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Pan sharpening aims to create a multispectral, high spatial resolution image by combining the 

multispectral image (MSI) with a high spatial resolution panchromatic image (PAN). Pan sharpening 

methods are performed between the MS image, which is the MSI image brought to PAN dimensions 

with the help of interpolation, and the PAN image. In this study, PAN sharpening is approached as an 

optimization problem. It is assumed that the optimal solution consists of multiplying the pixels of the 

MS image by optimized coefficients. It would be costly to optimize all the coefficients in this coefficient 

matrix one by one. For this reason, these coefficients were tried to be found with 5 different optimization-

based methods. It was also compared with 19 different methods commonly used in the literature. 6 

different evaluation criteria were used for this comparison. These comparisons were made on 3 different 

datasets. It has been observed that the proposed methods are superior to other methods. 
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1. INTRODUCTION 

An image from remote sensing has four basic resolutions. These four types of resolution are: temporal, 

radiometric, spectral, and spatial. The time difference between taking a remote sensing image of a location and 

taking another one after a predetermined amount of time is known as temporal resolution. The amount of bits 

used to indicate the electromagnetic energy acquired by remote sensing on a digital image is known as 

radiometric resolution. Pixel values in an image expressed with 8 bits take values between 0 and 255, whereas 

values in an image stated with 7 bits take values between 0 and 127. The wavelength range of the 

electromagnetic spectrum from which the image generated by remote sensing is obtained and the number of 

bands are related to spectral resolution. Narrower wavelength ranges correspond to higher spectral resolution 

for a given band. In other words, a band's sensitivity to, or the wavelength range it is received in, decreases 

with increasing spectral resolution. Spatial resolution can simply be defined as the area occupied by an image 

(pixel) on the surface. There is an inverse proportion between the amount of area a pixel represents on the 

ground and the spatial resolution. 

Images are captured in various resolutions and across various electromagnetic spectrum bands by remote 

sensing systems. The MSI image has red, green, and blue bands from these sensors, which have a low spatial 

resolution yet provide a viewable image. Furthermore, PAN image with great spatial resolution is also 

acquired. When it comes to spatial resolution, the MSI which has color information is less precise than the 

PAN image. Fused high-resolution images with complementary data from multispectral bands are necessary 

for remote sensing applications such as feature extraction, classification, change detection, and clustering 

(Kurban, 2022). Pan sharpening is the term specifically used to describe image fusion techniques used to 
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produce an image with both color information and high spatial resolution. Interpolation is used to bring the 

MSI image to PAN image dimensions and the MS image is obtained. 

The pan sharpening procedure is regarded as an optimization problem in this study. Every pixel in the MS 

image is multiplied by a coefficient to determine the ideal pan-sharpened image. Consequently, several 

approaches have been attempted to arrive at this optimal solution due to the large number of variables that 

require optimization. Low-pass PAN images were created by various methods to obtain an acceptable ratio 

between the PAN image and the low-pass PAN image. To our knowledge, this work is the third application of 

the Weighted Differential Evolution Algorithm (WDE) for pan sharpening in the literature (Civicioglu et al., 

2020) WDE is applicable to several optimization-based pan sharpening techniques as a global minimizer. In 

addition, the study employed an objective function based on a Laplacian filter. The spatial information 

similarity between the low-pass PAN image and the MS image was compared using the Laplacian filter. The 

Laplacian filter regulates the transition between pixels by concentrating on the differences between image 

pixels and their spatial neighbors. This provides us with information on derivative, or border information, 

which is a crucial component of spatial information. The outcomes were contrasted with techniques from the 

literature that employed various evaluation standards. The amount of spatial features transferred from the PAN 

image and the amount of spectral features transferred from the MS image to the pan-sharpened image are 

measured using different metrics. The lack of a reference image to compare the final image to is one of the 

difficulties with pan sharpening. Some methods, like the Wald protocol (Wald et al., 1997), rely on the MSI 

image rather than the reference image to get over this problem. 

