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ABSTRACT 
The continuous evolution of malware poses a significant challenge in cybersecurity, adapting to technological 

advancements despite implemented security measures. This paper introduces an innovative approach to enhance 

the detection of obfuscated malware through the integration of machine learning (ML). Utilizing a real-world 
dataset of prevalent malware types such as spyware, ransomware, and trojan horses, our study addresses the 

evolving challenges of cybersecurity. In this study, we evaluate the performance of ML algorithms for 

obfuscated malware detection using the CIC-MalMem-2022 dataset. Our analysis encompasses binary and 
multi-class classification tasks under various experimental conditions, including percentage splits and 10-fold 

cross-validation. The evaluated algorithms include Random Tree (RT), Random Forest (RF), J-48 (C4.5), Naive 

Bayes (NB), and XGBoost. Experimental results demonstrate the effectiveness of RF, J-48, and XGBoost in 
achieving high accuracy rates across different classification tasks. NB also shows competitive performance but 

faces challenges in handling imbalanced datasets and multi-class classification. Our findings highlight the 

importance of employing advanced ML techniques for enhancing obfuscated malware detection capabilities and 

provide valuable insights for cybersecurity practitioners and researchers. Future research directions include fine-

tuning model hyperparameters, exploring ensemble learning approaches, and expanding evaluation to diverse 
datasets and real-world scenarios. 
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1. Introduction 
 

The persistent evolution of malicious code, or malware, presents significant threats to internet-connected devices despite 

robust security measures. Malware, designed to perform unauthorized actions often without the user's knowledge, is utilized 

for malicious purposes such as stealing passwords, accessing confidential data, or corrupting system operations [1]. This 

poses profound challenges to the core aspects of information security: privacy, integrity, and availability [2]. Malware can 

expose sensitive organizational data (privacy), alter or corrupt records (integrity), and disrupt system functionality 

(availability) by deleting or overwriting files or damaging storage media. These characteristics make malware detection 

difficult, especially as it continually develops techniques to evade conventional detection methods [3]. 

Malware encompasses various forms, including worms, viruses, bots, trojan horses, ransomware, spyware, adware, spam, 

phishing, and rootkits, necessitating a comprehensive and nuanced detection strategy [4][5][6][7]. Traditional manual 

detection methods, while thorough, are impractically time-consuming and complex. This has driven the adoption of 

automated systems such as Machine Learning (ML) [8]. These intelligent systems can swiftly and accurately analyze data, 

learning from selected training datasets to optimize detection processes [9]. ML algorithms, varying in speed, accuracy, and 

precision, significantly impact these systems’ outcomes [10]. For instance, ensemble ML techniques are well-suited to 

malware detection and characterization objectives [11]. By training on labeled datasets, supervised learning algorithms can 

achieve high accuracy rates in identifying certain types of malware [12]. In contrast, unsupervised learning algorithms can 

be effective in detecting unknown threats by discovering previously unidentified patterns and relationships in datasets [13]. 

Additionally, reinforcement learning and deep learning techniques can offer fast and flexible detection mechanisms in 

complex and dynamic threat environments [14]. In this context, ML-based systems go beyond traditional methods, allowing 

malware to be detected more effectively and efficiently [15]. 

Current methods for detecting malware, often involving detailed and slow analysis of computer memory, are impractical for 

real-world applications. There is a critical need for more efficient and effective solutions. Our proposed approach leverages 

features identified through memory analysis to enhance malware detection systems [16]. 
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In this study, we use malware samples from distinct categories, such as ransomware, spyware, and trojan horses, to 

demonstrate our methodological approach. Specifically, we investigate the application of ML models to detect obfuscated 

malware using the CIC-MalMem-2022 dataset [1]. We conduct binary classification, determining the presence of malware, 

and multiclass classification, identifying specific malware families. We evaluate a range of traditional ML algorithms, 

including Random Tree (RT), Random Forest (RF), J-48, Naive Bayes (NB), and XGBoost. 

