
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 1, Pages 809—823 (2019)
DOI: 10.31801/cfsuasmas.478655
ISSN 1303—5991 E-ISSN 2618-6470

Available online: September 29, 2018

http://communications.science.ankara.edu.tr/index.php?series=A1

ON THE LINEAR CODES OVER THE RING Z4 + v1Z4 + ...+ vtZ4

ABDULLAH DERTLI AND YASEMIN CENGELLENMIS

Abstract. Some results on linear codes over the ring Z4 + uZ4 + vZ4, u2 =
u, v2 = v, uv = vu = 0 in [6,7] are generalized to the ring Dt = Z4 + v1Z4 +

... + vtZ4, v2i = vi, vivj = vjvi = 0 for i 6= j, 1 ≤ i, j ≤ t. A Gray map Φt

from Dn
t to Z(t+1)n4 is defined. The Gray images of the cyclic, constacyclic

and quasi-cyclic codes over Dt are determined. The cyclic DNA codes over Dt
are introduced. The binary images of them are determined. The nontrivial
automorphism on Di for i = 2, 3, ..., t is given. The skew cyclic, skew consta-
cyclic and skew quasi-cyclic codes over Dt are introduced. The Gray images
of them are determined. The skew cyclic DNA codes over Dt are introduced.
Moreover, some properties of MDS codes over Dt are discussed.

1. Introduction

The certain type of codes over many finite rings were studied [2,4,5,8,9,13,15,16,20,
21,22]. Many of good codes were obtained from them.
Some special error correcting codes over some finite fields and finite rings with

4n elements where n ∈ N were used for DNA computing applications. The con-
struction of DNA codes were by several authors in [1,6,12,14,18].
Optimal codes attain maximum minimum distances. So their class is very impor-

tant class of codes. Optimal codes over finite rings were studied by several authors
in [3,10,11,17,19].
In [6], the finite ring D = Z4 + uZ4 + vZ4, u

2 = u, v2 = v, uv = vu = 0 was
introduced, firstly. Some results on linear codes over D were obtained. Moreover,
in [7], the MacWilliams identities and optimal codes over D were studied. In this
paper, we generalize some results to the linear codes over Dt.

This paper is organized as follows. In section 2, a Gray map from Dt to Z
(t+1)
4

is defined. The Gray images of cyclic, constacyclic, and quasi-cyclic codes over Dt

are determined. A linear code C over Dt is represented by means of (t + 1) codes
over Z4. In section 3, the constacyclic codes over Dt are investigated. In section
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4, the cyclic codes of odd length over Dt satisfy reverse and reverse complement
properties are studied. In section 5, the binary images of cyclic DNA codes over Dt

are determined. In section 6, the nontrivial automorphism on Di for i = 2, 3, ..., t
is determined. By introducing the skew cyclic, skew constacyclic and skew quasi-
cyclic codes over Dt, the Gray images of them are found in section 7. In section 8,
we investigated skew cyclic DNA codes over Dt. In section 9, some properties of
optimal codes over Dt are determined.

2. Preliminaries

Let Dt = Z4 + v1Z4 + ... + vtZ4,where v2i = vi, vivj = vjvi = 0 for i 6= j, 1 ≤ i,
j ≤ t. The ring Dt can be also viewed as the quotient ring

Z4[v1, v2, ..., vt]/
〈
v2i − vi, vivj = vjvi

〉
.

Let d be any element of Dt, which can be expressed uniquely as d = d0 + v1d1 +
...+ vtdt.
A code of length n over Dt is a subset of Dn

t . C is a linear iff C is an Dt-
submodule of Dn

t .The elements of the code (linear code) are called codewords.
Let σ, σλ, ζ be maps from Dn

t to D
n
t given by

σ (α0, ..., αn−1) = (αn−1, α0, ..., αn−2)

σλ (α0, ..., αn−1) = (λαn−1, α0, ..., αn−2)

ζ (α0, ..., αn−1) = (−αn−1, α0..., αn−2)
where λ is a unit in Dt. Let C be a linear code of length n over Dt. Then C is said
to be cyclic if σ (C) = C, λ-constacyclic if σλ (C) = C, negacyclic, if ζ(C) = C.