Other than Component Substitution (CS) and Multiresolution Analysis (MRA) techniques, pan sharpening 

techniques have been studied and classified differently in the literature; however, more recent research has 

shown that these classifications are comparable. Amro et al. (2011) categorized pan sharpening techniques into 

five categories in their study: the CS family, the MRA family, the high frequency injection family, the relative 

spectral contribution family, and approaches based on image statistics. Vivone et al. (2020) looked at it in a 

more recent study and divided it into four categories: CS, MRA, VO, and machine learning (ML) techniques 

in 2021. Similar to Vivone, Meng et al. (2020) investigated it in 2021 within the following four headings: CS, 

MRA, VO, and deep learning (DL) techniques. Yilmaz et al. (2022) examined it under 6 headings: MRA, CS, 

Colour-Based (CB), DL, VO and hybrid methods. The basis of traditional CS approaches is to decompose the 

MS into components and replace the spatial context with PAN. Then, the PI image is obtained by inverse 

transformation. Matching the histogram of PAN and MS before component replacement will increase the 

correlation and create lower distortion (Ghassemian, 2016). Tu et al. (2001) expanded the traditional approach 

(Meng et al., 2019). 

PIi = MSi −  Gi ∗ (PAN − IL)  (1) 

PI is the fused image, G is the injection coefficient, IL is the component that needs to be changed to PAN, and 

i is the representation of the bands. In general, CS approaches are simple to use and are successful in 

transferring spatial information. Many methods have been proposed in this regard. The focus of these methods 

is on accurate modeling of the relationship between MS and PAN (Vivone et al., 2020). However, they struggle 

to transfer the color information from the MS image. As examples of the most popular CS techniques, consider 

Brovey, Intensity Hue Saturation (IHS), Gram Schmidt (GS), Principal Component Analysis (PCA), Band 

Dependent Spatial Detail (BDSD). 

In traditional MRA approaches, MS and PAN are moved to a different space with transformation functions. 

Spatial features from PAN are injected into the MS. Then the PI image is created by inverse transformation. 

The approach of traditional MRA techniques has been extended (Meng et al., 2019) 

PIi = MSi −  Gi ∗ (PAN − PANL)  (2) 

PI is the fused image, G is the injection coefficient, PANL is the low-pass PAN, and i is the representation of 

the bands. Different MRA techniques have been tried to obtain G injection weight and PANL image (Meng et 
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al., 2019). Among the most well-known MRA methods, there are methods using wavelet transform like 

Discrete Wavelet Transform (DWT), à Trous Wavelet Transformation (ATWT). Numerous examples of 

generalized Laplacian pyramid (GLP) techniques have been given in the literature. These approaches rely on 

filters that utilize the Modulation Transfer Function (MTF) of the MS sensor by altering the injection 

coefficient estimate (Vivone et al., 2020). One such system that makes advantage of High Pass Modulation 

(HPM) is MTF-GLP-HPM (Vivone et al., 2020). While MRA-based techniques outperform CS-based 

techniques in terms of spectral feature preservation, they perform worse in terms of spatial feature preservation. 

However, according to Aiazzi et al. (2006), if the MTF approach is used, the performance will improve 

significantly. The paper is organized as follows: In the Introduction section, information about the pan 

sharpening process and the literature is given. In the second part, the method used in the paper is explained. In 

the third part, results and discussion are given. The fourth section contains the conclusion. 

2. MATERIAL AND METHOD 

Assuming that there is 1 most suitable pan sharpened image in the solution space for the pan sharpening 

process, this image is k times larger, with a separate coefficient for each pixel of the MS image. 