The contribution of the paper can be summarized as follows: 

• Evaluating the effectiveness of various machine learning algorithms against obfuscated malware using the CIC-

MalMem-2022 dataset. 

• Developing a machine learning-based system to address the risks posed by obfuscated malware. 

• Providing a comprehensive categorization of the malware families within the dataset. 

The remainder of this paper is structured as follows: Section II reviews recent works on obfuscated malware detection, Section 

III discusses the relevant background, Section IV presents the methodology, Section V details the experimental results, and 

the final section offers concluding remarks. 
 

2. Related Works 
 

Machine Learning (ML) has become pivotal in enhancing the detection of obfuscated malware within cybersecurity systems 

[1][17][18][19]. This section reviews several key contributions utilizing ML and Deep Learning (DL) techniques to address 

the challenges posed by sophisticated malware variants. 

Yihan et al. [3] introduced a DL-powered hierarchical model to tackle data imbalance in malware datasets, achieving a binary 

classification accuracy of 99.67% with the CIC-MalMem-2022 dataset. Ghazi and Raghava [4] applied nature-inspired 

algorithms for feature selection, notably improving classification accuracy with ML techniques. Their approach demonstrated 

substantial efficacy in detecting malware in cloud networks, achieving a binary classification accuracy of 99.99% using the 

Mayfly Algorithm. Nugraha and Zeniarja [11] utilized a Decision Tree (DT) based algorithm for memory-based malware 

detection, achieving an accuracy of 99.982% in binary classification, with a notable reduction in false positives, highlighting 

the effectiveness of memory analysis in detecting malware behavior. Dener et al. [16] emphasized the importance of memory 

analysis in malware detection, employing various ML algorithms with Logistic Regression (LR), showing the highest 

accuracy of 99.97% in their studies. Tidjon and Khomh [20] proposed using topological data analysis to efficiently identify 

complex malware patterns, suggesting that TDA techniques combined with ML could enhance the robustness and 

performance of malware detection systems. Naeem et al. [21] developed a dynamic method for malware detection and 

classification using anti-analysis techniques, transforming memory dumps into grayscale images. Their hybrid model, 

combining Convolutional Neural Networks (CNNs) and a Multilayer Perceptron (MLP), achieved high accuracy on Windows 

(99.1%), Android (94.3%), and Windows obfuscated malware (99.8%). The study suggests further enhancements in training 

efficiency and resilience against adversarial attacks. Al-Qudah et al. [22] introduced a model combining One-Class Support 

Vector Machine (SVM) with Principal Component Analysis (PCA), achieving a significant improvement in the detection of 

memory dump malware, with an accuracy of 99.4% for binary classification. Smith et al. [23] the use of ML for malware 

detection, employing a range of algorithms to achieve 99.99% accuracy for binary classification, suggesting further research 

into feature selection and genetic algorithms to enhance detection capabilities. 

Mezina and Burget [24] tackled the challenge of detecting obfuscated malware in memory using AI. They utilized the CIC-

MalMem-2022 dataset and explored several ML techniques, including Random Forest (RF) and a newly proposed dilated 

CNN. The RF method achieved an accuracy of 99.99% for binary classification, while the dilated CNN excelled in classifying 

malware families with an accuracy of 83.53% for multiclass(4) classification. The study highlights the need for improved 

classification methods to keep up with cybersecurity threats. Roy et al. [25] created MalHyStack, a combined model that uses 

group learning methods to detect hidden malware very accurately. They stress the importance of detecting these threats early 

in cybersecurity. They achieved 99.98% accuracy for binary classification, 85.04% accuracy for multiclass(4) classification, 

and 70.29% accuracy for multiclass(16) classification. 

The existing literature often focuses on binary classification, categorizing objects as benign or malware. For instance, Yihan 

et al. [3] achieved a 99.67% accuracy using a DL-powered hierarchical model, while Ghazi and Raghava [4] attained a 

99.99% accuracy with the Mayfly Algorithm for feature selection. Nugraha and Zeniarja’s [11] DT-based approach yielded 

a 99.982% accuracy, and Dener et al. [16] demonstrated a 99.97% accuracy using Logistic Regression. These studies 

underscore the efficacy of binary classification techniques in identifying malware. 

