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ABSTRACT 
Predicting clinical adverse effects resulting from drug-drug interactions is a critical research area for drug safety 
and patient health. Specifically, predicting adverse effects associated with insulin is crucial for clinical decision 
support systems and pharmacovigilance applications. This study proposes a deep learning-based model with high 
accuracy to predict adverse effects caused by drug interactions. In the literature, 17 different clinical side effects 
commonly associated with the hormone insulin have been identified. The properties of the drug molecules causing 
these interactions were calculated through MACCS, Morgan fingerprints and RDKit descriptors. These features 
are filtered by the variance thresholding method and optimized to improve classification performance. The model 
is built on a 1D CNN architecture that handles drug pairs as parallel inputs and a class weighting technique is used 
to eliminate class imbalance. Experimental results show that the model achieves 99.66% accuracy in training and 
94.03% in validation, with training loss decreasing to 0.01 and validation loss stabilizing at 0.22. The ROC-AUC 
metric is above 0.99, indicating that the model can predict infrequent adverse events. The developed model 
provides a scalable, computationally efficient and highly reliable approach to predict the clinical consequences of 
drug interactions.  
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1. Introduction 

In modern medical approaches, the use of drugs in treating and managing diseases is gradually increasing. In particular, 
chronic diseases are becoming widespread worldwide due to population aging and many other environmental and genetic 
influences [1]. This situation brings with it various challenges in the provision of health services and the treatment of diseases. 
Many alternative treatment methods and medicines are being developed to overcome these challenges [2]. In particular, 
polypharmacy, i.e., the regular use of more than one medication simultaneously, has become an essential step in today's 
treatment processes [3], [4]. Polypharmacy has the potential to treat many diseases in individuals simultaneously. However, 
while it has the potential to increase treatment success and manage comorbidities, it has also brought with it a significant 
increase in the side effects of drug-drug interactions that occur as a result of this multiple drug use [5], [6]. Drug-drug 
interactions occur when one drug alters another drug's pharmacokinetic or pharmacodynamic properties. These interactions 
can lead to a decrease in treatment efficacy, making it difficult to control the disease, as well as significantly increasing the 
risk of adverse drug reactions (ADRs) [7]. For example, one drug may decrease the efficacy of another by accelerating its 
metabolism, while another drug may increase its toxicity by slowing its metabolism. In clinical practice, this can manifest as 
unexpected treatment failures, increased side effects, the emergence of new symptoms or exacerbation of existing diseases 
[8]. The clinical burden of DDIs not only adversely affects treatment outcomes but also poses a serious threat to patient safety 
and a significant economic burden on healthcare systems [9]. Therefore, accurately predicting the clinically relevant 
consequences of drug interactions, mitigating risks, and developing effective management strategies have become critical 
global priorities to improve patient care quality, ensure patient safety, and reduce healthcare expenditures. In this context, 
there is a growing need for innovative approaches to detect drug interactions early and accurately, support clinical decision-
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making and improve patient outcomes. 

Insulin is a vital hormone with pleiotropic effects in the human body. Produced by the beta cells of the pancreas, insulin 
primarily plays a central role in regulating glucose metabolism. It controls blood glucose levels by ensuring glucose is taken 
into cells and used for energy production [10], [11]. However, the effects of insulin are not limited to glucose metabolism. It 
also plays essential roles in many physiological processes, such as protein and fat metabolism, cell growth and differentiation, 
vascular function and even neuronal activity [12]–[14]. This wide range of physiological effects makes insulin important in 
maintaining the body's homeostatic balance [15]. This vital role of insulin and its wide range of actions are directly related 
to various clinical conditions resulting from its deficiency, resistance or interactions with other drugs [16]. These conditions 
are not limited to a generalized picture of insulin deficiency or insulin resistance but can lead to a wide range of specific and 
clinically identifiable diseases and disorders [17], [18]. These diseases and conditions range from hypoglycemia to 
hyperglycemia, from diabetic ketoacidosis to chronic complications such as diabetic nephropathy, diabetic neuropathy and 
diabetic retinopathy, from gestational diabetes to neonatal hypoglycemia [19], [20]. Even less well-known but essential 
clinical conditions, such as glucose intolerance, abnormal liver function tests (LFTs), polydipsia, polyuria and peripheral 
vascular disease, can result from insulin dysfunction or drug interactions [21]. The diversity and complexity of these clinical 
outcomes make it necessary to consider these conditions and diseases as insulin-related and carefully examine drug 
interactions in this area. 

Each of these insulin-related diseases and conditions implies different levels of risk and treatment management challenges 
for patients. For example, hypoglycemia is an acute condition that can be serious, even fatal, especially in elderly and frail 
patients [22]. Chronic complications, such as diabetic nephropathy and retinopathy, are conditions that significantly reduce 
the quality of life in the long term and cause severe morbidity and mortality [23]. Conditions such as gestational diabetes and 
neonatal hypoglycemia are critical for both maternal and infant health and require specialized treatment approaches [24]. 
Therefore, accurately predicting and classifying the potential clinical consequences of drug interactions in the context of 
these insulin-related diseases and conditions is vital to personalize treatment strategies, reduce patient risk and support clinical 
decision-making [9]. The clinical diversity, importance, and potential impact of drug interactions on these conditions are the 
primary motivations for our study, which focuses on insulin-related drug interactions and their clinical consequences. 

