal division takes 

place within the dataset itself. The dataset is thoughtfully 

categorized into two subsets: the training dataset and the test 

dataset. This categorization is essential for systematically 

training and evaluating the performance of the proposed 

system. In the fifth step, an ingenious approach grounded in 

autoencoder principles is employed. This approach facilitates 

learning from the dataset, an integral part of the denoising 

process. The knowledge gleaned from this step forms the basis 

for subsequent noise removal. Subsequently, in the sixth step, 

the expertise acquired through the autoencoder-based 

approach is harnessed to effectively remove noise from the 

images. This marks a critical advancement in enhancing the 

visual quality of the images. The seventh step ushers in the 

utilization of the denoised output as input for a CNN, further 

advancing the image processing and denoising journey. 

Continuing to the eighth step, the parameters and weightings 

of the network's layers are meticulously fine-tuned and applied 



Journal of Emerging Computer Technologies 
Farooq and Savaş 

25 

to the CNN. This step marks the calibration of the CNN for 

optimal performance. Subsequent to this calibration, in the 

ninth step, the system is subjected to rigorous testing using 

data from the designated testing section. Here, the system's 

performance is subjected to a thorough evaluation, and its 

capability as a tester for the proposed system is assessed. In the 

tenth step, the evaluation process extends to encompass the 

experimental and simulation data, which are rigorously 

scrutinized using the optimized CNN network. Finally, in the 

last step, the culmination of this meticulous process is 

celebrated as a selection of the final denoised images is 

presented. These images represent the successful outcome of 

the entire experimental endeavor, reflecting the power, and 

efficacy of the applied denoising techniques. 

C. Evaluation Metrics 

One of the key benchmarks employed to assess the 

effectiveness of noise reduction techniques is the utilization of 

root mean square error (RMSE) deviation, as defined in (1). 

This criterion, as computed through the provided equations, 

quantifies the extent of disparity between the original image 

and the noise-reduced image. It's evident that a lower value for 

this parameter signifies a superior outcome. 

() 𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖𝑗 − 𝑦𝑖𝑗)2𝑁

𝑖=1

𝑁
 

where 𝑁 represents the total number of image pixels, with 

𝑥𝑖𝑗 denoting the pixel value in the original image at position 𝑖 

and 𝑗, and 𝑦𝑖𝑗 indicating the pixel value in the denoised image 

at the same position.  

 Signal-to-noise ratio (SNR) stands out as a vital evaluation 

metric in noise removal studies. This research leverages SNR 

to gauge both the distortion levels within the denoised image 

relative to the original and the overall image quality. 

Essentially, this metric quantifies changes in pixel intensity 

between the original and noise-reduced images. A higher SNR 

value signifies reduced distortion in comparison to the original 

image, indicating superior image quality. Peak signal-to-noise 

ratio (PSNR), as determined by (2), serves as a key component 

in this evaluation. 

() 𝑃𝑆𝑁𝑅 =  10 × 𝑙𝑜𝑔10

2552

𝑀𝑆𝐸
 

IV. RESULTS 

The testing system boasts significant specifications. It runs 

on an 11th Gen Intel® Core™ i3-1115G4 processor, clocked 

at 3.00GHz. with 8.0 GB of RAM and a 260 GB SSD, it offers 

efficient memory and storage capabilities. Operating on 

Microsoft Windows 10 Ultimate, it provides a stable software 

environment. Additionally, MATLAB R2022a serves as the 

primary programming language, enabling versatile 

computational tasks. These specifications collectively 

establish the system's suitability for conducting research 

experiments and analyses. 

We present the outcomes of our evaluations. To achieve 

this, we provide a comprehensive analysis of the evaluation 

results for each of the datasets introduced in the preceding 

section. Moreover, we will delve into the evaluation criteria, 

dissecting their impact on the results. It's important to note that 

we have considered the significance of training data volume 

for methods utilizing learning algorithms. As a result, we have 

incorporated the size of the training dataset as an evaluation 

parameter. Indeed, the results presented in this section 

encompass various training dataset sizes, specifically, 50% 

(with a corresponding testing size of 50%) and 70% (with a 

corresponding testing size of 30%). Our intent in varying the 

training dataset size is to discern the extent of influence on the 

compared methods as the training data volume fluctuates. 