Let a ∈ Z(t+1)n4 with a =
(
a0, a1, ..., a(t+1)n−1

)
=
(
a(0)|a(1)|...|a(t)

)
, a(i) ∈ Zn4

for i = 0, 1, ..., t. Let ϕ be a map from Z
(t+1)n
4 to Z

(t+1)n
4 given by ϕ (a) =(

σ
(
a(0)

) ∣∣σ (a(1))∣∣ ...|σ (a(t))), where σ is a cyclic shift from Zn4 to Z
n
4 given by

σ
(
a(i)
)

= ((a(i,n−1)), (a(i,0)), ..., (a(i,n−2))) for every a(i) = (a(i,0), ..., a(i,n−1)), where
a(i,j) ∈ Z4, j = 0, 1, ..., n−1. A code of length (t+1)n over Z4 is said to be a quasi-
cyclic code of index t+ 1 if ϕ (C) = C.
We define the Gray map as follows

Φt : Dt −→ Zt+14

d0 + v1d1 + ...+ vtdt 7−→ (d0, d0 + d1, ..., d0 + dt)

This map is extended componentwise to

Φt : Dn
t −→ Z

(t+1)n
4

(α1, ..., αn) = (d10, d
2
0, ..., d

n
0 , ..., d

1
0 + d1t , ..., d

n
0 + dnt )

where αi = di0 + v1d
i
1 + ...+ vtd

i
t with i = 1, 2, ..., n.

Φt is a Z4-module isomorphism.
The Lee weights of 0, 1, 2, 3 ∈ Z4 are defined by wL (0) = 0, wL (1) = wL (3) =

1, wL (2) = 2.
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Let d = d0+v1d1+...+vtdt be an element ofDt, then Lee weight of d is defined as
wL (d) = wL (d0, d0 + d1, ..., d0 + dt) , where d0, d1, ..., dt ∈ Z4. The Lee weight of a
vector c = (c0, ..., cn−1) ∈ Dn

t to be the sum of Lee weights its components. For any
elements c1, c2 ∈ Dn

t , the Lee distance between c1 and c2 is given by dL(c1, c2) =
wL (c1 − c2). The minimum Lee distance of C is defined as dL(C) = min dL (c, ć),
where for any ć ∈ C, c 6= ć.
For any x = (x0, ..., xn−1) , y = (y0, ..., yn−1) the inner product is defined as

xy =

n−1∑
i=0

xiyi

If xy = 0, then x and y are said to be orthogonal. Let C be a linear code of
length n over Dt, the dual of C

C⊥ = {x : ∀y ∈ C, xy = 0}

which is also a linear code over Dt of length. A code C is self orthogonal, if C ⊂ C⊥
and self dual, if C = C⊥.

Theorem 1. The Gray map Φt is distance preserving map from (Dn
t ,Lee distance)

to (Z(t+1)n4 ,Lee distance).

Proof. Let z1 = (z1,0, ..., z1,n−1), z2 = (z2,0, ..., z2,n−1) be the elements of Dn
t , where

z1,i = d01,i + v1d
1
1,i + ...+ vtd

t
1,i and z2,i = d02,i + v1d

1
2,i + ...+ vtd

t
2,i, i = 0, 1, ..., n−

1. Then z1 − z2 = (z1,0 − z2,0, ..., z1,n−1 − z2,n−1) and Φt(z1 − z2) = Φt(z1) −
Φt(z2). So, dL(z1, z2) = wL (z1 − z2) = wL (Φt(z1 − z2)) = wL (Φt(z1)− Φt(z2)) =
dL(Φt(z1),Φt(z2)). �

Theorem 2. If C is self orthogonal, so is Φt (C) .

Proof. Let x1 = d10+v1d
1
1+ ...+vtd

1
t , x2 = d20+v1d

2
1+ ...+vtd

2
t ∈ Dt. From x1x2 =

d10d
2
0 + v1(d

1
0d
2
1 + d11d

2
0 + d11d

2
1) + ...+ vt(d

1
0d
2
t + d1td

2
0 + d1td

2
t ). If C is self orthogonal,

so we have d10d
2
0 = 0, d10d

2
1 + d11d

2
0 + d11d

2
1 = 0, ..., d10d

2
t + d1td

2
0 + d1td

2
t = 0. From

this, we have Φt (x1) Φt (x2) = (d10, d
1
0 + d11, ..., d

1
0 + d1t )(d

2
0, d

2
0 + d21, ..., d

2
0 + d2t ) = 0.

Therefore Φt (C) is self orthogonal. �

Proposition 3. Let Φt be Gray map from Dn
t to Z

(t+1)n
4 , let σ be the cyclic shift

and let ϕ be a map as above. Then Φtσ = ϕΦt.

Proof. Let a = (a0, ..., an−1) ∈ Dn
t . Let ai = d0i+v1d

1
i+...+vtd

t
i where d

0
i , d

1
i , ..., d

t
i ∈

Z4, for i = 0, 1, ..., n− 1. From definition Φt, we have Φt(a) = (d00, d
0
1, ..., d

0
n−1, d

0
0 +

d10, ..., d
0
0+dtn−1, ..., d

0
n−1+d1n−1, ..., d

0
n−1+dtn−1). By applying ϕ,we have ϕ(Φt(a)) =

(d0n−1, d
0
0, ..., d

0
n−2, d

0
0 + dtn−1, ..., d

0
0 + dtn−2, ..., d

0
n−1 + dtn−1, ..., d

0
n−2 + dtn−2).