However, this method is insufficient for comprehensive malware analysis. Therefore, there is a need to develop methods that 

can identify sub-categories of malware. Recent studies have achieved multi-class classification into four groups: benign, 

ransomware, spyware, and trojan horse attacks. Other studies have gone further, classifying these into 16 sub-types of attacks. 

Despite these advances, there is still a need for improved results in the literature. 
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In our research, we addressed this limitation by implementing multilevel classification, categorizing malware into more 

granular groups. Specifically, we performed classification into 4 main categories (benign, ransomware, spyware, and trojan 

horse) and further into 16 sub-categories. This approach not only enhances the granularity of malware detection but also 

improves the ability to identify and respond to new and emerging types of malware. Enhancing these methods could make it 

easier to detect new and emerging types of malware automatically. 

By advancing beyond binary classification to multilevel classification, our study contributes to the field by providing a more 

detailed and nuanced understanding of malware, which is critical for developing robust malware detection systems. This 

method allows for more precise identification of malware types and can significantly aid in the development of targeted 

defense mechanisms against specific types of malware threats. 

3. Background 
 

In this section, we provide a contextual overview of malware types with their analysis and detection methods, focusing on 

the importance of memory analysis in identifying obfuscated malware. Leveraging ML algorithms is highlighted as a key 

strategy for effectively detecting and mitigating sophisticated malware threats. We then introduce the CIC-MalMem-2022 

dataset, a valuable resource extensively employed in malware analysis. Notable for its representation of real-world obfuscated 

malware scenarios, the dataset’s characteristics are outlined, emphasizing its relevance in evaluating ML models for malware 

detection. Additionally, we discuss the diverse range of ML algorithms utilized to detect obfuscated malware using the CIC-

MalMem-2022 dataset and tailored feature extraction methods to enhance detection accuracy. Finally, we present 

performance metrics utilized for evaluating the effectiveness of ML models, providing quantitative insights into their 

detection capabilities. 

3.1. Overview of Malware Types 

In cybersecurity, understanding malware types is crucial for developing effective defense strategies against evolving cyber 

threats. This study discusses 3 different malware type categories: spyware, ransomware, and trojan horse. Ransomware, with 

variants such as Ako, Conti, and Maze, poses a significant threat by encrypting files or systems and demanding ransom 

payments. Spyware, including programs like 180solutions and Gator, compromises privacy and security by secretly 

monitoring user activity. Trojans like Emotet and Zeus camouflage themselves as legitimate software to facilitate 

unauthorized access and data leakage. Recognizing the characteristics and tactics of these malware strains allows 

cybersecurity practitioners to implement robust defenses and effectively mitigate risks.  

3.2. Obfuscated Malware Analysis 

Obfuscated malware presents a formidable challenge to traditional cybersecurity defenses due to its sophisticated evasion 

techniques to conceal malicious intent. These evasion strategies include code obfuscation, polymorphism, and encryption, 

which render malware payloads virtually undetectable to conventional signature-based detection systems. By disguising 

malicious code within legitimate-looking programs, obfuscated malware evades detection by antivirus software and intrusion 

detection systems, posing significant threats to individual users and organizations. 

In response to the escalating threat posed by obfuscated malware, researchers have turned to advanced detection 

methodologies, with ML emerging as a promising approach. ML algorithms can discern subtle patterns and anomalies 

indicative of obfuscated malware within memory dumps. Leveraging labeled datasets such as the CIC-MalMem-2022, 

researchers can train ML models to recognize obfuscated malware behaviors and distinguish them from benign software. 

However, the dynamic nature of obfuscated malware necessitates continual adaptation and refinement of detection strategies 

to combat evolving threats effectively.  