PIi = MSi ∗  MSKi  (3) 

PI is the optimum solution in the solution space, MS is the multispectral image, and MSK is a coefficient 

matrix of MS dimensions. i represents the bands of the image. Finding the optimum value of each coefficient 

in this MSK matrix is an optimization problem. If we consider a 1024x1024 image, there will be a total of 

3145728 coefficients that need to be optimized for 3 bands. Calculating the optimum value of these coefficients 

would be very costly. Therefore, calculating the coefficient matrix MSK in another way will reduce the 

computational cost. 

PI

MS
=

PANHM

PANHMLP

 
 (4) 

PI = MS ∗
PANHM

PANHMLP

 
 (5) 

PANHM is the histogram matching image of the PAN image with the MS, and PANHMLP is the low pass 

version of the PANHM. The equality here shows that the ratio of the PI image to the MS image is also between 

PANHM and PANHMLP. Therefore, to ensure this equality and reach the PI solution, a suitable PANHMLP 
must be created. For the purpose of pan sharpening, the PI is spatially similar to PANHM. Therefore, the 

PANHMLP should likewise resemble the MS image spatially. The PANHMLP picture was created in this study 

using five distinct techniques, or PL Methods. 

2.1. PL Methods 

PL Method-1 (PL1) 

The PANHMLP is created by multiplying each band with an appropriate coefficient after applying a Gaussian 

filter to the PANHM. Separate k coefficients for each band are calculated with the optimization algorithm. 

Bands are represented by i. 

PANHMLPi
= Gauss(PANHMi, 2) ∗ ki  (6) 

PL Method-2 (PL2) 

The PANHMLP is created by extracting the information that constitutes the spatial details from the PANHM. 

The MS is multiplied with the required coefficients after being subtracted from MSLP, the Gauss-filtered MS. 

Separate k coefficients for each band are calculated with the optimization algorithm. Bands are represented by 

i. 
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PANHMLPi
= PANHMi −  (MSi − MSLPi

) ∗ ki  (7) 

PL Method-3 (PL3) 

In this method, it is assumed that the MS is a multiple of the PI image first reduced to X, Y dimensions and 

then re-extracted to its previous dimensions. Therefore, the same assumption is applied to the PANHM and 

tried to be verified. X, Y dimensions and k coefficients for each band are calculated with the optimization 

algorithm. H is height, W is width. These are the dimensions of PAN. Bands are represented by i. 

PDi = Interpolation(PANHMi, size(X, Y)) 

 

 (8) 

PANHMLPi
= Interpolation(PDi, size(H, W)) ∗ ki 

 

 (9) 

PL Method-4 (PL4) 

Discrete wavelet transform is applied to the PANHM (I1) and MS (I2) smoothed with a Gaussian filter. For 

the first component LL, an adaptive combination is performed with optimized k coefficients for all 3 bands, 

while the max method is used for the other components. Bands are represented by i. You can see the flow in 

Figure 1. 

PANHMLPi
= DWT(Gauss(PANHMi, 2), MSLPi

 , ki) 

 

 (10) 

LLi = (LLI1
∗ ki + LLI2

∗ (1 − ki)) 

 

 (11) 

HHi = max(HHI1
, HHI2

) 

 

 (12) 

 

Figure 1. Flow diagram of PL Method-4  

PL Method-5 (PL5) 

PL is a modified version of PL Method-4. In this method, discrete wavelet transform is applied to the PANHM 

(I1) softened with the Gaussian filter and the PL3 (I2) created as in PL Method-3. H is height, W is width. 

These are the dimensions of PAN. 
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PANHMGi =  Gauss(PANHMi, 2)  (13) 

PDi = Interpolation(PANHMGi, size(
H

5
,
W

5
 )) 

 (14) 

PL3i = Interpolation(PDi, size(PANHMi))  (15) 

PANHMLPi
= DWT(Gauss(PANHMi, 2), PL3i , ki)  (16) 

2.2. Optimization 

WDE used as the optimization algorithm was developed by Civicioglu et al. (2020). WDE is a pattern matrix 

based Evolutionary Search algorithm (Civicioglu & Besdok, 2022) and also a stochastic, iterative and bi-

population based algorithm. (Günen, 2021). Objective function (OF) consists of 2 parts. The first part is the 