On the other hand, σ(a) = (an−1, a0, ..., an−2). If we apply Φt, we have Φt(σ(a)) =
(d0n−1, d

0
0, ..., d

0
n−2, d

0
0 + dtn−1, ..., d

0
0 + dtn−2, ..., d

0
n−1 + dtn−1, ..., d

0
n−2 + dtn−2) �
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Theorem 4. Let σ and ϕ be as in section 2. A code C of length n over Dt is
a cyclic code iff Φt (C) is a quasi-cyclic code of index t + 1 over Z4 with length
(t+ 1)n.

Proof. Let C be a cyclic code. Then σ (C) = C. If we apply Φt, we have Φt (σ (C)) =
Φt (C) . By using Proposition 3, Φt (σ (C)) = ϕ (Φt (C)) = Φt (C) . Hence, Φt (C)
is a quasi- cyclic code of index t+ 1.
For the other part, if Φt (C) is a quasi-cyclic code of index t + 1, then we have

ϕ(Φt (C)) = Φt (C) . By using Proposition 3, we have ϕ (Φt (C)) = Φt (σ (C)) =
Φt (C) . Since Φt is injective, we have σ (C) = C. �

Let A1, A2, ..., At+1 be linear codes.

A1 ⊗A2 ⊗ ...⊗At+1 = {(a1, a2, ..., at+1) : ai ∈ Ai, i = 1, 2, ..., t+ 1}

and

A1 ⊕A2 ⊕ ...⊕At+1 = {a1 + a2 + ...+ at+1 : ai ∈ Ai, i = 1, 2, ..., t+ 1}

Definition 5. Let C(t) be a linear code of length n over Dt. Define

C
(t)
1 = {d0 : ∃ d1, ..., dt ∈ Zn4 , d0 + v1d1 + ...+ vtdt ∈ C(t)}

C
(t)
2 = {d0 + d1 : ∃ d2, ..., dt ∈ Zn4 , d0 + v1d1 + ...+ vtdt ∈ C(t)}

C
(t)
3 = {d0 + d2 : ∃ d1, d3, ..., dt ∈ Zn4 , d0 + v1d1 + ...+ vtdt ∈ C(t)}

...

C
(t)
t+1 = {d0 + dt : ∃ d1, d2, ..., dt−1 ∈ Zn4 , d0 + v1d1 + ...+ vtdt ∈ C(t)}

where C(t)1 , C
(t)
2 ,...,C

(t)
t+1 are linear codes over Z4 of length n.

Theorem 6. Let C(t) be a linear code of length n over Dt. Then Φt(C
(t)) =

C
(t)
1 ⊗ C

(t)
2 ⊗ · · · ⊗ C

(t)
t+1 and

∣∣C(t)∣∣ =
∣∣∣C(t)1 ∣∣∣ ∣∣∣C(t)2 ∣∣∣ · · · ∣∣∣C(t)t+1∣∣∣ .

Corollary 7. If Φt(C
(t)) = C

(t)
1 ⊗C

(t)
2 ⊗· · ·⊗C

(t)
t+1, then C

(t) = (1− v1 − · · · − vt)C(t)1 ⊕
v1C

(t)
2 ⊕ · · · ⊕ vtC

(t)
t+1.

Theorem 8. Let C(t) = (1− v1 − · · · − vt)C(t)1 ⊕ v1C
(t)
2 ⊕ · · · ⊕ vtC

(t)
t+1 be a linear

code of any length n over Dt. Then C(t) is a cyclic code over Dt if and only if
C
(t)
1 , C

(t)
2 ,...,C

(t)
t+1 are all cyclic codes over Z4.

Proof. It is proved that as in proof of Proposition 15, in [8]. �

Lemma 9. (17) Let n be an odd positive integer and xn − 1 =
∏r
i=1 fi(x) be the

unique factorization of xn−1, where f1(x), ..., fr(x) are basic irreducible polynomials
over Z4
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Theorem 10. (17) Let C be a cyclic code of odd length n over Z4, then

C = (f0(x), 2f1(x)) = (f0(x) + 2f1(x))

where f0(x) and f1(x) are monic factors of xn − 1 and f1(x)|f0(x).
If C is a linear code of any length n over Z4, then there exist monic polynomials

f(x), g(x), p(x) ∈ Z4 such that
C = (f(x) + 2p(x), 2g(x))

where g(x)|f(x)|xn − 1, g(x)|p(x)[xn − 1/f(x)] and |C| = 22n−deg f(x)−deg g(x).