3.3. Dataset Description 

Canadian Institute for Cybersecurity (CIC) provides data sets for studies in cyber security. The CIC-MalMem-2022 dataset 

is the most up-to-date dataset created in the malware category by Carrier et al. [1]. This dataset contains a modern collection 

of samples encompassing obfuscated malware and benign classes. The dataset included prominent malware families such as 

ransomware, spyware, and trojan horses to simulate real-world conditions. Within the scope of the research, 100 to 200 

malware samples were collected from three main categories of trojan, ransomware, and spyware, and five subcategories under 

each of these categories, as shown in Figure 1. 
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Figure 1. The CIC-MalMem-2022 Dataset Distribution 
 

The CIC-MalMem-2022 dataset creation process stages are shown in Figure 2. The first stage focused on memory dumping, 

employing VirtualBox as a sandbox to capture memory snapshots from a Microsoft Windows 10 operating system, ensuring 

a realistic representation of contemporary malware. Automation was introduced to execute 2,916 malware samples in a virtual 

machine, with concurrent benign processes to maintain realism. The resulting 29,298 malicious memory dumps were 

balanced using the SMOTE algorithm [26].  The second stage involved transferring dump files to a Kali Linux machine for 

feature extraction using the Volatility Memory Analyzer (VolMemLyzer) [27], a Python project designed to facilitate the 

extraction of memory features, enhancing the analysis of malicious activities within a memory snapshot using the Volatility 

tool. VolMemLyzer efficiently captures the essential features for in-depth memory forensics and malware detection. Each 

sample is represented by a vector of numerical values derived from memory dump information, with 26 new extended feature 

groups, including Malfind (3), Ldrmodule (3), Handles (11), Process View (6), and Apihooks (3), totaling 58 features. Finally, 

the third stage encompassed feature extraction from memory dump files and creating a combined comma-separated values 

(CSV) file [1]. 

 

 

Figure 2. The CIC-MalMem-2022 Dataset Generation Processes 
 

The CIC-MalMem-2022 dataset contains 58,596 memory dump samples. As shown in Table 1, the distribution of samples is 

well-balanced between benign and malware categories, with each class accounting for 50% of the total samples. 
  

Table 1. The Number of Samples for CIC-MalMem-2022 Dataset 

Class 
Number of 

Samples 

Ratio % 

Benign 29,298 50 

Malware 29,298 50 

Total 58,596 100 

 

The malware class is further divided into 3 categories and 15 subcategories, which are evenly distributed, as illustrated in 

Table 2.  
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Table 2.  The Malware Subclasses in CIC-MalMem-2022 Dataset 

Malware 

Details 
Class 

Number of 

Samples 

Ratio % 

Ransomware 

(9,791) 

Ako 2,000 3.413 

Conti 1,988 3.413 

Maze 1,958 3.342 

Pysa 1,717 2.930 

Shade 2,128 3.632 

Spyware 

(10,020) 

180solutions 2,000 3.413 

CWS 2,000 3.413 

Gator 2,200 3.755 

TIBS 1,410 2.406 

Transponder 2,410 4.110 

Trojan Horse 
(9,487) 

Emotet 1,967 3.357 

Reconyc 1,570 2.679 

Refroso 2,000 3.413 

Scar 2,000 3.413 

Zeus 1,950 3.328 
 

Ransomware (9,791 samples): This category includes strains such as Ako, Conti, Maze, Pysa, and Shade, which encrypt files 

and demand a ransom for decryption. Each strain has 1,717 and 2,128 samples, making up about 33.4% of the malware data. 
 

Spyware (10,020 samples): This category consists of 180solutions, CWS, Gator, TIBS, and Transponder, which are programs 

that gather information about a person or organization without their knowledge. Each strain has between 1,410 and 2,410 

samples, accounting for 34.3% of the malware data. 
 

Trojan Horse (9,487 samples): This category includes Emotet, Reconyc, Refroso, Scar, and Zeus, programs that deceive users 

about their true intent, often appearing as legitimate software. Each strain has between 1,570 and 2,000 samples, making up 

32.3% of the malware data. 
 

3.4. Machine Learning Models 

The ML models for classifying the CIC-Malmem-2022 dataset are generally explained in this section. We used RT, RF, J-

48, NB, and XGBoost.  
 