SAM value calculated for MS and PI images. The second part uses the Laplacian filter to measure spatial 

information. This measurement is applied to MS (I1) and PANHMLP (I2) images, between which we want to 

have a high level of spatial similarity. After the Laplacian filter is applied to both images, the difference is 

calculated, and a 3-dimensional DIFF matrix enclosed in absolute value is obtained. With the help of Otsu 

thresholding, values below the limit in the DIFF matrix are eliminated. Finally, the average of all values is 

taken. H, W, C are the length, width, and number of bands of the MS image, respectively. (i = 1,2) 

h = Laplacian Filter = [
0 1 0
1 −4 1
0 1 0

] 
 (17) 

LAPIi
= Ii ⊗ h  (18) 

DIFFABS = |LAPI1
− LAPI2

|  (19) 

DIFF = DIFFABS * Otsu(DIFFABS)  (20) 

OF2 =
1

H ∗ W ∗ C
∑ ∑ ∑ DIFFh,w,c

C

c=1

W

w=1

H

h=1
 

 (21) 

OF1 = SAM(MS, PI)  (22) 

OF =
1

2
 (OF1 + OF2) 

 (23) 

2.3. Evaluation Criteria 

There are 2 approaches to evaluate pan-sharpened images, methods that need a reference image and methods 

that do not. The lack of a reference image needed in the first approach is a fundamental problem. Various 

approaches have been developed to overcome this problem. Wald et al. (1997) basically has two approaches. 

The first approach is based on the principle of reducing PI to MSI dimensions and making the two images 

similar to each other. The second approach is based on the similarity between the reference image obtained by 

the sensor in PAN dimensions and the PI. Since the mentioned image does not exist, the approach is 

implemented by reducing the dimension. After applying size reduction to the ratio between PAN and MSI, the 

original MSI is used as a reference. The QNR protocol was proposed by Alparone et al. (2008) in contrast to 
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techniques that call for references. As per Kallel (2014), high quality MS is not required for the QNR protocol 

to function. In this study, the first method in the Wald protocol was preferred in evaluation criteria requiring 

reference. This is because in the second method the quality of the reconstructed MSI image after down 

sampling is highly degraded. Since the dimensions of the images in the datasets are 1024x1024, the size of the 

reconstructed MSI image after subsampling is 64x64, which causes a large loss of information. 

2.3.1. Evaluation criteria that require reference image 

Spectral Angle Mapper (SAM) 

SAM measures the angle between two spectral vectors. The operation is calculated for each pixel. The final 

value is calculated by averaging the values calculated for all pixels. If the value is close to zero, it means that 

the images are similar. 

SAM(x, y) = arccos (
∑ xiyi

N
i=1

∑ xi
2N

i=1
∑ yi

2N

i=1

) 
 (24) 

N indicates the number of bands. The pixels of the compared images are represented by x and y. 

Root Mean Squared Error (RMSE) 

RMSE calculates pixel level differences between images. 

RMSE = √
∑ ∑ (Xi(x) −  Yi(x))2N

i=1
H∗W
x=1

H ∗ W ∗ N
 

 (25) 

The compared images are represented by X and Y. The pixels of the images are expressed as x, the length is 

H, the width is W, and the number of bands is N. 

Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) 

ERGAS measures the quality of the resulting image by taking into account the normalized average error of 

each band. Increasing the value indicates distortion in the image, while decreasing indicates similarity to the 

reference image. 

ERGAS = 100
h

l
√

1

N
∑ (

RMSE(i)

μ(i)
)2

N

i=1
 

 (26) 

N refers to the number of bands. The average of the pixels of band i is denoted by μ(i). RMSE(i) means 

calculating RMSE only for band i. The dimensions of PAN and MS images are represented by h and l, with 

the ratio taken as 1/4 for Ikonos and QuickBird. 