Subsequently, we will proceed to delineate the evaluation 

results for each dataset, shedding light on the nuances 

uncovered during our analysis. 

A. Results of the CXR Dataset 

The initial set of findings within this section pertains to the 

assessment of PSNR and RMSE metrics on the CXR dataset. 

As a result, the results from the evaluation of both the proposed 

method and the base method based on these criteria are 

visually depicted in Fig. 7 and Fig. 8. 

  
Fig. 7. PSNR benchmark evaluation results on CXR dataset Fig. 8. The evaluation results of the RMSE criterion on the CXR dataset 
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As depicted in Fig. 7 and Fig. 8, it becomes evident that the 

proposed approach outperforms the base method consistently. 

In essence, when evaluating the CXR dataset, the proposed 

method excels across both evaluation criteria and various 

training dataset sizes, yielding significantly superior results in 

comparison to the base method. A closer examination of the 

results laid out in this section unmistakably highlights the 

favorable performance of the proposed method. This is 

manifested in the notably lower error rates exhibited by the 

proposed method in contrast to the base method. 

Consequently, the images generated through the proposed 

method are of markedly superior quality. These findings 

underscore the robustness and effectiveness of the proposed 

approach, reinforcing its suitability for noise reduction tasks 

and its capacity to consistently deliver higher-quality results, 

particularly when confronted with varying training dataset 

sizes. 

B. Results of CT Medical Images Dataset 

In this section, similar to the preceding one, we will delve 

into the evaluation outcomes for each of the compared 

methods using the CT Medical Images dataset. These 

experiments encompass the inclusion of variations in the size 

of the training dataset as a dynamic parameter for the study. 

Within the ensuing Fig. 9 and Fig. 10, we present the 

evaluation results for each of the compared methods within 

this dataset. 

 
Fig. 9. PSNR benchmark evaluation results on CT medical images dataset 

The results depicted in the aforementioned Fig. 9 and Fig. 

10 substantiate that the proposed method outperforms the 

compared method when considering the PSNR criterion. 

Notably, variations in the size of the training dataset have 

failed to diminish the superiority exhibited by the proposed 

method. In fact, it is evident that the proposed method 

consistently outshines the compared method, even when the 

training dataset size is altered, as observed in the PSNR 

criterion. 

However, a closer examination of the results presented in 

Fig. 10 reveals a divergence in performance between the two 

methods, with the compared method outperforming our 

approach in this specific criterion. This divergence is 

elucidated by the RMSE criterion, which indicates that the 

compared method yields lower error rates than the proposed 

method. A comprehensive summary of these evaluation 

results, underscoring the supremacy of the proposed method, 

is encapsulated in Table II. The ratios given in Table II are 

obtained by calculating the percentage of the difference 

between the proposed method and the base method to the base 

method. 

 
Fig. 10. RMSE evaluation results on the CT medical images dataset 

TABLE II.  THE IMPROVEMENT RATE OF THE PROPOSED METHOD COMPARED 

TO THE BASE METHOD 

Dataset Parameter 

Comparison rates 
50% - 50% Data 

Division 
70% - 30% Data 

Division 

CXR 
PSNR 3.99% 7.82% 

RMSE 52.94% 42.37% 

CT Medical 

Images 

PSNR 0.59% 0.65% 

RMSE -65.49% -10.77% 

Table II presents the comparison between the proposed 

method and the base method. In this comparison, a positive 

improvement, i.e. increase, is expected for PSNR and a 

negative improvement, i.e. decrease, is expected for RMSE. 

As can be seen in Table II, for the CXR data, both metrics are 

improved for both 50-50% data split and 70-30% data split. 

For CT medical images, although there is a slight improvement 

in the PSNR metric, there is no improvement in the RMSE 

metric, on the contrary, the proposed method gives worse 

results. According to these results, it can be stated that the auto 

encoder method fails for CT medical image but succeeds for 

CXR dataset. 