Theorem 11. Let C(t) = (1− v1 − · · · − vt)C(t)1 ⊕ v1C
(t)
2 ⊕ · · · ⊕ vtC

(t)
t+1 be a

cyclic code of any length n over Dt. If there exist f1i (x), f2i (x), f3i (x) ∈ Z4[x]

for i = 1, · · · , t+ 1 such that C(t)i =
(
f1i (x) + 2f2i (x), 2f3i (x)

)
, then

C(t) =
(

(1− v1 − · · · − vt) f11 (x) + · · ·+ vtf
1
t+1(x) + 2[(1− v1 − · · · − vt) f21 (x)

+ · · ·+ vtf
2
t+1(x)], 2[(1− v1 − · · · − vt) f31 (x) + · · ·+ vtf

3
t+1(x)]

)
.

If n is odd, then C(t) = ((1− v1 − · · · − vt) (f11 (x) + 2f21 (x)) + · · ·+ vt(f
1
t+1(x) +

2f2t+1(x))).

Proof. It is proved that as in proof of Theorem 10, in [17]. �
Definition 12. A subset C of Dn

t is called a quasi-cyclic code of length n = sl if
C is satisfies the following conditions

i) C is a submodule of Dn
t

ii) if e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) ∈ C, then Ts,l (e) =
(es−1,0,...,es−1,l−1, e0,0, ..., e0,l−1, ..., es−2,0, ..., es−2,l−1) ∈ C.

Definition 13. Let a ∈ Z(t+1)n4 with a =
(
a0, a1, ..., a(t+1)n−1

)
=
(
a(0)

∣∣a(1)∣∣ ...|a(t)) ,
a(i) ∈ Zn4 , for i = 0, 1, ..., t. Let Γ be a map from Z

(t+1)n
4 to Z(t+1)n4 given by

Γ (a) =
(
µ
(
a(0)

) ∣∣∣µ(a(1))∣∣∣ ...|µ(a(t)))
where µ is the map from Zn4 to Z

n
4 given by

µ
(
a(i)
)

= ((a(i,s−1)), (a(i,0)), ..., (a(i,s−2)))

for every a(i) =
(
a(i,0), ..., a(i,s−1)

)
where a(i,j) ∈ Zl4, j = 0, 1, ..., s− 1 and n = sl.

A code of length (t + 1)n over Z4 is said to be l-quasi cyclic code of index t + 1 if
Γ (C) = C.

Proposition 14. Let Ts,l be the quasi-cyclic shift on Dt. Then ΦtTs,l = ΓΦt,
where Γ is as above.

Theorem 15. The Gray image of a quasi-cyclic code over Dt of length n with
index l is a l-quasi-cyclic code of index t+ 1 over Z4 with length (t+ 1)n.
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3. Constacyclic codes over Dt

We investigate λt-constacyclic codes over Dt, where λt is unit.
For any element λi = d0 + v1d1 + ...+ vidi ∈ D∗i for i = 1, 2, ..., t, λi is a unit if

and only if d0 6= 0, d0 + d1 6= 0, ..., d0 + di 6= 0 for i = 1, 2, ..., t.
In [13], it was shown that the units are 1, 3, 1 + 2v1, 3 + 2v1, for D1 = Z4 +

v1Z4, v
2
1 = v1. In [6], it was shown that the units are 1, 3, 1 + 2v1, 1 + 2v2, 3 +

2v1, 3 + 2v2, 1 + 2v1 + 2v2, 3 + 2v1 + 2v2 for D2 = Z4 + v1Z4 + v2Z4, v
2
1 = v1, v

2
2 =

v2, v1v2 = v2v1 = 0.
Moreover, one can verify that if λi is a unit of Di for i = 1, 2, ..., t, then λ2i = 1,

for i = 1, 2, ..., t.

Theorem 16. Let C(t) = (1− v1 − · · · − vt)C(t)1 ⊕v1C
(t)
2 ⊕· · ·⊕vtC

(t)
t+1 be a linear

code of length n over Dt. Then C(t) is λt-constacyclic code over Dt if and only if
C
(t)
1 is a d0-constacyclic, C

(t)
2 is d0+d1-constacyclic,...,C

(t)
t+1 is a d0+dt-constacyclic

codes of length n over Z4.