Universal Image Quality Index (UIQI - Q) 

Q makes a measurement by taking into account the correlation, brightness and contrast between images. This 

measurement is divided into BxB parts of the image, calculated separately in each part, and averaged. 

Q =  
4σxyx y

(σx
2 + σy

2) + [(x)2 + (y)2]
 

 (27) 

x =  
1

N
∑ xi

N

i=1
 

 (28) 
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y =  
1

N
∑ yi

N

i=1
 

 (29) 

σx
2 =  

1

N − 1
∑ (xi − x)2

N

i=1
 

 (30) 

σy
2 =  

1

N − 1
∑ (yi − y)2

N

i=1
 

 (31) 

σxy =  
1

N − 1
∑ (xi − x)

N

i=1
(yi − y) 

 (32) 

N is the total number of pixels in the image, while x and y denote individual image pixels. The Q value that 

was computed for each band was averaged for this study. 

2.3.2. Evaluation criteria that do not require reference image 

Quality With No Reference (QNR) 

QNR consists of 2 separate metrics that examine images from a spectral (Dλ) and spatial (DS) perspective.  

QNR = (1 − Dλ)α(1 − DS)β  (33) 

Dλ = √
1

N(N − 1)
∑ ∑ |di,j(MS, PI)|p

N

j=1,j≠1

N

i=1

p

 

 (34) 

 DS = √
1

N
∑ |Q(PIi, PAN) − Q(MSi, PANLP)|q

N

i=1

q

 

 (35) 

di,j(MS, PI) = Q(MSi, MSj) − Q(PIi, PIj)  (36) 

PANLP is the low pass version of the PAN image. N is the number of bands. In this study, α = β = p = q = 1 

was used. 

2.4. Datasets and Compared Methods 

The methods have been tested on 3 types of datasets: Pléiades (Vivone et al., 2014a; Open Remote Sensing, 

2015), Ikonos (Shahdoosti & Ghassemian, 2014) and Rasat (Gezgin, 2013). In all datasets, the size of PAN 

images is 1024x1024 and the ratio between PAN and MSI is 4. The images are shown in Figure 2. 
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Figure 2. Pléiades, Ikonos, Rasat dataset MS images A,B,C respectively, Pléiades, Ikonos, Rasat dataset 

PAN images D,E,F respectively 

The following methods, frequently used in the literature, were used for comparison: 

CS methods: BT-H (Lolli et al., 2017), BDSD, C-BDSD (Garzelli, 2014), BDSD-PC (Vivone, 2019), GS, 

GSA. 

MRA methods: AWLP (Otazu et al., 2005), MTF-GLP (MTF1) (Aiazzi et al., 2002; Aiazzi et al., 2006), MTF-

GLP-FS (MTF2) (Vivone et al., 2018), MTF-GLP-HPM (MTF3) (Vivone et al., 2013), MTF-GLP-HPM-R 

(MTF4) (Vivone et al., 2017), MF (Restaino et al., 2016). 

VO methods: FE-HPM (Vivone et al., 2014b), TV (Palsson et al., 2013), CSP (Civicioglu & Besdok, 2022). 

DL methods: PNN (Masi et al., 2016), PNN-IDX (Masi et al., 2016), A-PNN (Scarpa et al., 2018), L-PNN 

(Ciotola et al., 2023). 

3. RESULTS AND DISCUSSION 

The evaluation results of the Pleiades, Ikonos, and Rasat data sets are shown in Tables 1, 2, and 3 of this 

section, respectively. Figures 3, 4, and 5 present the visual results in the same sequence. The results of 

evaluation criteria that require reference and those that do not require reference are located side by side. In the 

tables, CS, MRA, VO, DL and PL methods are listed one under the other and the winning values are marked 

in bold. 