Timely and accurate detection of drug-drug interactions is critical to ensure patient safety and optimize treatment success 
[25], [26]. Traditional DDI prediction methods rely heavily on pharmacological studies, clinical observations, adverse event 
reports and expert knowledge. While these methods are valuable in identifying interactions between specific drug pairs, they 
are inadequate in the face of today's rapidly expanding drug knowledge and the increasing reality of polypharmacy [27]. 
Traditional methods often struggle to uncover complex interaction patterns that require large-scale data analysis and are 
limited in generating reliable predictions for new drug combinations. Furthermore, these methods usually assess the overall 
interaction risk and do not provide detailed information on the specific clinical consequences of the interaction [28]. This 
makes it difficult for clinicians to personalize treatment decisions and minimize patient risk. 

Artificial intelligence, especially deep learning methods, has revolutionized drug discovery and development processes in 
the biomedical field in recent years [29]–[31]. Through multilayer artificial neural networks, deep learning can automatically 
extract meaningful features and patterns from large and complex data sets. This ability has made deep learning a powerful 
tool for solving complex problems like drug-drug interaction prediction. Deep learning models have shown promising results 
in predicting DDIs by integrating information from various data sources such as chemical structures of drugs, genetic data, 
biological pathway information, electronic health records and scientific literature [25], [32]. In the literature, deep learning-
based DDI prediction models have achieved higher accuracy, sensitivity and specificity than traditional methods. These 
models can detect known interactions and predict novel and potential interactions. Deep learning also offers significant 
advantages in modeling multidrug interactions, predicting the effects of drug combinations and elucidating the mechanisms 
underlying interactions [33], [34]. However, most existing deep learning-based DDI prediction studies often focus on generic 
drug interactions and do not provide in-depth analyses of specific therapeutic areas or clinical outcomes. This limits the 
potential to provide more meaningful and actionable insights in clinical practice. This shortcoming reveals a significant 
research gap for better understanding and management of drug interactions in patients with diabetes and insulin therapy.  

Among deep learning architectures, Convolutional Neural Networks (CNNs) are emerging as a notable alternative in 
predicting drug-drug interactions [35]. Although CNNs were first recognized for their superior performance in image 
processing, especially one-dimensional Convolutional Neural Networks (1D CNNs), they can be applied successfully to one-
dimensional data encoding the molecular properties of drugs. 1D CNNs can automatically learn local patterns and hierarchical 
relationships in the data by performing a convolution operation through a convolutional filter acting on the input data. This 
capability significantly reduces the need for manual feature engineering and allows the model to delve deeper into complex 
interaction mechanisms that have not been previously identified. This offers a critical advantage for modeling the subtle and 
complex biochemical processes underlying drug interactions. 
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2. Proposed Method 

This study presents a novel and advanced deep-learning approach that aims to classify potential insulin-related clinical side 
effects caused by drug-drug interactions with high accuracy and specificity. The flowchart of the proposed method is given 
in Figure 1. The technique, DeepInsulin-Net, examines 17 clinical side effects most commonly associated with insulin-related 
adverse events found in the literature. This multi-class classification approach allows the model to learn more complex 
interaction patterns and make more accurate predictions. The representation of drug molecules through SMILES (Simplified 
Molecular Input Line Entry Specification) using a feature set enriched with various fingerprints and identifiers allows the 1D 
CNN model to consider different chemical and structural properties. The parallel 1D CNN architecture of the model enables 
the features of both drugs to be processed independently and then combined to predict the probability of interaction. This 
approach reduces the computational cost and increases the scalability of the model. By combining a customized 1D CNN 
architecture for the multiclass classification problem, an enriched molecular feature set, and a focus on insulin-related drugs, 
the study presents a novel and technically powerful method in the field of DDI prediction. 

The proposed method provides a multi-stage, integrated pipeline that combines the power of a 1D CNN architecture with a 
rich feature set representing drug molecular structures and properties. In the first stage of this pipeline, data on insulin and 
related drug pairs and their interactions were obtained from TWOSIDES, a comprehensive drug interaction database. This 
dataset was subjected to rigorous pre-processing, including identifying and cleaning conflicting labels. The interaction labels 
were converted into a numerical format according to the requirements of the model, and the dataset was divided into training 
and validation sets to evaluate the model's generalization ability. An extensive feature engineering process was applied to 
capture the complex properties of drugs at the molecular level and improve the model's classification performance. In this 
process, molecular fingerprints representing the chemical structures of drugs and various molecular descriptors were 
computed using the RDKit library. These features provide rich and multidimensional information about the chemical 
structures, physicochemical properties and potential interaction mechanisms of drugs. These features obtained from different 
sources were combined into a single feature vector by concatenation and scaled in the range [0, 1] to make them suitable for 
the model's input. To reduce the model's complexity and select the most informative features, feature selection was performed 
using the variance threshold method. 

