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ABSTRACT 

Electroencephalography (EEG), used to record the random electrical activity in brain, is a known medical test. 

In this test, a graphical waveform is obtained by measuring the electrical activity of the cells. In the medical 
world, the relationship between epilepsy and EEG can be understood by examining changes in brain activity 

during or between epileptic seizures. EEG is a useful tool in the early treatment and diagnosis of epilepsy. 

Whether seizures, generally known as abnormal electrical discharges in brain cells, are of epileptic origin, comes 
to light through EEG. The main goal of our study was to demonstrate the EEG rhythm effectiveness for the 

diagnosis of epilepsy in EEG data obtained from the epilepsy center of Bonn Freiburg University Hospital. Time 

domain feature extraction of EEG band classification results was examined in detail against the classification 
results of frequency domain feature extraction of EEG rhythms in healthy subjects and subjects with epilepsy. 

By extracting effective features from EEG data in both time and frequency domains, the k nearest neighbor 

(KNN) algorithm was used for the time and frequency domain. It cannot be overlooked that among the four 
methods used for performance evaluation in the designed model, the classification success of frequency domain 

features was more successful than that of time domain features. Using the KNN algorithm, healthy individuals 
and epilepsy patients with seizures were classified with 100% success.  
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1. Introduction 

 

Electroencephalography (EEG) resembles a melody capturing a graceful dance of brain waves, a window that reveals the 

mysterious rhythm of the mental world. EEG contains useful information about the random nature and dynamics of brain 

waves and plays a major role in disease diagnosis. From a general perspective, the scientific application areas of EEG can be 

divided into three categories: entertainment, engineering, and medical [1]. Figure 1 shows the percentage distribution of EEG 

application areas according to the research conducted in 2020. The entertainment application field includes examples such 

as brain-eye combinatorial controls, brain-based control and robotic games, car racing, social interaction, and virtual 

marketing [2]. Most EEG-based studies in engineering can be divided into two subgroups: biometrics and brain-computer 

interface (BCI) [3]. The process of classifying individuals based on their behavioral and physiological characteristics is 

defined as biometrics. One of the extraordinary features offered by EEG signals is their typical biometric identification for 

each individual [4]. Thus, thanks to this uniqueness, we can say that each person has a unique neural signature [5]. BCI, 

another important application area of EEG in engineering, is a technology that enables direct communication between the 

brain and an external device such as a computer. Focusing on BCI technology, great efforts continue to be made to increase 

EEG signal quality and communication speed, as well as to improve model accuracy. Research in this field represents a broad 

spectrum, creating major revolutions from healthcare to entertainment [6].  

From a medical and healthcare perspective, detailed analysis of brain signal activities provides great convenience in 

predicting diseases and abnormalities in neurology. In this context, EEG is an important tool for understanding brain 

functions, learning, and memory processes. 

Quantitative EEG (QEEG) was used to diagnose and predict Parkinson's disease dementia in 2011 [7]. This study proved that 

θ band relative power analyses are a determining factor in the incidence of dementia.  

Another study showed that the independent component analysis (ICA) preprocessing method increases the performance in 

developing an Alzheimer's disease detection system with automatic brain waves [8]. 
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Figure 1. Percentage Distribution of EEG Application Areas According to the Research Conducted in 2020 [2] 

EEG is not a direct method for treating language disorders and dyslexia, but it is useful for improving reading and writing 

skills by discovering abnormalities in the individual's neurological processes [9]. In addition, EEG is used as an auxiliary 

tool in treating language disorders, along with neurofeedback and auditory therapy methods. 

Attention-deficit/hyperactivity disorder (ADHD) [10], a common psychiatric disorder of our age, is frequently observed in 

children. As a result of the valuable information contained in EEG bands, theta/beta ratio (TBR) is a frequently used measure 

in ADHD studies [11]. 

EEG plays an important role in detecting seizures due to abnormal electrical activities of neurons. These unwanted activities 

can be discovered and characterized using EEG waves [12]. There are many types of seizures with different electrical and 

wave patterns. EEG categorizes seizure types according to the characteristics of these patterns [13]. This application area of 

EEG is of great importance in medicine because it has serious benefits in the early and rapid management of individuals with 

seizures. It also enables healthcare experts to make informed and more precise decisions about early treatment and diagnosis 

of patients with seizures [14]. 

Early diagnosis and conscious support can increase the standards and quality of life of individuals with symptoms of autism 

spectrum disorder. In this context, the debate on whether the findings of research on brain waves and autism spectrum disorder 

are related to each other is still ongoing [15]. It has been proven that EEG signals taken from preschool children show signs 

of high-grade autism spectrum disorder. On the other hand, it was concluded that these symptoms are more pronounced while 

asleep than when awake [16]. 

In addition, many scientific studies have touched upon other different common and important application areas of EEG, such 

as insomnia detection [17] and treatment method determination, brain damage analysis and detection [18], consciousness 

assessment [19], and stress and anxiety disorder treatment [20], [21]. 

From a neuroscience perspective, real-time access to the random activity and behavior of brain waves provides instantaneous 

valuable information about the nature of the EEG. Thanks to this feature, the treatment of many cognitive disorders and the 

diagnosis of abnormal brain behavior disorders have become understandable. The ability of this type of EEG to send instant 

feedback in response to brain functions is considered a great advantage in early medical diagnosis and BCI studies [22]. 

