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ABSTRACT 

The inimitable features of multivariable, instability, non-minimum phase and non-linearity has established an inverted 

pendulum system as benchmark to investigate and test new emerging control schemes. In this paper, the objectives are to 

explicitly model the system dynamics of an inverted pendulum and implement different control algorithms that will stabilize 

the pendulum in the upright vertical position by controlling the input force applied to the cart in the horizontal position. 

The mathematical model is derived based on the energy property of Lagrange approach and the control algorithms are 

expanded on the derived mathematical model in MATLAB-SIMULINK environment. Hence, we proposed four different 

controls algorithms proportional-integral-derivative controller (PID), pole placement feedback controller (PPFC), linear 

quadratic regulator controller (LQR) and linear quadratic regulator with estimator (LQR+Estimator) for the control of the 

linearized inverted pendulum system. The study compares the proposed control algorithms in terms of system response and 

performance.  
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1. INTRODUCTION 
 

Inverted Pendulum system (IPS) is a classic example 

of practical model to demonstrate system dynamics and 

control theory due to its unique features such as 

multivariable, instability, non-minimum phase and , non-

minimum phase and non-linearity. (IRFAN et al., 2013; 

Ilyas et al., 2017; Krishna et al., 2016; Kumar et al., 

2013,). IPS is gaining tremendous attention among the 

researchers and scholars as a result of its dynamics 

dominant features that emulates many factual systems in 

the field of control systems. Also, these dynamics 

characteristics of inverted pendulum has been established 

as a baseline to investigate and test new emerging control 

algorithms. Inverted Pendulum are widely used in 

balance control of robot manipulator, model flight of 

rockets and missiles, Segway, unicycle, stabilization of 

satellite fighting and earthquake resistant of building  

(Guo and Unversity, n.d.; Kafetzis et al., 2017; 

Siradjuddin et al., 2017). Recently, IPS are on increasing 

demand for flying drone especially for balance control of 

a quadcopter. Inherently, inverted pendulum systems are 

underactuated mechanical system with complex 

dynamics which are nonlinear. Instinctively, inverted 

pendulum possess two equilibrium states i.e. stable state 

and unstable state (Eizadiyan & Naseriyan, 2015). 

However, stabilization of the inverted pendulum in an 

unstable state is a fundamental problem for engineers and 

scientists.  So, several control algorithms have been 

proposed, implemented and adopted over the past few 

decades and the quest for new development of inverted 

pendulum control still continues. Adam and Matlab 

software based simulation of inverted pendulum is 

proposed in İlgen et al. (2016), a model reference 

adaptive controller in Krishna et al. (2016), Fuzzy control 

and Genetic Algorithms in Dastranj et al.( 2012), PID and 

LQR in  Eizadiyan and Naseriyan, (2015); Jose et 

al.(2015), fuzzy controller in  Sangfeel et al.( 2015),state 

feedback control in Nithya and Vivekanandan,(2014), 

linear quadratic regulator control, LQR in Chandan et 

al.(2012), performance comparison model of optimal 

linear model and Jacobian linearization is proposed in 

Ababneh et al., 2011, Lagrangian differential 

transformation approach is proposed in Agarana and 

Ajayi, (2017), fuzzy and adaptive neuro-fuzzy inference 

system (ANFIS) in Goswami,(2013),fractional order PID 

controller in Mishra and Chandra, (2014), Neural network 

and PID controller in Lee et al.(2009). In the work of 

Přemysl, Strakoš, Jiří, (2017), a mathematical model of  

linear inverted pendulum in both state space and transfer 

function model are derived and  pole placement feedback 

method and a full state observer are implemented. The 

simulation results justify the superiority of state observer 

over pole-placement approach. Prayitno et al.(2017), 

presented a linearized model of an inverted pendulum 

with three control algorithms, PID, LQR and MPC to 

stimulate the dynamics of the IPS.  

In the research work, the model was analyzed for 

cases with disturbance and without disturbance and 

initially controlled with PID controller and later the 

combined action of PID and LQR, MPC were 

implemented to compare performances. Hence, it was 

concluded in the study that the combined action of PID 

and LQR show better performance over PID alone. Singh 

and Ph (2015) presented a robust controller to augment 

the inverted pendulum performance. In their study, a 

novel H-infinity fuzzy PID controller was proposed and 

the performance was compared with the conventional 

PID controller. Simulation results revealed that the new 

scheme has the affinity to enhance the robustness, 

transient and steady performance than the PID controller.  