The model's architecture consists of 1D convolutional layers parallel to each drug pair, which learn the latent and hidden 
representations of the drugs by taking molecular feature vectors as input. These representations for the two drugs are 
combined through a concatenation layer and transferred to a standard dense layer. This layer is connected to a softmax output 
layer that estimates the interaction probability based on 17 different classes of clinical outcomes. The performance of the 
developed model is extensively evaluated on an independent validation dataset. The overall performance of the model and 
its ability to predict different clinical outcomes were analyzed using various performance metrics such as accuracy, AUC, 
precision, recall, and confusion matrix. The clinical outcomes the model predicts with higher accuracy, in which classes it 
struggles, and the possible sources of errors are analyzed in detail. As one of the first studies to focus on classifying the 
clinical outcomes of insulin-related drug interactions, this study makes a unique and valuable contribution to the DDI 
prediction literature. Integrating the developed model into clinical decision support systems has the potential to optimize 
medication management, reduce the risk of adverse events and improve patient safety in patients with diabetes and insulin 
therapy. 
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Figure 1. Flowchart of the DeepInsulin-Net. 

3. Method  

3.1 Data set and pre-processing 

This study used the TWOSIDES dataset, a comprehensive and reliable drug interaction database derived from clinical data, 
to classify the clinical outcomes of insulin-related drug-drug interactions [36]. The TWOSIDES database contains 868,221 
significant associations and 1,301 adverse events for 59,220 different drug pairs. These adverse events include conditions 
that cannot be attributed to any single drug. Furthermore, the database contains 3,782,910 significant associations of drug 
pairs, and the adverse effect scores of these interactions were higher than those of the individual drugs involved. In our study, 
we mainly focused on developing models that predict adverse drug reactions resulting from synergistic drug-drug 
interactions. The fact that TWOSIDES covers a wide range of drugs and drug interactions ensures that interactions of insulin 



 
 Muhammed Ali Pala                                                                           Sakarya University Journal of Computer and Information Sciences 8 (2) 2025 245-259 

249 

and related drugs are adequately represented in the database, providing a rich and reliable data source suitable for the study. 
The TWOSIDE dataset includes the SMILES representation of each drug pair to identify drug interactions and the type of 
drug interaction as label information. 

A series of systematic steps were followed to select insulin-related side effects from the TWOSIDES database. First, insulin-
related side effects and interactions were carefully identified through a literature search. Then, from the TWOSIDES database, 
all drug pairs containing these identified drugs and adverse events resulting from their interactions were eliminated from the 
entire dataset using text-mining steps. These adverse events were classified into 17 different clinical outcome classes, which 
were the focus of the study. These classes comprehensively included diabetic complications (diabetic nephropathy, diabetic 
retinopathy, diabetic neuropathy), disorders of glycemic control (hypoglycemia, hyperglycemia), gestational diabetes, 
abnormal liver function tests and other related conditions. This raw data was transformed into a structured dataset, with each 
row indicating a drug pair and the clinical outcome resulting from their interaction. The DDI interactions analyzed in the 
study are given in Table 1. In total, 93626 interaction pairs were used for the proposed method. The dataset was randomly 
split into training and evaluation in a 7:3 ratio. 

Table 1. Number of insulin-related data in the DDI dataset. 
Type Number of Interaction 
Hyperglycaemia 18779 
Diabetes 12718 
Hypoglycaemia 12443 
Abnormal LFTs 10960 
Polydipsia 5934 
Diabetic neuropathy 5168 

Peripheral vascular disease 5165 

Diabetic acidosis 3523 
Polyuria 3366 

Insulin-dependent diabetes mellitus 3335 

Diabetic Retinopathy 2982 
Glucosuria 2894 
Glucose intolerance 2107 
Ketoacidosis 1362 
Diabetic Nephropathy 1264 
Hypoglycaemia neonatal 1206 
Gestational diabetes 420 

Furthermore, to ensure that the performance and reliability of the model are maximized, a comprehensive pre-
processing process was applied to the resulting dataset. This process primarily involved identifying and cleaning 
records that reported multiple and different clinical outcomes for the same drug pair, i.e., conflicting labels. 
Removing these conflicting records from the dataset improved the consistency and learning ability of the model. 
The main reason for eliminating conflicting data is that the same drug pair can lead to multiple and different 
clinical outcomes, complicating the model's learning process and leading to misleading results. Therefore, 
SMILES strings, in this case, were removed from the dataset. Figure 2 shows the data distribution plot for 17 
different insulin-related drug interactions. As can be seen, the dataset has an unbalanced class distribution. The 
proposed method uses a class weighting strategy to address the unbalanced class distribution. In this method, 
weights are assigned to each class based on the class distribution in the training data. In this way, it aims to take 
more imbalanced classes into account by the model and improve its learning process on imbalanced datasets. The 
obtained weights are integrated into the model's loss function to minimize the performance problems caused by 
class imbalance. 
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Figure 2. Data distribution  