Continuous observation of brain activities in epilepsy and monitoring of the abnormal patterns of the brain that occur during 

seizures have attracted many researchers in real-time EEG studies [23]. Thanks to this reality, early detection of seizures and 

detailed analysis of their characteristics have become possible. 

Epilepsy disorder, caused by excessive electrical movements of neurons, is the fourth known neurological disorder worldwide 

[24]. Regardless of age, the result of these involuntary excessive electrical oscillations can manifest itself as recurrent 

seizures. The topics of interest in the evaluation of a patient with recurrent seizures can be expressed as follows: Is the source 

of the seizures neurological? What type of seizure is it? Are these seizures a sign of epilepsy? With the correct answers to 

these questions, the patient's treatment process is determined. In addition to determining treatment, it is important to provide 

regular follow-up and support for individuals with suspected epilepsy. The presentation that summarizes the care process of 

epilepsy patients to improve their quality of life is shown in Figure 2. 
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Figure 2. The Care Process of Epilepsy Patients in Order to Improve the Quality of Life [25] 

2. Related Studies 
 

Seizures in epilepsy directly affect the patient's quality of life. These seizures, which vary in duration and severity from 

person to person, are manifested by variable behavioral patterns [24]. These behaviors are generally classified as loss of 

consciousness, staring, immobility or involuntary motor symptoms, muscle stiffness, etc.  

Based on the World Health Organization (WHO) report in 2019, the stark reality is that the majority of epilepsy patients live 

in poor countries and do not have access to low-cost anti-seizure drugs. This report can report the good news that a quarter 

of epilepsy patients will be saved from annoying and untimely seizures by using low-cost drugs. 

Computer-based models, which provide great convenience in the medical world, can diagnose many disorders by 

systematically analyzing physiological signals [26]. EEG, a physiological signal, is a magical tool revealing different brain 

disorders. EEG still maintains its important position as a diagnostic tool in diagnosing epilepsy disorders caused by excessive 

electrical activity of the brain [27]. 

In a review study conducted in 2015 [28], EEG was proven to be useful in diagnosing epilepsy syndrome, determining 

whether the attack belongs to the origin of epilepsy, and predicting attack recurrence. In this situation, any abnormal activity 

in brain cells leaves a bright trace of information worth investigating in EEG signals. 

Important factors in diagnosing epileptic patients include determining the type of epileptic seizures and investigating the 

region in the brain causing epilepsy syndrome, thanks to the collaboration of EEG, neuroimaging, cheap drugs, and genetic 

tests [29]. 

Epilepsy diagnosis studies based on machine learning are increasing rapidly every day. Numerous studies have been 

conducted to diagnose seizures using different machine-learning techniques by analyzing EEG data [30]. An effective method 

was presented for detecting epileptic seizures in different EEG signal combinations using four common classifiers. In that 

study, the weighted complex networks model appeared useful in diagnosing epilepsy syndrome despite its high noise 

tolerance. 

With the advancement of technology, automatic epilepsy seizure detection models based on machine learning have replaced 

traditional and time-consuming diagnostic methods. In a detailed study conducted in 2018 [31], the support vector machine 

algorithm was selected for the classification step using two feature extraction techniques. The procedure of this successful 

study was recommended for use in epileptic and healthy signal classification. 

A different approach based on machine learning using EEG signals for epileptic seizure diagnosis was presented by Amin et 

al. [32]. In this study, automatic seizure diagnosis was achieved using wavelet analysis and arithmetic coding. Since the visual 

evaluation of EEG signal analysis, widely used in epilepsy diagnosis, is error-prone, erratic, and sensitive to subjective 

variability, automatic machine learning-based methods have been the focus of the cited study. This computer-aided diagnosis 

(CAD) technique consists of three steps and can be used easily in clinical studies by providing extraordinary performance in 

classifying epileptic and healthy individuals. 

In CAD techniques utilized in epilepsy studies, effective features in the frequency, time, or time-frequency domain are 

extracted from the frequently preferred EEG signals [33]. This effective step directly affects the performance of classification 

algorithms. Classification algorithms are then employed to diagnose seizures or to distinguish epileptic signals from healthy 
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signals. With the aim of shedding light on medical and clinical studies, the subject of rapid and successful seizure diagnosis 

and epileptic/healthy signal classification continues to be current and attracts attention in the scientific literature. 

Diagnosis of epileptic seizures was possible in EEG signals with four classification methods using a genetic algorithm [33]. 

In this study, the success of classification algorithms was evaluated in terms of accuracy, specificity, and sensitivity. Among 

the algorithms used, artificial neural networks showed a more successful result than other algorithms, with 97.82%. 

In another machine learning-based study for seizure diagnosis, a different approach was presented, concentrating on discrete 

wavelet transform and using a feature selection technique. In this new approach, using linear discriminant analysis (LDA), 

principal component analysis (PCA), and statistical features, epileptic and healthy EEG signals were classified with k nearest 

neighbor (KNN) and naive Bayes methods [31]. This model, applied in the epilepsy database of the University of Bonn, has 

achieved great success for the KNN classification algorithm. 