RT is an ML algorithm that constructs a decision tree by randomly selecting a subset of features at each node to split on. This 

randomness helps to reduce overfitting and improve generalization performance. RF enhances accuracy and reduces 

overfitting by averaging the predictions of multiple decision trees. C4.5, or J-48 in the Weka implementation, is a decision 

tree algorithm derived from the Iterative Dichotomiser 3 (ID3) algorithm. It selects crucial attributes from the information 

gain ratio and generates if-then rules from the trained trees. C4.5 is known for its robust performance across different datasets. 
 

NB is a probabilistic classifier that applies Bayes’ theorem for classification. It assumes that characteristics are conditionally 

independent given the class label, which simplifies the calculation of posterior probabilities. Despite its ‘naive’ assumption, 

NB often performs well in practice, especially for text classification tasks. 
 

XGBoost is an optimized gradient-boosting algorithm widely used for classification and regression tasks. It builds a series of 

decision trees sequentially, where each tree attempts to correct the errors made by the previous ones. XGBoost is known for 

its computational efficiency and high performance on structured/tabular data. 
 

While the dataset is not perfectly balanced, it is well-distributed and suitable for robust malware classification. Our study 

effectively utilizes this dataset to perform multilevel classification, yielding significant and reliable results. 
 

4. Methodology 
 

The system architecture and performance evaluations performed in this study are shown in Figure 3.  
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Figure 3. Proposed Malicious Software Detection System 
 

Pre-processing steps, dataset creation, testing, and evaluation of machine learning (ML) methods were conducted using the 

CIC-MalMem-2022 dataset. Initially, all processes were applied to the raw dataset, and the corresponding tests were 

executed. It was noted that the initial low performance could be attributed to the lack of normalization and the presence of 

duplicate records. Consequently, all tests were repeated using a dataset from which duplicate records had been removed. The 

best performance was achieved with the duplicates removed dataset resulting in 58,027 records from the original 58,596 

records. 

The classification process began by organizing the data into binary classes (benign and malware). Subsequently, multiclass 

datasets with 4 and 16 classes were created. Various testing strategies were employed, including test split and k-fold cross-

validation. For the percentage split test, 80% of the dataset was used for training, while the remaining 20% was used for 

testing. In the k-fold cross-validation method, the dataset was divided into 10 parts, with each part being used for testing in 

turn. The ML methods tested included Random Tree (RT), Random Forest (RF), J-48, Naive Bayes (NB), and XGBoost, all 

of which are commonly used in the literature. Performance metrics such as Accuracy, F1-Score, Recall, and Precision were 

calculated to assess the test results. 

4.1. Data Preprocessing 

Increasing the performance of machine learning methods depends significantly on data preprocessing steps. Therefore, 

analyzing the data well and carrying out the necessary pre-processing is very important. Normalization operations were 

performed on the dataset in our study. After this process, duplicate records in the data set were cleared. Thus, a more 

consistent and cleaner data set was obtained. At the end of these processes, sub-datasets such as binary, multiclass(4), and 

multiclass(16) were obtained from the data set containing 58,027 records, as shown in Figure 4. 
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Figure 4. CIC-Malmem-2022 Dataset Preprocessing Operations 
 

4.2. Experimental Setting 

We utilized Weka version 3.9.6 [28] for training the machine learning models and conducting the evaluations. Table 3 details 

the hardware and software environment used in this study. The performance measurements were executed on a Windows 

operating system, powered by a CPU model i7-13700K @ 3.40GHz with 32 GB of RAM. The GPU employed was an 

NVIDIA GeForce® RTX 4070 Ti with 12 GB of memory. 

Table 3. Hardware and Software Features for the Experimental Evaluations 

Hardware / Software Features 

Operating   System Windows 11, 64 bit 

Weka  3.9.6   

CPU 13th Gen Intel(R) Core(TM) i7-13700K @ 3.40GHz 

RAM 32 GB 

Video Graphics Card NVIDIA GeForce® RTX4070Ti 
 

4.3. Evaluation Metrics 

To assess the performance of the CIC-MalMem-2022 dataset with different algorithms, various performance metrics were 

used. The evaluations were performed using the WEKA [28]. Additionally, the confusion matrix used in computing these 

performance metrics is explained in Table 4. 