3.2 Fingerprints and Descriptors 

Accurate, reliable and clinically meaningful prediction of drug-drug interactions is, without a doubt, critically dependent on 
representing the molecular structures of drugs and the properties derived from these structures in a way that is appropriate, 
informative and serves the learning capacity of the model. The transformation of drugs in molecular form into numerical 
vectors and abstract mathematical objects allows machine learning algorithms to learn the subtle but deeply complex 
relationships between drugs, make generalizations from these relationships, and ultimately predict interactions for unknown 
drug pairs. This study used different representation methods, namely two different molecular fingerprints and molecular 
descriptors, to represent the molecular properties of drugs in a way that encompasses both structural and physicochemical 
dimensions, i.e., by providing multidimensional and complementary information, thus maximizing the model's classification 
performance. These approaches offer vital information about the chemical structures, three-dimensional conformations, 
physicochemical properties and potential interaction mechanisms of the drugs, which are crucial for the model to classify 
DDIs successfully. MACCS and Morgan fingerprints of drug molecules, as well as RdKit descriptors, were used in this study. 
SMILES representations of the molecules were used to calculate the fingerprints and identifiers.  

MACCS fingerprints are a well-established type of fingerprinting developed by MDL Information Systems, including 166 
predefined structural keys [37]. These structural keys are carefully selected structural motifs representing functional groups, 
ring systems, and specific atomic numbers commonly found in drug molecules. The MACCS fingerprint of a molecule 
consists of a 166-bit array that indicates whether these 166 keys are present in the molecule. MACCS fingerprints have the 
advantages of covering an ample chemical space, being relatively interpretable and straightforward, and being 
computationally efficient. Morgan fingerprints, also known as circular fingerprints, are a type of fingerprint that takes into 
account the atom-centered peripheral properties of the molecule [38]. Starting from each atom, Morgan fingerprints form 
circular substructures that contain all neighboring atoms and bonds within a given radius. These substructures are converted 
into unique integer values using a hash function, and these integers are used to set the corresponding bits in the fingerprint 
vector to 1. The most crucial feature of Morgan fingerprints is their ability to capture in detail the local structural features of 
the molecule and the neighborhood and bonding patterns of atoms and, thus, more precisely, identify subtle structural 
similarities and differences between different molecules. In this study, a rich and detailed representation of the molecular 
structure of drugs was obtained using Morgan fingerprints with a length of 2048 bits and a radius of 2. Molecular descriptors 
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are another critical and complementary category of properties that express drug molecules' physicochemical, topological, 
electronic and geometrical properties in numerical values. Descriptors quantitatively characterize a wide range of properties 
of the molecule, such as size, shape, surface area, polarity, hydrophobicity, hydrogen bonding capacity, dipole moment, 
ionization potential and electronic charge distribution, which directly affect the pharmacokinetic and pharmacodynamic 
properties of the drug. In this study, using the open-source and widely used RDKit chemoinformatics library, four basic 
molecular descriptors, namely molecular weight (MolWt), LogP (octanol-water partition coefficient), number of hydrogen 
bond donors (NumHDonors) and number of hydrogen bond acceptors (NumHAcceptors), were calculated, which are 
frequently used in the literature and play an essential role in predicting the biological behavior of drugs [39]. 

These molecular fingerprints and descriptors calculated for each drug molecule were combined into a single, long feature 
vector by concatenation. The concatenated feature matrices resulting from this process, which are performed separately for 
each drug interaction pair, are applied as input to the CNN model. This combined feature vector represents the structural and 
physicochemical properties of drugs together and comprehensively, providing a rich and informative input that allows the 
model to classify drug-drug interactions more accurately, precisely and reliably. 

3.3 Feature Selection 

Feature selection is essential in data analysis and modeling processes because it can affect the model's learning capacity as 
the data's size and complexity increase. In deep learning algorithms, too many features can increase the training time of the 
model, cause overfitting and limit the model's generalization ability [40]. For this reason, only essential and meaningful 
features should be included in the model. Especially in high-dimensional datasets, some features may lead to performance 
loss instead of improving the model's accuracy. Therefore, feature selection is critical to ensure the model runs efficiently 
and accurately. The variance threshold feature selection method is applied to the combined feature matrix created with 
fingerprints and descriptors [41]. This way, the feature matrices of high-dimensional drug molecules are expressed in a more 
meaningful matrix format. Therefore, this reduced the computational burden of the model and improved the generalization 
performance of the model.  

The Variance Threshold method calculates the variance of each attribute and removes features with variance below a specific 
threshold value. Variance is a statistical measure of how variable the values of an attribute are and is calculated as follows: 
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Where jX represents the values of the feature across all samples. jµ is the mean of the j th− feature and n is the number 

of the samples. If a feature's variance is lower than a specified threshold (θ ), that feature is removed from the dataset. The 
variance thresholding method usually aims to extract features with low variance in the dataset, i.e., features with similar 
values in all instances. Such features do not benefit the model or contribute to the learning process.  