The use of output feedback controller for inverted 

pendulum stabilization is addressed in Lee et al.( 2015) 

while pole-placement PI-state feedback controller is 

designed to stabilize the inverted pendulum cart system 

in Bettayeb et al. (2014) . Chen et al.( 2018) proposed a 

novel control algorithm to address the repeatability 

associated with the inverted pendulum when driven by a 

rotary motion and transmission system. However, Prado 

et al (2017)  analytically and numerically examined the 

stability of the inverted pendulum based on parametric 

excitation and large random frequencies. Wang (2011 

employed PID controller to address stabilization and 

tracking problem of three type inverted pendulum and the 

same problems was addressed via combined action of PD 

controller and fuzzy PD controllers for a rotational 

inverted pendulum in Oltean (2014).  

In this paper the main objectives are to explicitly 

model the system dynamics of an inverted pendulum and 

implement different control algorithms that will stabilize 

the pendulum in the upright vertical position by 

controlling the input force applied to the cart in the 

horizontal position. 

 

 

Nomenclatures 

 

m1, m2 Mass of the cart and the pendulum respectively 

k Spring stiffness coefficients of the cart 

b  Friction of the cart 

L Lagrange’s function 

T Kinetic energy 

V Potential energy 

D Rayleigh’s dissipative function 

x Cart position coordinate 

θ Pendulum angle from vertical 

Qi Generalized forces 

𝒈 Center of gravity 

 

Abbreviations 

IPS Degree of freedom 

PID Proportional Integral Derivative Controller 

LQR Linear Quadratic Regulator 

PPFC Pole-Placement Feedback Controller 

  

 

2. MATHEMATICAL MODELING OF IPS  
 

We derived the dynamics equation of the inverted 

pendulum using a set of non-linear, second-order, 

ordinary differential equations and to simulate the 

dynamics accurately the Lagrangian and Euler-Lagrange 

was adopted. The motivation for chosen Euler’s Lagrange 

approach over Newton approach is a result of its 

simplicity, robustness and energy based property. The 

mathematical model is formulated based on the energy 

property of Lagrange method and the control algorithms 

are expounded on the derived mathematical model. 

However, the Lagrange’s equation does not account for 

dissipative force in the mechanical system, hence, 
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Rayleigh’s dissipation function is integrated into 

Lagrange’s equation to form augmented Lagrange’s 

equation. In order to describe the physical motion of the 

inverted pendulum system, we choose the cart position 

and pendulum angle as the generalized coordinates.  The 

inverted pendulum shown in fig.1 consists of a cart of 

mass m1 and position x, acted upon by a parallel spring-

damper configuration with spring stiffness coefficient k 

and viscous damping coefficient b and the cart suspended 

a pendulum consisting of a uniform rod of length l, and 

mass m2, pivoting about point A. The force U (t) acts on 

mass of the cart in the direction of x.  Subsequently, we 

derive the differential equations that describes the 

dynamics of the inverted pendulum using augmented 

Lagrange’s equation in this form: 
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The Lagrange function L is defined as the difference of 

the system’s kinetic and potential energy. So, kinetic 

energy of the IPS as a function of cart and pendulum 

position and velocity is expressed as: 
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Where, 



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

 .

,M  is the nxn inverted pendulum mass 

matrix and the subscript I denote 1 and 2. Hence, the total 

kinetic energy of the IPS is the sum of the cart and the 

pendulum kinetic energies (T1 and T2). 
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Fig. 1. Inverted Pendulum System (IPS) 

 
To evaluate T1 and T2, we need to write the position 

equations for m1 and m2 at point A and subsequently 

differentiate the respective position to obtain the 

corresponding velocity and using inner product to obtain 

the square of the velocity for the cart and pendulum 

respectively. 
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Let define the velocity as: 
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Similarly, v2
2 is computed in the same view   
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Substituting v1
2 and v2

2 in equation (3), we obtain the 
kinetic energy of the inverted pendulum as follows: 
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So that the total kinetic energy of the inverted pendulum 
is obtained from equation (12) and (13) and presented as 
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Reference to the cart level of the IPS (considered as a 
zero potential), the potential energy of the system is the 
sum of the potential energies of the cart and pendulum. 
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The Rayleigh’s dissipative function account for 

damping force in the cart and it is expressed as: 
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Generalized forces: 

 

( ) 0; 21 ==  tU  

 

The Lagrange formulation defines the behaviour of a 

dynamic systems in terms of  work and energy stored in 

the system (Urrea & Pascal, 2017). The augmented 

Lagrange function L is denoted as: 
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We evaluate the following partial derivatives based on 

equation (16) and (18) and using chain rule as: 
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For the generalized coordinate x, the Lagrange’s 

equation is: 
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Substituting the partial derivatives of Eq. (19), (20), 

(21), (25) into Eq. (27) leads to: 
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Similarly, for the generalized co-ordinate   , the 

Lagrange‘s equation is: 

 

u
DLL

dt

d
=


















+












−













 
..