Table 1 shows that, except for some values for the Pleiades dataset, many methods produce similar results and 

the difference between them is small. In general, it seems that MRA, VO and PL methods produce results close 

to each other. CS methods are slightly behind them. It is seen that the PL3 method is superior to other methods 

in evaluation criteria that do not require reference. However, in those requiring reference, PL2 prevails in Q 

and ERGAS, and PL1 prevails in SAM. PL1 and PL2, although not spatially perfect, are more similar to the 

MSI image when subsampled according to the Wald protocol. This makes them stand out in evaluation criteria. 

Especially in PL2, directly benefiting from the MS image and using SAM in the objective function puts it 
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ahead in the SAM criterion. DWT-based PL4 and PL5 produced results close to other PL methods. There was 

not much difference for this dataset. 

Table 1. Pléiades dataset results 

Pléiades D-λ D-S QNR Q SAM ERGAS 

BT-H 0.015086 0.10512 0.88138 0.8874 2.0684 8.9245 

BDSD 0.015509 0.065875 0.91964 0.94454 2.2965 5.5375 

C-BDSD 0.058699 0.029445 0.91358 0.91924 3.1281 6.4711 

BDSD-PC 0.0068153 0.10579 0.88812 0.92477 2.7586 6.6378 

GS 0.02214 0.1314 0.84937 0.85585 3.124 8.6249 

GSA 0.035588 0.08787 0.87967 0.8931 8.6561 8.4995 

AWLP 0.010393 0.046233 0.94385 0.97179 2.3634 4.0648 

MTF1 0.030636 0.051806 0.91915 0.97058 2.1593 4.1855 

MTF2 0.026306 0.051181 0.92386 0.97183 2.0306 4.0739 

MTF3 0.13318 0.059385 0.81534 0.84878 5.982 994.5831 

MTF4 0.013105 0.040637 0.94679 0.96619 2.0906 8.3344 

MF 0.017977 0.067615 0.91562 0.95007 2.0175 5.4872 

FE-HPM 0.022031 0.03094 0.94771 0.96249 2.0584 4.9903 

TV 0.011811 0.059647 0.92925 0.9688 2.2762 4.2825 

CSP 0.026358 0.063147 0.91216 0.91799 5.7096 6.5927 

PNN 0.093615 0.083307 0.83088 0.85184 6.5904 8.5347 

PNN-IDX 0.1213 0.1334 0.76148 0.62703 8.7662 14.878 

A-PNN 0.064581 0.11914 0.82398 0.95796 4.4282 4.8877 

L-PNN 0.031406 0.093676 0.87786 0.8971 3.9991 8.0688 

PL1 0.012639 0.040972 0.94691 0.80247 1.9318 11.4409 

PL2 0.027111 0.22301 0.75592 0.9764 2.0628 3.7289 

PL3 0.0059155 0.008558 0.98558 0.95968 1.9445 4.7549 

PL4 0.018083 0.062969 0.92009 0.95693 2.1216 4.9929 

PL5 0.014618 0.045644 0.94041 0.96185 1.9566 4.7159 

In the visual results of the Pleiades dataset, in Figure 3, it is seen that DWT-based PL methods can carry both 

spectral and spatial information in a balanced manner. In this dataset, MTF-based methods injected spatial 

information well. VO methods appear to convey spectral information well. CS methods could not transfer 

spatial and spectral information in a balanced manner. 

In Table 2, the average of all QNR values is 0.7695 and the variance is 0.0177. The mean of the Pleiades 

dataset is 0.8824 and the variance is 0.0064. These values tell us that the Ikonos dataset is more discriminative 

in comparing the methods. D-λ values in the Ikonos dataset are similar to those in the Pleiades dataset. 