3.4 CNN Model 

This study developed a novel and advanced deep learning model based on a 1D Convolutional Neural Network architecture 
to classify the clinical outcomes of insulin-related drug-drug interactions with high accuracy and specificity. CNNs first 
proved themselves in image processing, especially in object recognition, image classification and face recognition. However, 
the basic principles of CNNs, particularly the advantages of convolution, have made them successfully applicable to various 
fields such as natural language processing, text classification, sentiment analysis, time series prediction, anomaly detection, 
gene sequence analysis and protein structure prediction.  

1D CNNs are a subtype of CNNs specialized for application to one-dimensional data. 1D data is data with a sequential 
structure, such as texts, audio signals, time series, gene sequences and, as in this study, molecular fingerprints and identifiers. 
1D CNNs perform a convolution on such data using a sliding filter. This filter is a small matrix of weights that moves step 
by step along with the input data with a given stride size. At each step, an element-wise multiplication is performed between 
the input region covered by the filter and the filter weights, and the sum of the resulting products forms the corresponding 
element of a feature map [42]. This process enables the automatic detection of local patterns in the input data. The architecture 
of 1D CNNs typically consists of an input layer, one or more convolutional layers, activation functions, pooling layers, fully 
connected layers and an output layer. The input layer receives the raw data that the model will process. In this study, the input 
layer receives the combined feature vectors obtained during the feature extraction stage of drug feature engineering, which 
is dimensionally reduced by feature selection. Convolutional layers are the basic building blocks of 1D CNNs and produce 
feature maps by performing a convolution on the input data. Each convolutional layer uses different filters, each learning to 
capture different local patterns in the input data. Nonlinearity is introduced into the model by applying activation functions 
to the outputs of the convolutional layers. Activation functions enable the model to learn nonlinear relationships and solve 
more complex problems. Dense layers are usually located at the end of the CNN architecture and connect all neurons from 
the previous layers. These layers allow the local features learned by the convolutional layers to be combined to form higher-
level and abstract representations. The output layer is where the model produces its final predictions. In this study, the output 
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layer computes the probabilities of 17 different clinical outcomes for each drug pair using the softmax activation function. 
The architecture of the 1D CNN model developed for classifying insulin-related DDI pairs is given in Figure 3.  

 

Figure 3. DeepInsulin-Net CNN model architecture. 

The model proposed in this paper has a dual-input structure. It uses a parallel processing architecture to process two different 
drug feature matrices (Drug1 and Drug2) separately and then combine them to obtain a feature representation. In the model's 
design, each drug's data features are processed independently and combined to get the final classification result. Such a 
parallel structure allows for more efficient drug interaction modeling while ensuring that each drug's data features are 
considered separately. This approach offers significant advantages, especially in solving complex biological problems like 
drug interactions. The model independently processes feature vectors from two drugs to create high-level representations and 
combines these representations to perform the final classification. The parallel input structure processes the molecular 
features of both drugs through separate convolutional blocks, aiming to obtain independent but meaningful representations 
of each drug in a common feature space. This architecture offers higher generalization capacity when analyzing the potential 
for different drugs to interact with each other. 

In the proposed model, there is an independent 1D CNN block for each drug. First, each input is processed with a 
convolutional layer. In the first convolutional block, feature extraction is performed with a 3D kernel using 128 filters. This 
is followed by a batch normalization process to provide more balanced learning in the model's training process. Then, the 
convolution layer is used again. After each convolution block, a dropout layer of 0.1 is added to avoid overfitting the model. 
After the first convolution block, a second convolutional layer extracts higher-level features with 64 filters. Similarly, this 
layer undergoes batch normalization, pooling, and dropout to complete the separate processing of each input. In the final 
stage, after the convolutional processing of each input is completed, it is converted into vector form through the smoothing 
layer and made ready for processing with dense layers. 

In the fusion stage of the model, the feature vectors obtained from both inputs are combined using the concatenate layer. The 
concatenated vector was processed using the ReLU activation function in dense layers with 1024, 512 and 256 neurons, 
respectively. Batch normalization was applied to the output of this layer. In the output layer of the model, a dense layer with 
a softmax activation function was used to consider the multiclass classification problem. The model was compiled with the 
Adam optimization algorithm (learning rate: 0.0005), and categorical cross-entropy was used as the loss function. During the 
training process, an early stopping mechanism was added to monitor the model's performance and to activate the early 
stopping mechanism, which terminates training if the validation loss does not improve for 100 epochs. In the training process, 
a class weighting method was used to make the model learn in a more balanced way. If the class distribution is unbalanced, 
class weights are calculated from the training data and integrated into the model's loss function to increase the model's 
sensitivity to rare classes. The training process was completed after 50 epochs as it met the desired criteria. The 
hyperparameters of the designed model are given in Table 2.  