                                                                                                      
 
Substituting the partial derivatives of Eq. (22), (23), (24), 

(26) into Eq. (29) leads to:  
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Equation (28) and (29) describe the IPS equations of 

motion. For simplicity, these equations can be written in 

terms of inertial matrix, centrifugal force, Coriolis force 

vector and gravity force in compact matrix form using the 

generalized coordinate as a column vector . Thus, (28)-

(29) can be equivalently written as 
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Where the matrices ( ) ( ) GCM ,,,
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in (Bogdanov, 2004). Apparently, the IPS is strongly 

nonlinear as a result of the states that exist as product of 

trigonometric function, however, this function make the 

system complex in dynamics and challenging to control. 

Observe now that the inertial matrix ( )M  is 
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determinant is  
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To reduce the complexity and to simulate the dynamics 

accurately, the IPS is linearized around the (upright) 

equilibrium point such that the system is within the 

neighborhood of the linear system. This is hold for small 

deviations in the linear region such that the system state 
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Under these approximations equation (28) and (29) 

become 
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2.1. State Space Representation of the Model 
 

A state space representation is a time domain 

approach of modeling complex dynamics of single input 

multiple output and multiple input multiple output 

systems. However, complex system with many degree-

of-freedom and description of such systems with 

differential equations are often demanding and 

exhausting. So, state space representation of the system 

replaces the higher-order differential equations with a 

first-order matrix differential equations to reduce the 

system complexity in compact matrix form. Hence, the 

state and output equations are given in (Norman S, 2011) 

as: 
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Where, x, y, u, A, B, C, D are the state vector, output 

vector, input vector, system matrix, input matrix, output 

matrix and feedback matrix respectively. Let define the 

column vector as the state variables 
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Hence, equation (33) and (34) can be written in state 

space representation form as   
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Equivalently, equation (37) is presented in terms of A, B, 

C and D matrices of equation (35) as  
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3. CONTROL ALGORITHMS FOR IPS 
 

Four different control algorithms are implemented on 

the IPS to effectively control and compare of the model 

dynamics performances after linearization around 

equilibrium point. This includes the proportional-

integral-derivative controller (PID), Pole –placement 

approach, Linear Quadratic regulator (LQR) and LQR 

with Estimator. Since the last three controllers are 

designed via state space analysis, the model 

controllability and observability are the key control 

requirements for arbitrarily closed loop poles placement 

and state measurements respectively. However, the 

stability criteria ensures that all eigenvalues of IPS state 

matrix have a negative real part. 

 

3.1 PID Controllers for IPS 
 

PID controller is widely used in control and 

mechatronics applications because of its robustness, 

simplicity in control configuration and suitability for 

linear system. Hence, Two PID controllers are 

implemented to control the system such that when the cart 

reaches a desired position, the inverted pendulum 

stabilizes in the upright position. The PID controller 

algorithm combines the P-action, I-action and D-action to 

adjust the model error. The time domain description of 

the PID controller is given as: 

                           

( ) ( ) ( )
( )

dt

tde
kdektektu D

t

i
p ++=  

0
                                     

 

Where u (t) is the control signal, the error signal e (t) is 

defined as e (t) =r (t)-y (t), and r (t) is the reference input 

signal. Fig.1 shows the PID controller Simulation model 

of an IPS and the parameters value are presented in Table 

1. 

 
 

Fig. 2. Simulink implementation of PID controller 

for IPS 

 

Table 1. parameter of the IPS 

 

Parameter of the IPS Value Unit 

Mass of the cart          m1 0.5 kg 

Mass of the pendulum 

m2 

0.2 kg 

Friction of the cart      b 0.1 Ns/m 

Spring coefficient of the 

cart                            k 

 

0.4 

 

N/m 

Length to pendulum 

center of mass                        

l 

0.3 m 

Inertial of the pendulum  

I        

 

0.006 kg-m2 

External force applied to 

the cart                       u 

Cart position coordinate   

  

x 

Pendulum angle from 

vertical                        θ   

 

 

 

 

 

 

 

Centre of gravity          g 9.8 m/s2 

 

3.2. Pole-Placement Feedback controller (PPFC) 

for IPS 
 

The dynamics behaviour of the IPS is determined by 

its closed loop poles position and it is desirable to ensure 

that the system is fully controllable such that the rank of 

(39) 
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the controllability matrix 

 BABAABAQ n

c

12 ... −=
 is non-zero. 