Time-frequency statistical feature selection was used in another machine learning-based EEG epileptic classification model. 

In the model, independent component analysis (ICA) [34]was performed to effectively extract various processes from EEG. 

For the subjective-independent analysis of dynamic and highly non-stationary EEGs, a detailed analysis was carried out using 

ANOVA-based feature selection and fuzzy classification methods. The accuracy of the study was determined to be 96.48% 

in terms of seizure diagnosis [35]. 

A dataset for epilepsy seizure classification was prepared at Izmir Katip Çelebi University in 2021. In this study, the Neurofax 

device recorded the EEG signals of 16 subjects using surface electrodes. To expand the research, this study utilized a dataset 

financed by the European Union and another dataset known as EPILEPSIAE. Thanks to four technical features, such as 

energy, correlation, power spectral distance, and statistical significance measures, and using the empirical mode 

decomposition (EMD) technique, a success rate of 96.8% was achieved for the naive Bayes classifier. 

Based on the literature review, epilepsy crisis detection, seizure diagnosis, and signal classification continue to be the focus 

of many studies. Epileptic EEG signal classification based on machine learning is the main goal of numerous studies. In the 

current study, the widely used dataset supplied by the University of Bonn [36]was used for our machine learning model 

design. In healthy and epileptic EEG signal classification, the importance of band rhythm efficiency was emphasized by 

analyzing all EEG bands and the rhythms of the EEG band. In this detailed Epilepsy classification analysis, attention is paid 

to EEG rhythm analysis, which appears to be a way to increase model accuracy. 

3. Materials and Method 
 

3.1. Dataset 

This study, which offers a different perspective for those not highly experienced in machine learning-based physiological 

signal analysis studies, uses the EEG dataset provided by Andrzejak et al. [37] from the University of Bonn. In this case, the 

author of the proposed study did not apply for ethical approval. In this dataset consisting of five subsets (Z (A set), O (B set), 

N (C set), F (D set), and S (E set)), EEG signals were sampled with a sampling frequency of 173.61 Hz. Each set consists of 

a single channel and contains 100 trials. There are 4097 samples in each of these trials, which last 23.6 seconds. These EEG 

signals were recorded with 12-bit resolution. As a result of visual inspection, artifacts resulting from eye and muscle 

movements were largely eliminated from EEG recordings. In this recording system, which has a bandwidth between 0.5 Hz 

and 85 Hz, a 40 Hz low-pass filter was applied to the raw EEG signal as a preprocessing step.  

Table 1 summarizes this data to understand the dataset efficiently and comprehensively [36]. The electrode positions used 

for EEG recordings taken with surface electrodes in sets A and B are shown in Figure 3. When the results obtained from the 

scalp with extracranial electrodes in the EEG recording process are unsuccessful, intracranial electrodes are used by the 

surgeon to record brain activity by placing them on the patient's skull.  

Sets A and B contain EEG data recorded from 5 healthy subjects in an awake and relaxed state with eyes open in set A and 

closed eyes in set B. Data from 5 patients who achieved complete control of their epilepsy after removal of the epileptic 

seizure focus are presented in sets C and D. Finally, E contains the only ICTAL (a seizure episode) activity observed in 

epileptiform regions. Figure 4 displays an example of an EEG signal related to each set. 

Table 1. Dataset Details 

Classes Subject State 
Electrode 

Type 

Number of 

Trials 

Number of 

Samples 

Set A 5 healthy subjects Awake with open eyes Extracranial 100 4097 

Set B The same 5 healthy subjects Awake with closed eyes Extracranial 100 4097 

Set C 5 epileptic subjects seizure free Intracranial 100 4097 

Set D The same 5 epileptic subjects seizure free Intracranial 100 4097 

Set E The same 5 epileptic subjects with seizure Intracranial 100 4097 
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Figure 3. International 10-20 System Surface Electrode Positions 

 

Figure 4. An Example of an EEG Signal Related to Each Set 

3.2. Applying machine learning steps 

This study aims to present comprehensive research to researchers who are pioneers in EEG signal processing by comparing 

the classification performance of time domain feature extraction [38] against the classification performance of frequency-

domain feature extraction [39] in the diagnosis of epilepsy.  

In the first stage, EEG records with a .txt extension are entered into MATLAB and prepared for analysis. Before analysis, 

these data are converted to (.mat) format. MATLAB R2023a was used for all analyses. As the initial stage of machine 

learning, pre-processing is performed on EEG data. In this study, noise reduction and separation of EEG data into rhythms 

were performed as preprocessing. In this step, noise reduction and common data deletion, which are important and useful 

features of preprocessing, will be realized. So that, by using the pre-processing method called filtering, unwanted components 

were removed and it became easier to extract meaningful information for successful classification results. 

The process of measuring the parameters of data is called feature extraction. The purpose of this step is to facilitate the 

classifier process. A measurable parameter of the fact we observe is the feature. Valuable features properly fulfill their 

informative role by containing accurate and relevant information about the facts. Another point that represents a good feature 

is distinctiveness. That means having a different value in two or more classes of data. The acceptable feature is showing the 

maximum variance between classes while having similar values within the class. Finally, the condition that the features are 

independent of each other and provide new information about the signal directly affects the classifier's performance. 