 

Input Layer (Drug 1)

1D Convolution

Batch Normalization

1D Convolution

Max Pooling

Input Layer (Drug 2)

1D Convolution

Batch Normalization

1D Convolution

Max Pooling

Dropout Dropout

Concatenate

Dense (512)

Dense (256)

Batch Normalization

Dropout

Dense (17)

Dense (1024)

• Diabetes
• Insulin dependent diabetes 

mellitus
• Diabetic acidosis
• Diabetic Nephropathy
• Diabetic neuropathy
• Diabetic Retinopathy
• Glucose intolerance
• Hyperglycaemia
• Hypoglycaemia
• Hypoglycaemia neonata
• Ketoacidosis
• Gestational diabete
• Glucosuria
• Abnormal LFTs
• Polydipsia
• Polyuria
• Peripheral vascular disease
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Table 2. Hyperparameters of the proposed model 

Hyperparameters Value 
Number of Filters 128, 64 
Kernel Size 3 
Pooling Size 2 
Dropout Rate 0.1 
Optimization Algorithm Adam 
Learning Rate 0.0005 
Batch Size 64 
Epoch 50 
Activation Function ReLU, Softmax 
Loss Function Categorical Crossentropy 

The performance evaluation metrics of the developed model are crucial for assessing its overall accuracy and the effectiveness 
of the learning process. This is particularly important when working with datasets that exhibit an unbalanced distribution, as 
it necessitates using multiple metrics during the training and evaluation phases. Consequently, various performance metrics 
were employed to gauge the comprehensive success of the model. In this context, we calculated the ROC-AUC (Receiver 
Operating Characteristic - Area Under Curve), recall, accuracy, and log loss. 

4. Experimental Results 

The model's performance is analyzed with various metrics, and the effects of different data representation techniques on the 
performance are examined. In addition, statistical analysis of the prediction results is performed to understand the decision 
mechanism of the model better. The multi-class dataset labels prepared in the study were converted into binary strings using 
the one-hot encoding method. The labels were transformed with this method and used as the target variable of the model. A 
structure was created to compare the predicted probabilities with the actual labels. This approach also helped reduce potential 
problems, such as unbalanced class distribution in the dataset and ensured stable learning during the model's training process. 
The experiments used a NVIDIA GeForce GTX 3070 GPU with Intel Core i7-11700H CPU @ 4.90 GHz and 32 GB RAM.  

ROC-AUC is a critical metric that measures how well the model can distinguish between positive and negative classes at 
different thresholds. An AUC value close to 1 indicates that the model is highly discriminative, while an AUC value close to 
0.5 indicates that the model performs at the level of random guessing. In the evaluation step, attention was paid to including 
only samples with at least two different classes in the analysis. The AUC metric is a vital indicator for understanding the 
overall generalization capacity of the model trained and evaluated with unbalanced data, and it reveals the level of accuracy 
of the model and the stability of the decision function. In addition, a log loss metric was used to determine the model's error 
rate. The categorical cross-entropy loss function is adopted in the model's training, and the log loss value provided by this 
function is used to analyze how well the probabilities generated by the model match the actual labels. The log loss metric 
offers a detailed insight into how reliable the estimated probability distribution is, showing the extent to which the model 
manages uncertainty. The early stopping method was applied to prevent the model from being overfit. This mechanism stops 
training and restores the best weights if there is no improvement in the verification loss for a specific period. In our study, 
the validation loss metric was monitored, and if there was no improvement in 100 epochs, the model training was terminated 
early. The trained model weights were recorded at each epoch to make this process more efficient. In this way, the weights 
with the lowest validation loss obtained at the end of the training process were reloaded, and the model returned to its best 
performance. The early stopping mechanism prevented the model from unnecessarily over-training, increasing the validation 
error and overall generalization capacity. The model trained with this strategy allowed the training and evaluation process to 
be completed in 50 steps.  

As a result, the data processing techniques, metrics, and early stopping mechanisms applied to improve the model's 
performance and make the training process more efficient have ensured that the experimental results are reliable. The overall 
success rate of the model was examined in detail within the framework of the specified metrics, and the optimization processes 
were improved with the validation data at each stage of the performance improvements. Thus, it is proved that the proposed 
model works effectively in classification tasks and achieves high accuracy rates. The performance metrics of the proposed 
model during training and validation are given in Figure 4.  
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(a) (b) 

  
(c) (d) 

Figure 4. Performance metrics of the model were measured during training and evaluation 

The performance of the developed 1D CNN model was comprehensively evaluated on the training and validation datasets 
through various metrics calculated for each epoch. The model's training runs for 50 epochs; the metrics obtained are presented 
in detail in Figure 3. The variation of the model's training and validation losses over epochs is visualized in Figure 3-b, while 
the variation of training and validation accuracies over epochs is visualized in Figure 3-a. The training loss of the model 
started from 1.04 in the first epoch, decreased steadily as the training process progressed and decreased to 0.01 in the last 
epoch. This shows that the model has successfully learned the patterns in the training dataset. Similarly, the training accuracy 
increased from 70.3% in the first epoch to 99.66% in the last. This high accuracy value shows that the model fits the training 
dataset well. 