Table 4. Confusion Matrix for Performance Calculation 

Class/Attack Type 

 

Predicted Class 

Benign Malware 

True Class 

Benign True 

Positive 

(TP) 

False 

Negative 

(FN) 

Malware False 

Positive 

(FP) 

True 

Negative 

(TN) 
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Accuracy: This metric indicates the percentage of correct predictions made by the model out of all predictions. It is calculated 

using the following formula: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

 

Recall: Recall measures the percentage of actual positives that were correctly identified by the model. It is calculated as: 

Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (2) 

 

Precision: Precision indicates the percentage of positive predictions that were actually correct. It is computed as: 

Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (3) 

 

F-Measure: The F1 score, representing the harmonic mean of Precision and Recall, is calculated as follows: 

F − Measure = 2 × (
Recall ×  Precision

Recall + Precision
) (4) 

5. Experimental Results 

This section presents the experimental studies conducted on the CIC-MalMem-2022 dataset. First of all, binary classification 

is given in the study. Then, the results obtained by considering multiclass classification with 4 and 16 classes are provided. 

5.1. Binary Classification Results 

For the binary classification task, algorithms like RF, J-48, and XGBoost demonstrate outstanding accuracy, with scores 

exceeding 99% in most cases. NB also performs reasonably well, albeit with slightly lower accuracy than other algorithms. 

XGBoost achieves perfect accuracy in both test modes, indicating its robustness in detecting obfuscated malware instances. 

 

Figure 5. Confusion Matrix for XGBoost 80% Split for Binary Classification 
 

Figure 5 shows the confusion matrix for binary classification utilizing XGBoost, demonstrating classification performance 

with 99.99% accuracy. The model showcases its exceptional ability to distinguish between different classes of obfuscated 

malware. 
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5.2. Multiclass Classification Results 
 

In the multi-class classification scenarios (Multi-4 and Multi-16), RF, J-48, and XGBoost consistently deliver high accuracy 

rates above 70%. However, NB struggles to maintain comparable performance, especially in handling imbalanced datasets 

and distinguishing between multiple classes. 

 

Figure 6. Confusion Matrix for XGBoost 80% Split for Multiclass(4) Classification 
 

Figure 6 shows a confusion matrix with an accuracy of 87.79% and relatively balanced classification performance across all 

classes, as evidenced by the diagonal dominance and nonzero values outside the main diagonal. The classification report 

further reveals precision, recall, and F1-score metrics for each class, providing insights into the model’s ability to identify 

instances of obfuscated malware within each category correctly. 

 

Figure 7. Confusion Matrix for XGBoost 80% Split for Multiclass(16) Classification 
 

Figure 7 shows the confusion matrix for multi(16) classification with XGBoost. The XGBoost model trained with an 80% 

split achieved an accuracy of 75.49%. The confusion matrix indicates varying levels of precision and recall across different 

classes, with some classes showing more robust performance than others. Despite an overall macro-average F1-score of 0.54, 

indicating moderate classification performance, the model exhibits a relatively high mean absolute error of 1.5513, suggesting 
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some discrepancy between predicted and actual values. Further optimization may be necessary to enhance the model’s 

accuracy and robustness across all classes. 

5.3. Performance Comparisons 

Table 5 shows the performance results of ML algorithms applied to the CIC-MalMem-2022 dataset after removing duplicates. 

The results are presented for both an 80% / 20% train-test split and a 10-fold cross-validation setting, covering binary, 

multi(4), and multi(16) classification tasks. The evaluation metrics used include Accuracy (ACC), True Positive Rate (TPR), 

False Positive Rate (FPR), Precision, F-Measure. 