In the time domain feature extraction method, the rhythms of the EEG signal were obtained by applying the Fast Fourier 

transform (FFT). At this stage, we produced signals that carry each rhythm information of the EEG in the time domain. 

Rhythms were studied instead of focusing on the entire EEG band to prevent performance degradation because some common 

features are too many and the differences are few in the entire EEG. In this case, the extracted feature will be a good 
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ambassador for the EEG signal. So, it would be more useful to separate the rhythms and extract the characteristics of each 

rhythm separately. Some rhythms may be good and some may be bad, but this does not matter because rhythms that carry 

useful information can be selected for classification using feature selection. This step is summarized for a trial from set A in 

Figure 5. Time domain feature extraction steps are presented in detail in Figure 6.  

 

Figure 5. Preparation for Time Domain Feature Extraction from a Trial of a Set 

 

Figure 6 Time Domain Feature Extraction Steps 

In calculating the statistical properties [40] of the signal in the time domain, the d value was determined as 6 by using mean, 

variance, skewness, kurtosis, entropy, and signal power. Mean contains information about the median of the fact data. It is 

represented by the parameter μ and shows the average of all signal samples. In the 𝑥 signal with size 𝑁×1, the mean is 

calculated by Equation 1. The parameter 𝑁 refers to the number of samples. 

𝝁 =
𝟏

𝑵
 ∑ 𝒙𝒊

𝑵
𝒊=𝟏                                                                             (1) 

The variance shows the distribution of the fact data around the mean and is denoted by 𝜎2. Standard deviation (𝜎) is the 

square root of the variance. Since it contains the same information as variance, it can be used for analysis. In the 𝑥 signal 

with size 𝑁×1, the variance is calculated by Equation 2. 

𝝈𝟐 =
𝟏

𝑵
∑ (𝒙𝒊 − 𝝁)𝟐𝑵

𝒊=𝟏                                                                   (2) 

Skewness [41] determines information about the asymmetry of the normal distribution. This criterion, which defines the 

degree of asymmetry, has made decision-making in research areas more successful and provided the opportunity for accurate 

modeling. This type of distribution is expressed by Equation 3.  

Skewness= 

𝟏

𝑵
∑ (𝒙𝒊−𝝁)𝟑𝑵

𝒊=𝟏

(𝑵−𝟏)𝝈𝟑                                                                  (3) 
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Kurtosis determines the peak degree of the normal distribution of the event. Thanks to this statistical criterion, the degree of 

tailing of the distribution is clearly shown compared to the normal distribution. This type of distribution is represented by 

Equation 4. 

𝑲𝒖𝒓𝒕𝒐𝒔𝒊𝒔 =
𝟏

𝑵
∑ (𝒙𝒊−𝝁)𝟒𝑵

𝒊=𝟏

(𝑵−𝟏)𝝈𝟒                                                        (4) 

The calculation of entropy and signal power can be used for features. Shannon Entropy [42] determines the randomness of a 

phenomenon. Whether the behavior is random or factual in a case is determined by Shannon Entropy. The mathematical 

representation of these parameters is shown in Equations 5 and 6, respectively. By including these two features in the study, 

the total number of features was increased to 6 for each set. 

𝑯(𝒙)= - ∑ 𝒑(𝒙𝒊)𝒍𝒐𝒈 (𝒑(𝒙𝒊))𝑵
𝒊=𝟏                                                (5) 

 

𝑷 =
𝟏

𝑵
∑ (𝒙𝒊)

𝟐𝑵
𝒊=𝟏                                                                (6) 

The information provided by the time domain indicates how the amplitude of the signal changes over time. In the rhythm 

separation process in the time domain, rhythms were obtained as a result of FFT calculation from the signal. Finally, by 

taking the inverse FFT, the signal in the time domain was the same size as the main signal but was directed to the feature step 

by obtaining a signal that would only include the coefficients of that rhythm. 

In the present study, feature extraction in the frequency domain [43] plays a major role in diagnosing epilepsy. The 

information provided by the frequency domain shows in which frequency ranges the signal contains information. It shows 

the frequency band content of the EEG signal. As it is known, when FFT is calculated, the output is complex numbers. These 

complex numbers have an amplitude and a phase. Each signal is made of an infinite number of sinusoidal signals. Now, the 

frequency domain shows which sine signals the signal is made of and how this sine contributes to the formation of the main 

signal. Each sinusoidal wave has an amplitude and a phase. 

After FFT, half of the FFT coefficients are considered for feature extraction. The first frequency is 0 Hz, and the frequency 

of the last coefficient is Fsampling /2 Hz. Frequency resolution (FR) was taken into account to calculate other frequencies. The 

time domain feature extraction steps are presented in detail in Figure 7. 

Following the collaboration between medicine and engineering, the analysis of biosignals has gained momentum for early 

disease diagnosis [44]. EEG classification is the process of identifying a specific medical condition or classifying a specific 

activity by taking EEG signals. These signals are used to measure brain activity and diagnose conditions such as epilepsy, 

sleep disorders, ADHD [45], or in brain-computer interface (BCI) systems [46]. Classification algorithms predict whether 

features belong to a particular class. Common classification algorithms include support vector machines (SVM) [47], artificial 

neural networks (ANN) [40], decision trees [48], and k nearest neighbors (k-NN). 