4. The reverse and reverse complement codes over Dt

In this section, we study cyclic codes of odd length over Dt satisfy reverse and
reverse complement properties.
The elements 0, 1, 2, 3 of Z4 are in one to one correspondence with the nucleotide

DNA bases A, T,C,G such that 0 −→ A, 1 −→ T, 2 −→ C and 3 −→ G. The
Watson Crick Complement is given by A = T, T = A,G = C,C = G.
Since the ring Dt is cardinality 4t+1, then we give a one to one correspondence

between the elements of Dt and the 4t+1 codons over the alphabet {A, T,G,C}t+1
by using the Gray map. For example

Elements Gray image Codons
0 (0, 0, ..., 0)︸ ︷︷ ︸

t+1 times

AA...A︸ ︷︷ ︸
t+1 times

1 (1, 1, ..., 1)︸ ︷︷ ︸
t+1 times

TT...T︸ ︷︷ ︸
t+1 times

2 (2, 2, ..., 2)︸ ︷︷ ︸
t+1 times

CC...C︸ ︷︷ ︸
t+1 times

3 (3, 3, ..., 3)︸ ︷︷ ︸
t+1 times

GG...G︸ ︷︷ ︸
t+1 times

v1 (0, 1, 0, ..., 0)︸ ︷︷ ︸
t+1 times

ATA...A︸ ︷︷ ︸
t+1 times

1 + v1 (1, 2, 1, ..., 1)︸ ︷︷ ︸
t+1 times

TCT...T︸ ︷︷ ︸
t+1 times

...
...

...

The codons satisfy the Watson Crick Complement.
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Definition 17. For x = (x0, x1, ..., xn−1) ∈ Dn
t , the vector (xn−1, xn−2, ..., x1, x0)

is called the reverse of x and is denoted by xr. A linear code C(t) of length n over
Dt, is said to be reversible if xr ∈ C(t) for every x ∈ C(t).
For x = (x0, x1, ..., xn−1) ∈ Dn

t , the vector (x0, x1, ..., xn−1) is called the com-
plement of x and is denoted by xc. A linear code C(t) of length n over Dt, is said
to be complement if xc ∈ C(t) for every x ∈ C(t).
For x = (x0, x1, ..., xn−1) ∈ Dn

t , the vector (xn−1, xn−2, ..., x1, x0) is called the
reversible complement of x and is denoted by xrc. A linear code C(t) of length n
over Dt, is said to be reversible complement if xrc ∈ C(t) for every x ∈ C(t).

Definition 18. Let f(x) = a0 + a1x + ... + arx
r with ar 6= 0 be polynomial. The

reciprocal of f(x) is defined as f∗(x) = xrf( 1x ). It is easy to see that deg f∗(x) ≤
deg f(x) and if a0 6= 0, then deg f∗(x) = deg f(x). f(x) is called a self reciprocal
polynomial if there is a constant m such that f∗(x) = mf(x).

Lemma 19. Let f(x), g(x) be polynomials in Di[x], 1 ≤ i ≤ t. Suppose deg f(x)−
deg g(x) = m then,

i) (f(x)g(x))∗ = f∗(x)g∗(x)
ii) (f(x) + g(x))∗ = f∗(x) + xmg∗(x)

Theorem 20. Let C(t) = (1− v1 − · · · − vt)C(t)1 ⊕v1C
(t)
2 ⊕· · ·⊕vtC

(t)
t+1 be a cyclic

code of odd length over Dt. Then C(t) is reversible code over Dt if and only if
C
(t)
1 , C

(t)
2 ,...,C

(t)
t+1 are reversible codes over Z4.

Proof. Let C(t)i be reversible codes, where i = 1, 2, ..., t + 1. For any b ∈ C(t), b =

(1− v1 − · · · − vt) b1 + v1b2 + ... + vtbt+1, where bi ∈ C
(t)
i , for 1 ≤ i ≤ t + 1.

Since C(t)i are reversible codes for all i, bri ∈ C
(t)
i ,where i = 1, 2, ..., t + 1. So,

br = (1− v1 − · · · − vt) br1 + v2b
r
2 + ...+ vtb

r
t+1 ∈ C(t). Hence C(t) is reversible code.

On the other hand, let C(t) be a reversible code over Dt. So for any

(1− v1 − · · · − vt) b1 + v1b2 + ...+ vtbt+1,

where bi ∈ C(t)i , for 1 ≤ i ≤ t + 1, we get br = (1− v1 − · · · − vt) br1 + v2b
r
2 + ... +

vtb
r
t+1 ∈ C(t). Let br = (1− v1 − · · · − vt) br1+v2br2+...+vtbrt+1 = (1− v1 − · · · − vt) s1+

v1s2 + ...+ vtst+1, where si ∈ C(t)i , for 1 ≤ i ≤ t+ 1. Therefore C(t)i are reversible
codes over Z4 for i = 1, 2, ..., t+ 1. �

Lemma 21. For any c ∈ Di,where i = 1, 2, ..., t, we have c+ c = 1.

Lemma 22. For any a ∈ Di,where i = 1, 2, ..., t, we have a+ 30 = 3a.