Although the variance is almost the same between D-S values, there is a difference of 0.11 on average. This 

shows us that this dataset is more difficult in terms of carrying spatial information. 
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Figure 3. Pléiades dataset results 

https://doi.org/10.54287/gujsa.1407864


34 
Tuba ÇAĞLIKANTAR, Melih Can KILIÇ  

GU J Sci, Part A 11(1) 24-40 (2024) 10.54287/gujsa.1407864  
 

 

Table 2. Ikonos dataset results 

Ikonos D-λ D-S QNR Q SAM ERGAS 

BT-H   0.050228   0.14701   0.81015  0.29874   8.8132   49.3399  

BDSD   0.022886   0.11062   0.86903  0.98079   0.86477   1.8819  

C-BDSD   0.041303   0.080003   0.882  0.97971   1.5667   1.9298  

BDSD-PC   0.012479   0.12237   0.86667  0.98381   0.70801   1.7972  

GS   0.027725   0.45209   0.53272  0.44585   2.6587   10.2561  

GSA   0.017065   0.24919   0.73799  0.87853   1.6225   5.1437  

AWLP   0.018906   0.202   0.78291  0.98106   0.55645   1.9158  

MTF1  0.032489   0.20205   0.77202  0.97438   1.0674   2.2848  

MTF2  0.011005   0.17164   0.81924  0.99332   0.39928   1.1147  

MTF3  0.2051   0.088696   0.72439  0.73453   5.2431   61.2218  

MTF4 0.0097461   0.14872   0.84299  0.99312   0.24207   1.1311  

MF   0.023117   0.18625   0.79494  0.96684   0.81553   2.6188  

FE-HPM   0.021544   0.16457   0.81743  0.98384   0.56367   1.8028  

TV   0.029596   0.19318   0.78295  0.9607   2.7201   3.0736  

CSP 0.016969 0.29922 0.68889 0.89976 2.1917 4.3224 

PNN   0.04607   0.18722   0.77533  0.95502   4.589   3.0803  

PNN-IDX   0.056905   0.21731   0.73815  0.88718   4.3976   4.7213  

A-PNN   0.067098   0.085699   0.85295  0.98693   2.5538   1.5769  

L-PNN  0.021057 0.16792 0.81456 0.99061 12.944 13.335 

PL1  0.014623   0.15275   0.83486  0.8674   1.2313   11.0606  

PL2   0.012346   0.071896   0.91665  0.99657   0.39531   0.81308  

PL3  0.018227   0.17256   0.81236  0.94033   1.064   3.4762  

PL4   0.023405   0.36667   0.61851  0.83664   1.8075   5.5437  

PL5   0.017267   0.18205   0.80382 0.97969   0.58728   2.0151 

When we examine Figure 4, it can be seen that CS methods are not very successful in transferring spectral 

information in this data set. In the measurements, it is seen that PL2 is superior in 4 out of 6 measurements. 

There is also a big difference in results between other PL methods. When we examine the image, it can be seen 

that it conveys the spectral information in the MS image very well. MTF4 was successful in conveying spectral 

quality by obtaining the best values in two criteria that were successful in measuring spectral features. 

When the Rasat dataset in Table 3 results are examined, the results of many methods are very close to each 

other, especially in methods that require reference. We can attribute this to the fact that the spatial resolution 

of Rasat data is not as high as other datasets. It is seen that CS methods are generally superior to MRA methods. 

However, there are no major differences. 

When we examine the images in Figure 5, it is seen that the brightness value of the PL1 image cannot be 

adjusted well.  The PL1 method fell far behind other PL methods in D-S, QNR and ERGAS criteria. The reason 

for this may be that the image is created with the help of only 3 optimized coefficients in total, 1 per band. 