In the proposed EEG-based machine learning model design, the decision phase was carried out after pre-processing and 

time/frequency domain feature extraction in diagnosing epilepsy disease and healthy subjects. Examining how time and 

frequency domain features affect the classification step and which one is superior in terms of successful classification results 

constitute the basic framework of the study. The classification steps followed in the article are illustrated in the flowchart in 

Figure 8. 

 

(a)                                                                                              (b) 
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                                           (c)                                                                                             (d) 

 

                                                                                               (e) 

 

                                                                                             (f) 

Figure 7. (a) EEG signal in the time domain, (b) Entire spectrum, (c) Half of the spectrum (select half of the coefficients), 

(d) Determination of rhythm coefficients, (e) and (f) General and detailed representation of feature extraction steps in the 

frequency domain 
 

 

Figure 8. Classification Steps 

After the necessary preprocessing on the EEG data, the classification step is started by extracting separate statistical features 

in the time and frequency domain. As a classification, the KNN algorithm [49] has become the chosen algorithm in many 

machine learning studies due to its easy use and successful performance [50]. Despite its simplicity, it is very effective and 

accomplished for determining an observation label. The KNN algorithm, which has the advantages of simplicity, easy 

understandability, and applicability, can be computationally costly and prone to overfitting when working on large datasets. 

Therefore, when using KNN, it is important to set the K parameter well and consider the characteristics of the dataset [51].  

Although the non-parametric KNN classifier has an easy working principle, it provides a very successful and strong 

performance in noisy data. The KNN algorithm, which is also the focus of attention in the scientific world, is developing 

with the emergence of new methods. The KNN algorithm, which is frequently used in both regression and classification 

problems, is distance-oriented and works based on the assumption that the samples in the dataset are close to each other. In 

this context, the Euclidean distance definition, widely used in the proposed model, was chosen for the algorithm [52]. If the 
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Euclidean distance between two points with (x1, y1) and (x2, y2) coordinates is denoted by D, this distance is presented in 

Equation 7. 

𝑫 = √(𝒙𝟐 − 𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟏)𝟐                             (7) 

 

Some of the solvable challenges of KNN include dealing with excessive examples, unbalanced classes, overlapping class 

regions, noise from irrelevant features, and outliers. Prototype development, correct adjustment of the K parameter, creation 

of artificial data, filter application, and outlier analysis are among the solutions that mitigate KNN difficulties. 

The dataset must be divided into two sets, test and training, to carry out a classification project (as presented in Figure 8). 

Then, the classifier training will begin. The model will be trained with the training data and training label at this stage. Next, 

the trained classifier is tested with the test dataset. The most important step is to evaluate the model using performance 

parameters. Classifier accuracy, sensitivity, specificity, and confusion matrix were calculated as performance parameters. A 

detailed mathematical description of accuracy, sensitivity, and specificity is shown in Equations 8, 9, and 10, respectively. 

Additionally, Table 2 represents the binary problem confusion matrix detail. In the proposed epilepsy machine learning binary 

classification problem, TP belongs to the first class and represents the correctly classifying examples. FP shows examples 

that belong to the first class but are misclassified. TN belongs to the second class and shows correctly classifying examples, 

and finally FN belongs to the second class and shows incorrectly classifying examples. 
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
                   (8) 

 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                             (9) 

 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =  
𝑻𝑵

𝑻𝑵+𝑭𝑷
                          (10) 

 

Table 2. Binary Problem Confusion Matrix [53] 

 Predicted Class 

Positive Negative 

Actual 

Class 

Positive TP FN 

Negative FP TN 

 

In our study, four validation methods were employed for model evaluation, namely, the holdout method, k-fold cross-

validation method, Leave one out validation method, and Random subsampling, respectively.  

The hold out method [53] is commonly used, where data are allocated only once for training and testing. The model is trained 

with the training data and tested with the test data; then, the performance is evaluated. Generally, 70% or 80% of all data is 

allocated to training. This method is suitable for large and crowded datasets. However, in small datasets, due to the limited 

size of training and test data, the model may not be adequately trained, and statistical problems may arise in the test data, 

leading to unreliable performance parameters. In the hold out method, training and test data are separated only once. When 

dealing with small datasets, model training may not be complete due to limited data availability. Performance evaluation 

aims to utilize the maximum amount of data for the training process, as the more training data available, the better the model 

learns. Conversely, it is more useful to use the maximum amount of data for testing to ensure statistically reliable results. 

However, the maximum data capacity is limited to the entire dataset. Thus, it is not possible to use the maximum data level 

for both testing and training since the same data cannot be utilized for both purposes. In the hold out method of the current 

study, training and testing data were separated using a 70% to 30% ratio, respectively. 

In the leave-one-out validation method [54], which carries the same k-fold logic, there is 1 sample in each fold instead of 

several samples. The advantage of this method is that it allows the dataset to be used in the most beneficial way in small 

datasets. Calculating the performance for each stage does not make sense because there is only 1 sample in the test. Thanks 

to the test labels, after the prediction process is completed, the real labels will be compared with the prediction labels, and 

the performance will be calculated.  