However, the model's performance on the validation dataset is the most important for assessing its generalization ability. 
Although the validation loss decreases in parallel with the training loss, it does not reach values as low as the loss. While the 
validation loss was 0.41 in the first epoch, it reached its lowest value at epoch 10 (0.17) and stabilized around 0.22 with slight 
fluctuations. The validation accuracy, however, increased from 85.9% in the first epoch to 96.1% in the 18th epoch and then 
stabilized around 96%. These results show that the model learned the patterns in the training dataset and successfully 
generalized them to the validation dataset, which it had not seen before. It is clear that the early stopping mechanism does 
not stop training before 50 epochs due to the halting of the improvement in the validation loss, and the model is trained to its 
optimum capacity. We also examined the AUC and recall values on the validation dataset to analyze the model's classification 
performance further. The validation AUC value is above 0.99 for all epochs, indicating that the model can successfully 
distinguish between positive and negative classes. The validation sensitivity values are also generally above 95%, indicating 
that the model's false-positive and false-negative predictions are very low. These results show that the model works with high 
precision, meaning that it both makes accurate predictions and does not miss actual positive samples. The confusion matrix, 
which shows a detailed overview of the model's correct and incorrect predictions for each clinical outcome class, is presented 
in Figure 5. The confusion matrix analysis allows for identifying which classes the model predicts better, which classes it 
struggles with, and which classes it confuses with each other. This analysis enables a better understanding of the strengths 
and weaknesses of the model.  
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Figure 5. A confusion matrix of the proposed method was obtained during the validation. 

The confusion matrix is widely used to evaluate the model's performance in multiclass classification problems. This matrix 
shows the relationship between the actual classes and the classes predicted by the model. The matrix rows represent the exact 
classes, and the columns represent the predicted classes. The cells on the diagonal represent the number of instances correctly 
classified by the model, while the cells off the diagonal represent the number of misclassified cases. As can be seen in Figure 
5, the developed model has shown a highly successful classification performance in many different classes. The results show 
that the developed 1D CNN model can successfully classify the clinical outcomes of adverse effects of insulin-related drugs 
with high accuracy, sensitivity, and AUC values.  

5. Ablation Study and Comparative Performance Evaluation 

Several ablation analyses were conducted to evaluate the performance of the DeepInsulin-Net model and to measure the 
impact of pre-processing steps on classification performance. The performance of the developed model was systematically 
evaluated to assess the impact of data preprocessing strategies, such as feature selection and class weighting, on the predictive 
capabilities of various machine learning and deep learning models. The experimental evaluations were performed on a 
diabetes-related subset of the dataset containing clinically relevant interactions, and the data was stratified and split 7:3 for 
each scenario as training and validation, maintaining the class distribution. Once the molecular fingerprints and RDKit-based 
chemical identifiers of the drugs were calculated, four basic preprocessing scenarios were set up: an approach where feature 
selection and class weighting were used first; a case where only class weighting was applied, and all features were used; a 
scenario where only feature selection was performed, and class weighting was neglected; and an ablation analysis where no 
preprocessing steps were applied, and raw features were used. In addition to the proposed CNN model, these cases were 
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tested using Multilayer Perceptron (MLP), Support Vector Machines (SVM), and Extreme Gradient Boosting (XGBoost) 
algorithms. Model performances were measured for training and evaluation steps using accuracy, AUC, Cohen's Kappa and 
Matthews Correlation Coefficient (MCC). The results obtained from the ablation studies are given in Table 3. 

Table 3. Performance of ablation analysis and other classification algorithms. 

  Train Validation 
Pre-Processing  Model Accuracy AUC Kappa MCC Accuracy AUC Kappa MCC 

Fe
at

ur
e 

Se
le

ct
io

n 
+ 

C
la

ss
 

W
ei

gh
ts CNN 0,9966 0,9990 0,9964 0,9964 0,9403 0,9921 0,9259 0,9259 

MLP 0,8319 0,8492 0,7702 0,8202 0,8080 0,7922 0,7423 0,7025 
SVM 0,8052 0,8479 0,7417 0,7917 0,7370 0,7387 0,5606 0,5233 

XGBoost 0,8288 0,8490 0,7669 0,8169 0,9111 0,7926 0,7456 0,7059 

C
la

ss
 

W
ei

gh
ts CNN 0,8136 0,8485 0,7507 0,8007 0,7470 0,7419 0,5712 0,5336 

MLP 0,8203 0,8487 0,7578 0,8078 0,7401 0,7410 0,5638 0,5260 
SVM 0,6733 0,8246 0,6016 0,6516 0,7924 0,7664 0,6195 0,5806 

XGBoost 0,8324 0,8492 0,7707 0,8207 0,9137 0,7929 0,7483 0,7087 

Fe
at

ur
e 

Se
le

ct
io

n CNN 0,8436 0,8497 0,7826 0,8326 0,9168 0,7943 0,7516 0,7117 
MLP 0,6689 0,8233 0,5969 0,6469 0,7898 0,7654 0,6166 0,5781 
SVM 0,5323 0,7824 0,4518 0,5018 0,6519 0,7205 0,4701 0,4325 