Hence, closed loop poles can then be arbitrarily assigned 

through a static state feedback to the pre-specified 

position. The control signal u is chosen such that 

kxru −=  and the closed loop state space model can 

be written as 

            

( ) CxyBrxBkABuAxx =+−=+= ,)
.

                                    
 

This method depends on the performance criteria such as 

settling time, steady state error, peak time, maximum 

overshoot etc. In this design, we want to ensure that the 

system fulfill less than 5s settling time and overshoot of 

theta less than 20%. Invariably, the desired characteristic 

equation of the IPS is formulated from the performance 

criteria and compared with the IPS closed-loop system’s 

characteristic equation using Ackerman’s approach. The 

dominant close-loop poles of 
02 22 =++ nnss 

is evaluated from the complex domain specification using 

the following formulas 
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nnd

n

sT
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−
=
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4
,

100
%

100
%

2

22
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The resulting values from equation (41) are  

7,7,89.9,707.0 ==== dn rad 
 

 

So, that the complex dominant poles, dj −  is 

approximated as 77 j− . The matrices A and B after 

substituting the parameters value in Table1 turn out to be  

 



















=



















−−

−−
=

5455.4

0

8182.1

0

,

01818.314545.08182.1

1000

06727.21818.07273.0

0010

BA
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











+−

−−

−

=

i

i
Poles

7543.09721.0

7543.00721.0

5521.5

5897.5
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However, the eigenvalues of A which is the dynamics of 

the system as depicted in equation (43) are not stable 

since one of the four poles lies on the right hand side of 

the s-plane. However, the rank of the controllability 

matrix confirmed that the system is controllable because 

the determinant is a non-zero.  So, the pole placement 

approach is computed using a MATLAB function acker 

() which taken the matrices A, B and poles P as an 

argument. Where (A, B) is the state space model, P is a 

vector containing the desired pole positions.  

 

3.3. Linear Quadratic Regulator Controller 

(LQR) for IPS 
 

It is a known fact that all the desired requirement 

cannot be satisfied as result of the various tradeoffs that 

must be made and limitations of the design techniques, 

hence, optimization based technique that requires some 

measures of performance index to minimize a cost 

function is incorporated. We define a cost function 

depending on the position and the input and minimize it 

with respect to these parameters, so as to minimize the 

performance index 

                                          

( )dtRuuQxxJ TT




+=
0                              

( )44
                    

 

Where Q and R, are weight matrices for each parameter 

and the relative weighting chosen for Q and R determine 

the relative importance of error reduction and control 

energy saving. Hence, the controller K, that minimize the 

cost function J is based on finding the positive definite 

solution of algebraic Riccati equation (ARE) 

 

                                         

01 =+−+ − QPBPBRPAPA TT

                             
 

Such that ( ) ( )tPxBRkxtu T1−−=−=  is optimal 

for any initial x (0) state. The weighting matrices Q and 

R are chosen as  

                                                        

1,

0000

000

0000

000

=



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
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= R
y

x

Q
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The matrix Q is selected as indicated in Eq. (46) such that 

the controller can be easily tuned by changing the non-

zero x and y elements in the Q matrix of the m-file 

function to enhance desirable response. Also, x and y 

have been used to describe the relative weight of the 

tracking error in the cart's position and pendulum's angle 

versus the control effort. 

 

3.4. Linear Quadratic Regulator control with 

Estimator for IPS 
 

To improve the performance of the IPS, the LQR and the 

state estimator are combined. The full-order estimator 

estimates all the state that are not measured. Before we 

design our estimator, we will first verify that our system 

is observable. The property of observability determines 

whether or not based on the measured outputs of the 

system we can estimate the state of the system. For the 

system to be completely state observable, the 

observability matrix 



















=

−1

.:

n

o

CA

CA

C

Q
 must have rank n 

where n is the number of state variables of the system. In 

(40) 

(45) 
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this case, the system is observable since observability 

matrix has a maximum of 4. Hence, an m-file function is 

generated in MATLAB for simulation and the results are 

discussed extensively.   