Table 5. Experimental Results on the CIC-MalMem-2022 Dataset with Removing Duplicates 

Dataset Test Mode Algorithms ACC TPR FPR Precision F-Measure 

CIC-MalMem-2022 

(Binary-2) 

  

  

  

percentage (80%) 

  

  

  

Random Tree 99.96 1.00 0.000 1.00 1.00 

Random Forest 99.99 1.00 0.000 1.00 1.00 

J-48 99.97 1.00 0.000 1.00 1.00 

Naive Bayes 98.87 0.98 0.011 0.98 0.98 

XG-Boost 99.99 1.00 - 1.00 1.00 

CIC-MalMem-2022 

(Binary-2) 

  

  

  

k-fold 10 

  

  

  

  

Random Tree 99.96 1.00 0.000 1.00 1.00 

Random Forest 99.98 1.00 0.000 1.00 1.00 

J-48 99.96 1.00 0.000 1.00 1.00 

Naive Bayes 98.89 0.98 0.011 0.98 0.98 

XG-Boost 99.87 1.00 - 1.00 1.00 

CIC-MalMem-2022 

(Multi-4) 

  

  

  

percentage (80%) 

  

  

  

  

Random Tree 83.14 0.83 0.034 0.83 0.83 

Random Forest 87.61 0.87 0.025 0.87 0.87 

J-48 86.84 0.86 0.026 0.86 0.86 

Naive Bayes 67.80 0.67 0.064 0.71 0.63 

XG-Boost 87.79 0.88 - 0.88 0.88 

CIC-MalMem-2022 

(Multi-4) 

  

  

  

k-fold 10 

  

  

  

  

Random Tree 83.53 0.83 0.033 0.83 0.83 

Random Forest 87.48 0.87 0.025 0.87 0.87 

J-48 86.76 0.86 0.026 0.86 0.86 

Naive Bayes 68.24 0.68 0.063 0.72 0.64 

XG-Boost 82.84 0.83 - 0.83 0.83 

CIC-MalMem-2022 

(Multi-16) 

  

  

  

percentage (80%) 

  

  

  

  

Random Tree 70.12 0.70 0.011 0.70 0.70 

Random Forest 74.66 0.74 0.009 0.74 0.74 

J-48 74.76 0.74 0.009 0.74 0.74 

Naive Bayes 57.17 0.57 0.016 0.61 0.55 

XG-Boost 75.49 0.75 - 0.76 0.75 

CIC-MalMem-2022 

(Multi-16) 

  

  

  

k-fold 10 

  

  

  

  

Random Tree 70.16 0.70 0.011 0.70 0.70 

Random Forest 75.42 0.75 0.009 0.75 0.75 

J-48 75.12 0.75 0.009 0.00 0.75 

Naive Bayes 56.99 0.57 0.016 0.60 0.54 

XG-Boost 71.33 0.71 - 0.71 0.71 

 

Overall, the results underscore the efficacy of ML algorithms, mainly RF, J-48, and XGBoost, in detecting obfuscated 

malware. These findings provide valuable insights for cybersecurity practitioners and researchers developing more effective 

defense mechanisms against sophisticated malware threats. 
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5.4. Discussion 

Despite the successes reported in recent studies, several limitations are evident, indicating substantial opportunities for further 

research. Most approaches require large and balanced datasets, which are not always available, particularly for new or 

emerging malware variants. There are also concerns about the generalizability of these models across different platforms or 

under real-world conditions, as many were tested in controlled environments. Furthermore, the robustness of these systems 

against adversarial attacks, where attackers intentionally modify malware to evade detection, remains a significant challenge. 

These limitations underscore that while the field has made considerable advances, there is still much work to be done to 

enhance the efficacy, efficiency, and adaptability of ML models in the ever-evolving landscape of malware detection. 

5.5. Comparative Analysis with Existing Methods 

In the literature, some studies only perform binary classification with the CIC-MalMem-2022 dataset [1], [3], [4], [16], [23], 

[29]. For binary classification, it is seen that many studies achieve results above 99%. There are studies on binary and multi-

class (4) classification in the literature [24]. Some studies deal with sub-malware types in the entire dataset, such as binary, 

multi-class (4) [24], and multi-class (16) [25], [18], [19], [30]. 