It has been observed that PL methods are superior to other methods frequently used in the literature in many 

evaluation criteria. Although there is no superior visual spatial performance, especially in evaluation criteria 

that require reference, it is seen that spectral information is conveyed well. However, it has been observed that 

visual evaluation and objective evaluation criteria do not always yield the same results. Civicioglu and Besdok 

(2024) mentioned, color distortion was observed in CS methods, especially in the Ikonos data results. Aiazzi 

et al. (2006) mentioned, it was also seen in this study that MRA methods using the MTF approach are 

successful in transferring spatial information. Feng et al. (2024) also mentioned, it has been observed that 

MRA-based approaches generally provide superior spectral preservation results than CS-based methods. 
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Figure 4. Ikonos dataset results 
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Table 3. Rasat dataset results 

Rasat D-λ D-S QNR Q SAM ERGAS 

BT-H   0.037075   0.071621   0.89396  0.91528   0.68672   1.1669  

BDSD  0.0034129   0.061771   0.93503  0.91312   0.5211   1.0995  

C-BDSD  0.0082902   0.058071   0.93412  0.91348   0.53358   1.0705  

BDSD-PC  0.0062483   0.074998   0.91922  0.91039   0.52178   1.0977  

GS  0.0059761   0.099265   0.89535  0.9022   0.51035   1.11  

GSA   0.011029   0.068409   0.92132  0.91389   0.52601   1.1432  

AWLP  0.0066989   0.042147   0.95144  0.89771   0.53709   1.2053  

MTF1  0.021725   0.037048   0.94203  0.89747   0.52678   1.2141  

MTF2  0.019214   0.040237   0.94132  0.89738   0.52917   1.216  

MTF3  0.022773   0.037616   0.94047  0.89754   0.52396   1.2194  

MTF4  0.017167   0.036352   0.94711  0.89797   0.52621   1.2135  

MF   0.026001   0.040301   0.93475  0.87225   0.55609   1.3807  

FE-HPM   0.018626   0.025861   0.95599  0.88207   0.53672   1.2749  

TV   0.022874   0.045822   0.93235  0.96262   1.5805   1.6298  

CSP 0.022217 0.092562 0.88728 0.89324 0.78026 1.1809 

PNN   0.052711   0.053492   0.89662  0.90627   1.7789   1.4354  

PNN-IDX   0.10696   0.052078   0.84653  0.89197   2.9251   1.8026  

A-PNN   0.047995   0.15749   0.80207  0.89221   0.99395   1.2328  

L-PNN  0.055579 0.065375 0.88268  0.9131 0.64214 11.063 

PL1 0.0065028   0.15521   0.8393  0.75687   0.52235   8.4083  

PL2  0.0073171   0.010126   0.98263  0.89479   0.52277   1.1925  

PL3 0.0066768   0.045148   0.94848  0.89463   0.5203   1.184  

PL4   0.029312   0.05911   0.91331  0.90036   0.54958   1.1657  

PL5   0.012472   0.024136   0.96369 0.89831   0.52181   1.1904  

4. CONCLUSION 

In this study, pan sharpening is approached as an optimization problem. The optimum solution was tried to be 

achieved by optimizing the pixels of the MS image. 5 different optimization-based methods have been tried. 

The purpose of these methods is to create a low-pass PAN image. The ratio between low-pass PAN and PAN 

was used to obtain the PI image. WDE algorithm was used as the optimization algorithm. Laplacian filter and 

SAM were used as objective functions. The proposed methods have been proven to be superior to other 

methods in many criteria. When we compared the proposed methods among themselves, it was seen that DWT-

based PL methods were left behind compared to other PL methods. This may be due to not providing the 

correct combination. It was observed that the band-based coefficient method used in the methods was 

insufficient. Creating a compositing factor of 1 for the entire band sometimes caused the image not to be 

produced at the desired quality. To overcome this shortcoming, the MS image can be divided into segments 

and a coefficient can be optimized for each segment in each band. Thus, region-based merging can produce a 

higher quality image. Additionally, in the PL1 method, there appears to be a brightness issue. To solve this 

problem, the PL1 method can be transformed into an optimization-based contrast stretching method. It has 

been observed that the ratio between PAN and low-pass PAN will bring us closer to the optimum solution. 

Optimization-based solutions used to create the low-pass PAN have been shown to be useful. 
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Figure 5. Rasat dataset results 
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