Theorem 23. Let C(t) = (1− v1 − · · · − vt)C(t)1 ⊕v1C
(t)
2 ⊕· · ·⊕vtC

(t)
t+1 be a cyclic

code of odd length n over Dt. Then C(t) is reversible complement over Dt iff C(t)

is reversible over Dt and (0, 0, ..., 0) ∈ C(t).
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Proof. Since C(t) is reversible complement, for any c = (c0, c1, ..., cn−1) ∈ C(t), crc =
(cn−1, cn−2, ..., c0) ∈ C(t). Since C(t) is a linear code, so (0, 0, ..., 0) ∈ C(t). Since
C(t) is reversible complement, so (0, 0, ..., 0) ∈ C(t). By using Lemma 22, we get

3cr = 3(cn−1, cn−2, ..., c0) = (cn−1, cn−2, ..., c0) + 3(0, 0, ..., 0) ∈ C(t)

Hence for any c ∈ C(t), we have cr ∈ C(t).
On the other hand, let C(t) be reversible code overDt. So, for any c = (c0, c1, ..., cn−1) ∈

C(t), then cr = (cn−1, cn−2, ..., c0) ∈ C(t). For any c ∈ C(t),

crc = (cn−1, cn−2, ..., c0) = 3(cn−1, cn−2, ..., c0) + (0, 0, ..., 0) ∈ C(t)

So, C(t) is reversible complement code over Dt. �

Theorem 24. Let S1 and S2 be two reversible complement cyclic codes of length n
over Di, where i = 1, 2, ..., t. Then S1 + S2 and S1 ∩ S2 are reversible complement
cyclic codes.

Proof. It is shown that as in proof of Theorem 23, in [6]. �

5. Binary images of cyclic DNA codes over Dt

In this section, we will determine binary images of cyclic DNA codes over Di,
where i = 1, 2, ..., t.
The 2-adic expansion of c ∈ Z4 is c = α(c)+2β(c) such that α(c)+β(c)+γ(c) = 0

for all c ∈ Z4
c α(c) β(c) γ(c)
0 0 0 0
1 1 0 1
2 0 1 1
3 1 1 0

The Gray map is given by

Ψ : Z4 −→ Z22

c 7−→ Ψ(c) = (β(c), γ(c))

for all c ∈ Z4 in [18]. We define

Ŏt : Dt −→ Z
2(t+1)
2

d0 + v1d1 + ...+ vtdt 7−→ Ŏt(d0 + v1d1 + ...+ vtdt) = Ψ (Φt (d0 + v1d1 + ...+ vtdt))

= Ψ(d0, d0 + d1, ..., d0 + dt)

= (β(d0), γ(d0), β(d0 + d1), γ(d0 + d1), ..., β(d0 + dt), γ(d0 + dt))

where Φt is a Gray map from Dt to Z
t+1
4 .

Let d0 + v1d1 + ... + vtdt be any element of the ring Dt. The Lee weight wL of
the ring Dt is defined as follows

wL(d0 + v1d1 + ...+ vtdt) = wL(d0, d0 + d1, ..., d0 + dt)
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where wL(d0, d0 + d1, ..., d0 + dt) described the usual Lee weight on Z
t+1
4 . For any

c1, c2 ∈ Dt the Lee distance dL is given by dL(c1, c2) = wL(c1 − c2).
The Hamming distance dH(c1, c2) between two codewords c1 and c2 is the Ham-

ming weight of the codewords c1 − c2.
AA...A︸ ︷︷ ︸
t+1 times

−→ (0, 0, ..., 0)︸ ︷︷ ︸
2(t+1) times

TT...T︸ ︷︷ ︸
t+1 times

−→ (0, 1, 0, 1, ..., 0, 1)︸ ︷︷ ︸
2(t+1) times

GG...G︸ ︷︷ ︸
t+1 times

−→ (1, 0, 1, 0, ..., 1, 0)︸ ︷︷ ︸
2(t+1) times

CC...C︸ ︷︷ ︸
t+1 times

−→ (1, 1, ..., 1)︸ ︷︷ ︸
2(t+1) times

...
...

...

Lemma 25. The Gray map Ŏt is a distance preserving map from (Dn
t , Lee dis-

tance) to (Z2(t+1)n2 , Hamming distance). It is also Z2-linear.