When we compare these studies with our proposed research, the best results were obtained with 87.79% accuracy with 

XGBoost in multi-class (4) classification and 75.49% accuracy in multi-class (16) classification, as shown in Table 6. These 

results demonstrate significant improvements over previous works, especially in the context of multilevel classification, 

where our model achieves higher accuracy rates in both multi-class (4) and multi-class (16) settings. This is a notable 

advancement given the complexity and challenges associated with multilevel malware classification. 

Our study contributes to the literature by addressing the limitations of existing binary classification approaches and advancing 

the field through the implementation of multilevel classification. This approach allows for more granular detection of 

malware, providing a detailed and nuanced understanding of different malware types. It enhances the ability to identify and 

respond to new and emerging malware threats, which is crucial for developing robust and adaptable malware detection 

systems. 

Table 6 summarizes the recent studies related to the CIC-MalMem-2022 dataset, highlighting the comparative performance 

of different models. Our results not only demonstrate the effectiveness of our approach but also emphasize the potential for 

further improvements in the field of malware detection. 

Table 6. Recent Studies Related to the CIC-MalMem-2022 Dataset 

Authors Model Tested Best Model 

Accuracy (%) 

Binary 
Multiclass 

(4) 

Multiclass 

(16) 

Carrier et al. [1] NB, RF, DT and meta-learnerLR LR 99.00 - - 

Yihan et al. [3] Hierarchical Detection Model DNN 99.67 - - 

Ghazi and Raghava [4]  RF, SVM, kNN RF 99.99 - - 

Dener et al. [16] RF, DT, GBT, LR, NaiveBayes, 

Linear SVC, MLP,DNN, LSTM 
LR 99.97 - - 

Smith et al. [23] DT, RF, Ada Boost, KNN, SGD, 

Extra Trees, Gaussian Naive Bayes 
DT 99.99 - - 

Roshan and Zafar. [29] NN, Adaptive RF, KNN, Voting 

Ensemble, EnsAdp_CIDS 
EnsAdp_CIDS 99.85 - - 

Mezina and Burget [24] LR, DT, MLP, kNN, SVM, D-CNN D-CNN 99.99 83.53 - 

Cevallos-Salaset al. [18] DT, RF, SVM, LDA, GNB LR+DNN 99.70 75.40 68.20 

Shafin et al. [19] RobustCBL, CompactCBL RobustCBL 99.96 84.56 72.60 

Abualhaj et al. [30] KNN KNN 99.97 82.21 66.93 

Roy et al. [25] Extra Trees, XGBoost, SVM, kNN, 

RF, DT 
MalHyStack 99.98 85.04 70.29 

Our Model 2024 RT, RF, J-48, NaiveBayes, XGBoost XGBoost 99.99 87.79 75.49 
 

6. Conclusion 

In this study, we comprehensively evaluated ML algorithms for detecting obfuscated malware using the CIC-MalMem-2022 

dataset. Our analysis encompassed binary and multi-class classification tasks under different experimental conditions, 

including percentage splits and 10-fold cross-validation. The results highlight the effectiveness of RF, J-48 (C4.5), and 

XGBoost algorithms in achieving high accuracy across various classification tasks. These algorithms consistently 

outperformed others, showcasing their robustness in identifying obfuscated malware patterns. Random Tree also exhibited 

commendable performance, albeit slightly lower than the algorithms above. Furthermore, Naive Bayes demonstrated 

competitive performance but faced challenges handling multi-class classification and imbalanced datasets, as evidenced by 

lower accuracy rates and higher mean absolute error values. 
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Overall, the findings show the importance of advanced ML techniques for enhancing obfuscated malware detection 

capabilities. The identified top-performing algorithms can be useful tools for cybersecurity researchers to develop more 

effective defense mechanisms against obfuscated malware. Future research efforts could focus on fine-tuning model 

hyperparameters, optimizing data preprocessing techniques, and further exploring ensemble learning approaches to improve 

detection accuracy and resilience against obfuscated malware attacks. 
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