 

4. RESULTS AND DISCUSSION 
 

The mathematic dynamics equations of the linearized 

model is programmed in m-file function of MATLAB and 

the simulations are run for all the control algorithms. For 

the PID controller a simulator is built in SIMULINK and 

the performance of all the control schemes are compared. 

The control of the inverted pendulum angle is 

implemented with four different control algorithms 

namely; 

1. Two PID controllers 

2. Pole placement feedback controller 

3. Linear Quadratic Regulator, LQR and  

4. Combination of LQR with Estimator. 

 

Fig 3, 4, 5 and 6 show the graphical step response of 

the cart’s position and the pendulum angle’s for all the 

four control algorithms. In Fig 6 and 7 the cart position 

and pendulum angle for all the four control schemes are 

superimposed to facilitate easy performance comparison. 

In this figure, the responses for the both cart’s position 

and pendulum angles of PID, PPFC, LQR and LQR 

+Estimator are in cyan, red, blue and magnate 

respectively. In fig 9 and 10, the cart’s position and 

pendulum angle’s step response for all control algorithms 

are presented for system performance evaluation. Table 2 

shows the summary of the performance of the pendulum 

angle. 

 

Table 2. Pendulum angle simulation results for all control 

algorithms 

 
Time 

response 

specification 

PI

D 

PPF

C 

LQ

R 

LQR+Estimat

or 

Settling Time 

(Ts) 

1.5

s 

1.58

s 

1.5s 1.48s 

Max.Oversho

ot (%) 

10 16 10 9.98 

Steady State 

error 

0 0 0 0 

 

It is evident from the Table 2 that the combined action 

of LQR and Estimator has a settling time of 1.48sec and 

overshoot of 9.89% which compensate for fast response 

and stabilize the pendulum angle with minimum 

overshoot when compared to other algorithms. However, 

the PID controller and LQR show similar time response 

characteristics but their overshoot is a lit bit higher when 

compared with combined action of LQR and Estimator. It 

can also be deduced that the pole placement feedback 

controller shows a worst system response. According to 

the fig 9, it can be deduced that the LQR and Estimator 

controller exhibit better response and performance. It can 

be concluded that the combined action of LQR and 

Estimator is capable of minimizing the error since all the 

state are available for measurement so as to stabilize the 

inverted pendulum in the upright position via selecting a 

weight matrices Q and R that we save control energy and 

ensure a fair tradeoff between the performance and 

control effort. 

 

 
Fig. 3. Step response of PID controller 

 

 
Fig. 4. Step response of PPFC controller 

 

 
Fig. 5. Step response of LQR controller 
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Fig. 6. Step response of LQR + Estimator controller 

 

 
Fig. 9. Step Response for superimposed control 

algorithms on cart position 

 

 
Fig. 10. Step Response for superimposed control 

algorithms on pendulum angle 

 
Fig. 7. Step response of cart's position for the control 

algorithms 

 

 
Fig. 8. Step response of pendulum angle's for all the 

control algorithms 

 

5. CONCLUSION 
 

The dynamic model and control algorithms designed 
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of an inverted pendulum has been successfully 

formulated and implemented in this paper. The IPS 

dynamic model was anatomized based on Lagrangian and 

Euler-Lagrange approach and to simulate the dynamics 

accurately, the inverted pendulum system is linearized 

around the upright point such that the system is within the 

neighborhood of the linear region. Hence, four different 

control algorithms are implemented with 

MATLAB/Simulink environment on the linearized model 

to investigate the performance characteristics of the IPS.  

By relating the responses of all the control algorithms 

of the Table 2, it is found that there is a tradeoff between 

the response and overshoot of PID as the gain increases 

or decreases and this significantly influence the PID 

controller performance. Although, the performance of the 

of pole-placement feedback controller is higher than other 

control algorithms as a result of arbitrarily pole location 

of the poles that require turning for optimal performance 

at the expense of performance.  The response of LQR and 

LQR+Estimator are similar but it is obvious that LQR 

+Estimator controllers is a little improved compared to 

the LQR as it contains an estimator that estimate all the 

state that are not measured, which in turn contributes to 

error minimization.    Among all the proposed control 

algorithms, the combined action of LQR+ estimator 

control scheme gives a better response and performance. 

This relative performance investigation for this baseline 

system substantiates that the proposed LQR+Estimator 

approach is simple, effective and robust for controlling 

linearized model of dynamic system. 
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