Proof. For c1, c2 ∈ Dn
t , we have Ŏt(c1 − c2) = Ŏt(c1) − Ŏt(c2). So, dL(c1, c2) =

wL(c1 − c2) = wH(Ŏt(c1 − c2)) = wH(Ŏt(c1) − Ŏt(c2)) = dH(Ŏt(c1), Ŏt(c2)). So,
the Gray map Ŏt is distance preserving map. For Z2-linear, it is easily seen that
Ŏt(k1c1 + k2c2) = k1Ŏt(c1) + k2Ŏt(c2), where c1, c2 ∈ Dn

t , k1, k2 ∈ Z2. �

Proposition 26. Let σ be the cyclic shift of Dn
t and η be the 2(t+ 1)-quasi-cyclic

shift of Z2(t+1)n2 . Let Ŏt be the Gray map from Dn
t to Z

2(t+1)n
2 . Then Ŏtσ = ηŎt.

Theorem 27. If C is a cyclic DNA code of length n over Dt then Ŏt(C) is a
binary quasi-cyclic DNA code of length 2(t+ 1)n with index 2(t+ 1).

6. Skew codes over Dt

We are interested in studying skew codes over Di for i = 2, ..., t, in this section.
Firstly, we define a nontrivial automorphism θt on the ring Dt for t ≥ 2, by θt(vi) =
vi+1(mod t), where i = 1, 2, ..., t.
For example, for t = 2, a nontrivial automorphism θ2 on the ring D2 as follows

θ2 : D2 −→ D2

d0 + v1d1 + v2d2 7−→ d0 + v1d2 + v2d1

where d0, d1, d2 ∈ Z4.
The ring Dt[x, θt] = {a0 + a1x+ ...+ an−1x

n−1 : ai ∈ Dt, i = 0, ..., n− 1, n ∈ N}
is called skew polynomial ring. The ring is a non-commutative ring. The addition
in the ring Dt[x, θt] is the usual polynomial additional and multiplication is defined
using the rule, (axi)(bxj) = aθit(b)x

i+j . The order of the automorphism θt is t.
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Definition 28. A subset C(t) of Dn
t is called a skew cyclic code of length n if C

(t)

satisfies the following conditions,
i) C(t) is a submodule of Dn

t ,
ii) If c = (c0, c1, ..., cn−1) ∈ C(t), then σθt (c) = (θt(cn−1), θt(c0), ..., θt(cn−2)) ∈

C(t)

Let ft(x) + 〈xn − 1〉 be an element in the set St,n = Dt[x, θt]/ 〈xn − 1〉 and let
rt(x) ∈ Dt[x, θt]. Define multiplication from left as follows,

rt(x)(ft(x) + 〈xn − 1〉) = rt(x)ft(x) + 〈xn − 1〉
for any rt(x) ∈ Dt[x, θt].

Theorem 29. St,n is a left Dt[x, θt]-module where multiplication defined as in
above.

Theorem 30. A code C(t) in St,n of length n is a skew cyclic code if and only if
C(t) is a left Dt[x, θt]-submodule of the left Dt[x, θt]-module St,n.

Theorem 31. Let C(t) be a skew cyclic code over Dt of length n and let ft(x)
be a polynomial in C(t) of minimal degree. If ft(x) is monic polynomial, then
C(t) = 〈ft(x)〉 , where ft(x) is a right divisor of xn − 1.

Definition 32. A subset C(t) of Dn
t is called a skew quasi-cyclic code of length n

if C(t) satisfies the following conditions,

i) C(t) is a submodule of Dn
t ,

ii) If e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, .., es−1,l−1) ∈ C(t), then τθt,s,l (e) =

(θt(es−1,0), ..., θt(es−1,l−1), θt(e0,0), ..., θt(e0,l−1), ..., θt(es−2,0), ..., θt(es−2,l−1)) ∈ C(t).
We note that xs − 1 is a two sided ideal in Dt[x, θt] if t|s where t is the order of

θt. So Dt[x, θt]/(x
s − 1) is well defined.

The ring Rls = (Dt[x, θt]/(x
s−1))l is a left Rs = Dt[x, θt]/(x

s−1) module by the
following multiplication on the left f(x)(g1(x), ..., gl(x)) = (f(x)g1(x), ...f(x)gl(x)).
If the map Λt is defined by

Λt : Dn
t −→ Rls

(e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) 7→ (c0(x), ..., cl−1(x)) such that
cj(x) =

∑s−1
i=0 ei,jx

i ∈ Rs where j = 0, 1, ..., l − 1 then the map Λt gives a one to
one correspondence Dn

t and the ring R
l
s.

Theorem 33. A subset C(t) of Dn
t is a skew quasi-cyclic code of length n = sl and

index l if and only if Λt(C
(t)) is a left Rs-submodule of Rls.