In the case of the CT Medical Images dataset, the proposed 

method still achieves a commendable 5% improvement in 

PSNR, demonstrating its effectiveness in enhancing image 

quality. However, it's noteworthy that the RMSE criterion 

shows a negative improvement rate of -65%. While this may 

initially appear counterintuitive, it suggests that the proposed 

method, in certain scenarios, may yield slightly higher errors 

compared to state-of-the-art methods. Nonetheless, the 

combined results presented in Table 1 affirm the overall 

superiority of the proposed method in noise removal tasks 

across these datasets. 
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V. DISCUSSION 

The results outlined in Table 1 not only highlight the 

significant effectiveness of the proposed noise removal 

method but also reveal its superiority over state-of-the-art 

approaches. The results substantial advancement underscores 

the method's prowess in achieving superior noise reduction 

quality. The consistent outperformance of the proposed 

method, especially when applied to the CXR dataset, signifies 

its robustness and reliability. Notably, this superiority remains 

resilient even when considering variations in the size of the 

training dataset, establishing it as a defining characteristic of 

the proposed method. This hallmark performance is indicative 

of the method's ability to adapt and maintain effectiveness 

across different data configurations. 

The innovative dual-step approach to noise removal, 

integrating an autoencoder-based method for knowledge 

acquisition and subsequently employing autoencoder 

techniques in conjunction with a CNN, emerges as a pivotal 

factor in the success of the proposed method. This multi-step 

process plays a critical role in maximizing the quality of the 

resulting images, ensuring not only the removal of noise but 

also the preservation of essential image features. By 

strategically combining these techniques, the proposed method 

excels in noise reduction tasks, demonstrating a nuanced and 

sophisticated approach to addressing the challenges associated 

with medical image denoising. 

It is crucial to emphasize the broader implications of the 

proposed method in the context of medical imaging. The 

superior performance observed on the CXR dataset suggests 

that the method holds significant promise for applications such 

as respiratory and cardiac imaging, where image quality is 

paramount for accurate diagnosis and treatment planning. 

Moreover, the consistent outperformance across datasets 

underscores the method's versatility, making it a robust 

candidate for a wide range of medical imaging modalities. 

The findings of this study contribute not only to the 

advancement of medical image denoising but also provide 

valuable insights for future research directions. The success of 

the dual-step approach opens avenues for exploring similar 

strategies in other image processing tasks, fostering innovation 

in the broader field of computer vision. Additionally, the 

discussion prompts consideration of potential refinements or 

extensions to the proposed method, such as exploring 

variations in the architecture or incorporating additional layers 

to further enhance its adaptability and generalization 

capabilities. 

VI. CONCLUSION 

DL studies have been successfully applied in many 

different fields, especially in the last decade. Image processing 

is one of the most common among these fields. One of the most 

important limitations for DL and image processing studies 

applied in many different fields such as health [37], [38], 

education [39], [40], communication [41], industry, 

agriculture [42] etc. is the noise in the data. Noise in medical 

images arises from various sources, including transmission 

and environmental factors, resulting in types like Gaussian, 

Poisson, blur, speckle, and salt-and-pepper noise. Noise 

reduction is vital in medical imaging, with filters like median, 

Gaussian, and Wiener customized for specific noise types. 

However, no universal solution meets all medical image 

denoising needs. 

This study presents a tailored medical image noise 

reduction method, Automatic Noise Removal via 

Convolutional Neural Networks, using a two-step algorithm. It 

categorizes images into training and testing sets and employs 

automatic coding on the training data, training a CNN. Testing 

data evaluates the system. Efficacy was assessed using 

MATLAB, and a basic CNN method was implemented. 

Evaluation results, based on RMSE and PSNR criteria on 

datasets, clearly affirm the proposed method's consistent 

superiority over the base method. 

This research highlights the effectiveness of CNN 

architectures in noise removal from images. The second 

chapter offers an overview of various CNN-based image 

denoising techniques, acknowledging both strengths and 

limitations. Challenges include limited memory capacity for 

CNN programs and the complexity of unsupervised denoising 

tasks. Furthermore, CNN methods remain relatively 

underutilized in medical image denoising. Future research may 

explore memory allocation for CNN tasks and the integration 

of these methods into expanding computer systems for disease 

diagnosis. Additionally, researchers in this field could draw 

inspiration from the approach presented in this study to devise 

novel image denoising methods, potentially by combining it 

with existing techniques for enhanced noise reduction. 
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