In the random subsampling model, the train and test process will repeat k times. Randomly, some are allocated as testing, 

and some as training, and the performance of each stage is calculated separately. This method has many repetitions. k is 

generally chosen as 100 or 200 [55]. Since the EEG data division process is random in this model, it will obtain even more 

reliable predictions. The use of a single training-testing in validation methods can sometimes be undesirable. Single train-

test applications can diminish classifier performance by increasing the likelihood of bias and variability. The random 

subsampling verification method has acceptable performance in eliminating possible situations. Training and testing data 

were separated by 70% and 30% ratios, respectively. 
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Extensive use of the dataset is possible by using some techniques. k fold validation [56] is a special and common method that 

uses the maximum level of the data to test. Approximately 90% of the data is reserved for training. It allocates a small portion 

of the data for testing, but in fact, it uses the maximum level of the data for testing. It divides the data into k equal parts. k 

has a gradual repetition process. In article research, k is generally chosen as 5, 10, 15, 20 [57]. The data is divided into k 

parts: 1 is used for testing, and (k-1) is used for training. The method will continue until all folds are used as tests once. After 

taking the performance of each step separately, the average performance of all steps is calculated. For example, if we have 

100 data, only 30 are used for testing in the hold out method. Nevertheless, k-fold will pass all 100 tests step by step. In the 

k-fold verification method, k = 5 was chosen for all stages. 

4. Results and Discussion 
 

With time and frequency domain feature extraction methods, KNN classification result percentages were calculated for two 

values of K, representing the number of neighbors. 

In the tables,  

• A/C and A/D represent healthy subjects (recording with eyes open) vs. subjects with epilepsy without seizures.  

• A/E shows healthy subjects (recording with eyes open) vs. subjects with epilepsy with seizures. 

• B/C and B/D show healthy subjects (recording with eyes closed) vs. subjects with epilepsy without seizures.  

• B/E represents healthy subjects (recording with eyes closed) vs. subjects with epilepsy and seizures. 

Considering six binary classes for classification, the accuracy, sensitivity, and specificity for the four evaluation models are 

presented in Tables 3, 4, 5, and 6 for the time and frequency features for the number of neighbors K = 3 and K = 5, 

respectively. To avoid the crowding of figure presentations, the confusion matrix for a single strategy method in both time 

and frequency domain feature extraction has been added for six binary classes (leave one out for time domain, and the hold 

out for frequency domain). The confusion matrix for the six binary classes under the leave one out and the hold out strategies 

for the KNN algorithm (K=5) based on the features extracted in the time and frequency domain is given in Figures 9 and 10 

respectively. 

Table 3. KNN Classification Results (K=3) for Time Domain Feature Extraction Methods 

Model 

evaluation 

Performance 

parameters 

A/C A/D A/E B/C B/D B/E 

 

The holdout 

Accuracy 98.34 95 98.34 100 98.34 98.34 

Sensitivity 100 100 100 100 100 100 

Specificity 96.67 90 96.67 100 96.67 96.67 

 

Leave one out 

Accuracy 71.5 62.5 100 57 51 96.5 

Sensitivity 77 70 100 57 51 97 

Specificity 66 55 100 57 51 96 

 

Random 

subsampling 

Accuracy 66.31 60.23 100 58.01 54.45 97.13 

Sensitivity 70.93 66.95 100 56.84 55.35 96.97 

Specificity 62.21 54.38 100 59.82 54.18 97.42 

 

k-fold 

Accuracy 92.5 89.5 99.5 97 96 99.5 

Sensitivity 88 87 100 95 93 100 

Specificity 97 92 99 99 99 99 
 

Table 4 KNN Classification Results (K=5) for Time Domain Feature Extraction Methods 

Model 

evaluation 

Performance 

parameters 

A/C A/D A/E B/C B/D B/E 

 

The holdout 

Accuracy 96.67 93.34 98.34 100 98.34 98.34 

Sensitivity 100 100 100 100 100 100 

Specificity 93.34 86.67 96.67 100 96.67 96.67 

 

Leave one out 

Accuracy 68 58.5 100 59.5 56 96.5 

Sensitivity 76 68 100 59 58 97 

Specificity 60 49 100 60 54 96 

 

Random 

subsampling 

Accuracy 62.65 57.3 99.98 58.65 55.73 97.05 

Sensitivity 69.06 63.1 100 59.85 63.35 97.37 

Specificity 56.86 51.98 99.97 58.34 48.77 96.77 

 

k-fold 

Accuracy 92.5 88 99.5 97 96 99.5 

Sensitivity 89 87 100 95 93 100 

Specificity 96 89 99 99 99 99 
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Table 5. KNN Classification Results (K=3) for Frequency Domain Feature Extraction Methods 

Model 

evaluation 

Performance 

parameters 

A/C A/D A/E B/C B/D B/E 

 

The holdout 

Accuracy 98.34 91.67 98.34 100 98.34 98.34 

Sensitivity 100 100 100 100 100 100 

Specificity 96.67 83.34 96.67 100 96.67 96.67 

 