XGBoost 0,6350 0,8140 0,5609 0,6109 0,7568 0,7543 0,5816 0,5439 

N
on

-P
re

-
pr

oc
es

sin
g CNN 0,6330 0,8122 0,5588 0,6088 0,7557 0,7548 0,5804 0,5425 

MLP 0,5323 0,7824 0,6518 0,6541 0,6519 0,7205 0,6301 0,6325 
SVM 0,6330 0,8122 0,7588 0,7607 0,7557 0,7548 0,7404 0,7425 

XGBoost 0,6689 0,8233 0,7969 0,7982 0,7898 0,7654 0,7766 0,7781 
 

Analyzing the ablation results, it is clear that data preprocessing steps significantly impact classification performance. In the 
case of no pre-processing, they generally exhibit the weakest validation metrics, demonstrating the challenges posed by the 
class imbalance and high feature size in the raw data. In this baseline scenario, the XGBoost and SVM models performed 
slightly better than CNN and MLP, especially on the Kappa and MCC metrics, but their overall performance was limited. 
This shows that even without pre-processing, some traditional models can capture a specific level of patterns, but the potential 
for improvement is high. Several changes in the performance of the models were observed when only the feature selection 
strategy was applied. The CNN model significantly improved in this scenario, increasing the validation accuracy to 91.68% 
and the Kappa value to 0.7516. This shows that CNN can benefit from a more focused feature set and generalize better with 
reduced noise. For MLP, SVM, and XGBoost, feature selection alone improved some metrics but showed results more 
sensitive to imbalance, especially for Kappa and MCC. This indicates that feature selection alone cannot solve the class 
imbalance problem. Comparisons of different models and pre-processing steps during training are given in Figure 6. 

Figure 6. Performance results of different models obtained in training. 
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Applying only the class weighting strategy significantly increased all models' Kappa and MCC values, especially in the 
validation set. This indicates that class weighting improves the model's overall predictive stability and reliability by 
encouraging better learning of minority classes in the dataset. Therefore, it shows that class imbalance in the data is an 
essential step in classification performance, and the class weighting method applied overcomes this challenge. In the case of 
class weighting and feature selection, the most comprehensive pre-processing approach and the most fundamental 
components of the DeepInsulin-Net method, the models showed the highest performance. Under this combined strategy, 
CNN achieved extremely high and balanced performance metrics such as 94.03% validation accuracy, 0.9921 AUC, 0.9259 
Kappa and 0.9259 MCC. On a model-by-model basis, the proposed CNN architecture exhibited a clear superiority over all 
other tested algorithms, especially when combined with pre-processing strategies. CNN's high training set performance shows 
that the model can learn data patterns efficiently. In contrast, the high metrics in the validation set indicate a strong 
generalization capability. XGBoost performed quite competitively and was closest to CNN in all scenarios, especially when 
class weighting was included. MLP yielded acceptable results, especially with combined pre-processing, while SVM 
generally underperformed compared to the other models on this dataset and problem definition. 

6. Conclusion 

This study presents a deep learning-based approach to predicting clinical side effects caused by drug-drug interactions. The 
proposed method uses molecular fingerprinting and physicochemical properties of drugs to more precisely model the adverse 
impact of interactions.  Seventeen common clinical side effects associated with insulin are selected from the TWOSIDE 
dataset using a text mining method. Drug pairs were chosen from the dataset, and their molecular properties were calculated 
using MACCS, Morgan fingerprints and RDKit descriptors. These calculated features using SMILES strings of drug 
molecules were combined into a single matrix format for each drug pair. In this step, the Variance Thresholding method was 
applied to the attribute matrix to select the more significant attributes for classification. Drug pairs were used as inputs to a 
1D CNN model designed as parallel inputs to predict drug interactions. In the parallel model intended to classify the 
interactions with high performance, the calculated attributes of the drug pairs are applied to the model as input from different 
layers, and these attribute matrices are combined in the deep layers of the model and fed to the output layer. The proposed 
method uses class weighting to balance the unbalanced class distribution. Experimental results show that the proposed model 
accurately predicts clinical side effects. The model reaches 99.66% accuracy in the training phase, while the validation 
accuracy is 96%. The training loss decreased to 0.01, while the validation loss stabilized at 0.22. The ROC-AUC metric 
remained above 0.99 throughout all epochs, and the model demonstrated a strong generalization capability, especially in 
detecting rare adverse events. These results show that the model can predict common and specific clinical side effects 
successfully. The developed deep learning architecture allows the features of each drug to be processed independently and 
combined to predict the probability of occurrence of a specific clinical side effect caused by a drug-drug interaction. This 
approach increases the model's scalability and reduces the computational burden. The proposed approach can be essential in 
drug safety assessments and clinical decision support systems. Integrating the model into clinical practice can provide data-
driven support for clinicians to make more informed decisions in drug prescribing processes. Implementing these proposed 
improvements and research directions can significantly improve the current model's performance, robustness and 
interpretability for predicting adverse drug-drug interactions. Integrating more comprehensive and diverse datasets, applying 
advanced feature engineering techniques, and exploring innovative model architectures will enable higher accuracy and 
generalizability, especially in detecting complex and unique interactions. Transparency of the model's decision mechanisms 
through the integration of explainable artificial intelligence methods will increase clinical acceptability while considering 
critical factors such as polypharmacy and dose dependency, making predictions more compatible with clinical practice. 
Future work could develop a more comprehensive solution by integrating the proposed method with different data types, 
analyzing multiple interacting drug combinations, and its applicability in real-time clinical environments. 
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