Leave one out 

Accuracy 95.5 94 99.5 98.5 98 99.5 

Sensitivity 94 94 100 98 97 100 

Specificity 97 94 99 99 99 99 

 

Random 

subsampling 

Accuracy 94.46 92.88 99.5 98.53 97.83 99.35 

Sensitivity 92.78 93.34 100 98.07 96.2 100 

Specificity 96.16 92.68 99 99 99.5 98.68 

 

k-fold 

Accuracy 94.5 93.5 99.5 97.5 96.5 99.5 

Sensitivity 92 93 100 96 94 100 

Specificity 97 94 99 99 99 99 
 

Table 6. KNN Classification Results (K=5) for Frequency Domain Feature Extraction Methods 

Model 

evaluation 

Performance 

parameters 

A/C A/D A/E B/C B/D B/E 

 

The holdout 

Accuracy 98.34 90 98.34 100 98.34 98.34 

Sensitivity 100 100 100 100 100 100 

Specificity 96.67 80 96.67 100 96.67 96.67 

 

Leave one out 

Accuracy 94.5 93 99.5 98.5 98 99.5 

Sensitivity 93 94 100 98 96 100 

Specificity 96 92 99 99 100 99 

 

Random 

subsampling 

Accuracy 93.76 91.13 99.43 98.51 97.61 99.51 

Sensitivity 92.96 94.44 100 97.82 95.86 99.97 

Specificity 94.79 88.11 98.87 99.17 99.4 99.02 

 

k-fold 

Accuracy 93 91 99.5 98 96 99.5 

Sensitivity 91 93 100 97 94 100 

Specificity 95 89 99 99 98 99 
 

One of the biggest problems with machine learning model design is the issue of overfitting and underfitting. When training 

the model, the problem of overfitting occurs when maximum fit is achieved on the training data but generalization is not 

made to newly seen data. This problem was minimized by choosing the correct parameters in our proposed model. Thus, 

when we look at the results presented, except for the leave-one-out and random subsampling strategies in the time domain, 

the fit shown on the training data in other analyses shows the same consistent performance on the test data. Underfitting 

includes low accuracy on both training and validation/testing data. In our proposed model, it is aimed to address the issues 

of overfitting and underfitting by providing an adequate balance between information generalization and model complexity. 
  

   

(A/C)                                                     (A/D)                                                               (A/E) 
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(B/C)                                                    (B/D)                                                                (B/E) 

Figure 9. The Confusion Matrix for the Six Binary Classes Under the Leave One Out Strategy for the KNN Algorithm 

(K=5) (Time Domain Features) 

   

(A/C)                                                               (A/D)                                                               (A/E) 

   

(B/C)                                                                 (B/D)                                                              (B/E) 

Figure 10. The Confusion Matrix for the Six Binary Classes Under the Holdout Strategy for the KNN Algorithm (K=5) 

(Frequency Domain Features) 

In general, there was a high degree of agreement between accuracy, sensitivity, and specificity in all analyses. Tables can be 

evaluated from two perspectives; the first is the high accuracy evaluation between classes, and the second is the successful 

model evaluation of each class in model performance methods.  

Much detailed research has been conducted on the dataset we are examining. We aim to simplify the research process by 

guiding graduate students who are new to the field of machine learning and pattern recognition. In this study, we evaluated 

machine learning models using time and frequency domain features, employing four performance evaluation strategies during 

the classification phase to distinguish between epilepsy and healthy subjects. Based on the findings from our literature review, 

our classification model closely aligns with previously reported results. We demonstrate the success of our proposed model 

through metrics such as classification accuracy, sensitivity, specificity, and the confusion matrix. 

From the first perspective, the highest achievement for each accuracy row is underlined in the tables. In this evaluation, the 

percentage of the most successful class in 6 binary class problems shows a very good agreement with time and frequency 

domain feature extraction and different K neighbor numbers. From a general perspective, leave one out and random 

subsampling, which had poor performance in extracting time domain features, experienced a significant increase in success 

with frequency domain features. As expected, successful classification was achieved in all model performances due to 

classification with seizure epilepsy, i.e., E, in healthy EEG sets A and B due to the pattern clearly displayed in the waveform. 
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To compare the classification result in a proper and understandable manner, the accuracy success percentages for each 

evaluation model are shown in detail in Figures 11, 12, 13, and 14 for the hold out, the leave one out, random subsampling, 

and k-fold methods, respectively.  

In Figure 11, the B/C healthy and seizure-free epilepsy classification has achieved 100% success in the hold out validation 

model in the KNN classification made with both time and frequency domain feature methods. On the other hand, in the 

healthy and seizure epilepsy classification analysis (A/E, B/E), the proposed feature extraction techniques achieved 

classification with a rate of 98.34%. The class that had the lowest success in the binary class groups was obtained as 90% in 

the classification of healthy (recording with eyes open) and non-seizure epilepsy, with the frequency domain feature 

extraction technique in KNN with the number of neighbors K = 5. In this way, frequency domain analysis provides a more 

successful outcome than time analysis in A/C classification. However, the time domain yields a more successful result in 

A/D classification. 

In Figures 12 and 13, the highest success belongs to the healthy and seizure epilepsy classification (A/E, B/E). For this high 

success, time and frequency domain feature extraction techniques demonstrated approximately similar performance. Here, it 

cannot be overlooked that the number of K neighbors for KNN sometimes directly influences the classification outcome. The 

K parameter can be selected optimally using a few trial-and-error methods. In both time and frequency domains, the number 

of neighbors of K = 5 provides a better accuracy rate in many classes than K = 3. For the same number of K neighbors (K=5), 

the feature extraction method in two domains yields similar results in the leave-one-out model evaluation. In general terms, 

the lowest success is also evident in the healthy and seizure-free epilepsy classification (A/D, B/D). 

In the k-fold model evaluation in Figure 14, the time and frequency domain classification results offer similar results in all 

binary classes, such as the retention model. Healthy and seizure-free epilepsy classification (A/D) has a lower success rate 

compared to other classes. The highest success belongs to the healthy and seizure epilepsy classification (A/E, B/E), with a 

success rate of 99.5%. The effect of changing the K parameter in the KNN algorithm manifests itself in a small amount in 

this model for the frequency domain and K = 5. If a general result is summarized, the hold out and k-fold cross-validation 

models distinguish healthy and epileptic conditions with a higher success rate than the other two models. The success of k-

fold has already been proven in many research articles [58]. In the hold out model evaluation strategy, KNN demonstrates 

100% success in both the time and frequency domains in the B/C subgroup classification across all classification tables. As 

known, in this strategy, the dataset is divided into training and testing sets. The model is trained on the training set and 

evaluated on the test set. In this method, whose performance varies depending on how the data is divided [59], the division 

ratio that yields the best results is selected using a trial-and-error method. This selection results in the highest success rates 

in both the time and frequency domains. 

This educational and small-scale EEG study revealed that, based on the figures, choosing the right cross-validation method 

depends on many factors, such as the calculation steps, the nature and size of the dataset, and the ideal level of sensitivity in 

the designed model. 

 

Figure 11. Accuracy Comparison of the KNN Classification Algorithm in the Hold Out Method 

A/C A/D A/E B/C B/D B/E

Time domain K=3 96,67 93,34 98,34 100 98,34 98,34

Time domain K=5 96,67 93,34 98,34 100 98,34 98,34

Frequency domain K=3 98,34 91,67 98,34 100 98,34 98,34

Frequency domain K=5 98,34 90 98,34 100 98,34 98,34
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Figure 12. Accuracy Comparison of the KNN Classification Algorithm in the Leave One Out Method 
 

 

Figure 13. Accuracy Comparison of the KNN Classification Algorithm in the Random Subsampling Method 
 

 

Figure 14. Accuracy Comparison of the KNN Classification Algorithm in the K-Fold Method 

A/C A/D A/E B/C B/D B/E

Time domain K=3 71,5 62,5 100 57 51 96,5

Time domain K=5 95,5 94 99,5 98,5 98 99,5

Frequency domain K=3 68 58,5 100 59,5 56 96,5

Frequency domain K=5 94,5 93 99,5 98,5 98 99,5
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The dataset of the University of Bonn, which has balanced classes [60], continues to establish strong ties between the medical 

world and machine learning through its application for diagnosing many EEG-based epileptic diseases. Based on a literature 

review, the final results of this educational study are largely compatible with the findings obtained so far. In the machine 

learning-based epilepsy study conducted in 2021, a high success rate was achieved with the KNN algorithm using the PCA 

feature reduction technique [61]. After the dominant features are obtained, the KNN algorithm, which is useful in detecting 

abnormalities in epileptic seizures in EEG signals, achieved 97.5% success thanks to the features obtained by the wavelet 

transform feature extraction technique [62]. Considering the statistical feature extraction method, which has been used in 

many studies and has provided successful results, in the proposed high-performance machine learning model, energy, 

Shannon entropy, and variance significantly contribute to highlighting the dominant feature in seizure capture [63]. In a 

comprehensive 2021 study, various linear and non-linear features were extracted using the Bonn and Freiburg [64] datasets, 

and acceptable results were obtained with 10-fold cross-validation thanks to the deep learning approach. The proposed model 

demonstrated 99.71% and 99.13% accuracy for the Bonn and Freiburg datasets [65]. In a study conducted in 2023 with the 

Bonn dataset [66], an automatic epilepsy seizure detection model was designed. In this model, classification was carried out 

by applying a discrete wavelet transform, extracting four mixed features, and using a convolutional neural network algorithm. 

The classification success of this designed model was reported as 100%. Introducing a new feature extraction method [67], 

complex network logic was used for automatic epilepsy seizure detection. In this study, Henon and Logistic maps in the Bonn 

dataset were considered to demonstrate the validity of the methodology. In the detailed study, epilepsy seizure diagnosis was 

presented with 100% accuracy. In this epilepsy seizure diagnosis model, which is useful to expert neurologists, successful 

performance was demonstrated using different classifiers such as support vector machine and linear discriminant analysis. In 

a multiple classification study conducted in 2023 using deep learning techniques, epileptic seizures were diagnosed in the 

Bonn dataset [68]. Seizure diagnosis was achieved with a 99.5% success rate using scalogram and spectrogram images and 

multiple classification techniques. 
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