Definition 34. Let θt be an automorphism of Dt, λt be a unit in Dt, C(t) be a
linear code Dt. A linear code C(t) is said to be a skew constacyclic code if C(t) is
closed under the θt − λt-constacyclic shift τθt,λt : Dn

t −→ Dn
t defined by

τθt,λt(c0, ..., cn−1) = (θt(λtcn−1), θt(c0), ..., θt(cn−2))
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7. The Gray images of skew cyclic, quasi-cyclic and constacyclic
codes over Dt

Proposition 35. Let σθt be the skew cyclic shift on D
n
t , Let Φt be the Gray map

from Dn
t to Z

(t+1)n
4 and ϕ be as in the preliminaries. Then

Φtσθt = υϕΦt

where υ is map such that υ(x1, x2, ..., xt+1) = (x1, xt+1, xt, ..., x2) for xi ∈ Zn4 , i =
1, ..., t+ 1.

Proof. It is proved that as in the proof the Proposition 3. �

Theorem 36. The Gray image of a skew cyclic code over Dt of length n is per-
mutation equivalent to a quasi-cyclic code of index t+ 1 with length (t+ 1)n.

Proof. It is proved that as in the proof the Theorem 4. �

Proposition 37. Let τθt,s,l be the skew quasi-cyclic shift, Γ be as in the prelimi-
naries, Φt be the Gray map from Dn

t to Z
(t+1)n
4 . Then

Φtτθt,s,l = υΓΦt

where υ is map such that υ(x1, x2, ..., xt+1) = (x1, xt+1, xt, ..., x2) for xi ∈ Zn4 , i =
1, ..., t+ 1.

Theorem 38. The Gray image of a skew quasi-cyclic code over Dt of length n is
permutation equivalent to a l-quasi-cyclic code of index t+ 1 with length (t+ 1)n.

Proposition 39. Let τθt,λ be the θt-λt-cyclic shift, let Φt be the Gray map from
Dn
t to Z

(t+1)n
4 and σλt be constacyclic shift. Then

Φtτθt,λt = υΦtσλt

where υ is a map such as above.

Theorem 40. The Gray image of a skew constacyclic code over Dt of length n is
permutation equivalent to the Gray image of a constacyclic code over Dt of length
n.

8. Skew cyclic DNA codes over Dt

In this section, we introduce a family of DNA skew cyclic codes over Dt. We
study its property of being reverse complement.
For all x ∈ Dt, we have

θt(x) + θt(x) = 1

Theorem 41. Let C(t) = 〈ft(x)〉 be a skew cyclic code over Dt of length n, where
ft(x) is a monic polynomial in C(t) of minimal degree. If C(t) is reversible comple-
ment, the polynomial ft(x) is self reciprocal and (1, 1, ..., 1) ∈ C(t).
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Proof. Let C(t) = 〈ft(x)〉 be a skew cyclic code over Dt, where ft(x) is a monic
polynomial in C(t). Since (0, 0, ..., 0) ∈ C(t) and C(t) is reversible complement, we
have

(
0, 0, ..., 0

)
= (1, 1, ..., 1) ∈ C(t).

Let ft(x) = 1 + at1x+ ...+ atr−1x
r−1 + xr. Since C(t) is reversible complement,

we have frct (x) ∈ C(t). That is

frct (x) = 1 + x+ ...+ xn−r−2 + 0xn−r−1 + atr−1x
n−r + ...+ at1x

n−2 + 0xn−1

Since C(t) is a linear code, we have frct (x)− xn−1
x−1 ∈ C

(t). This implies that

−xn−r−1 + (atr−1 − 1)xn−r + ...+ (at1 − 1)xn−2 − xn−1 ∈ C(t)

By multiplying on the right by xr+1−n, we have

−1 + (atr−1 − 1)θt(1)x+ ...+ (at1 − 1)θr−1t (1)xr−1 − θrt (1)xr ∈ C(t)

By using a+ a = 1, for a ∈ Dt, we have

−1− atr−1x− atr−2x2 − ...− at1xr−1 − xr = 3f∗t (x) ∈ C(t)

Since C(t) = 〈ft(x)〉, there exist qt(x) ∈ Dt [x, θt] such that 3f∗t (x) = qt(x)ft(x).
Since deg ft(x) = deg f∗t (x), we have qt(x) = 1. Since 3f∗t (x) = ft(x), we have
f∗t (x) = 3ft(x). So, ft(x) is self reciprocal. �

Theorem 42. Let C(t) = 〈ft(x)〉 be a skew cyclic code over Dt of length n, where
ft(x) is a monic polynomial in C(t) of minimal degree. If (1, 1, ..., 1) ∈ C(t) and
ft(x) is self reciprocal, then C(t) is reversible complement.

Proof. Let ft(x) = 1 + at1x + ... + atr−1x
r−1 + xr be a monic polynomial of the

minimal degree.
Let ct(x) ∈ C(t). So, ct(x) = qt(x)ft(x), where qt(x) ∈ Dt[x, θt]. By using

Lemma 19, we have c∗t (x) = (qt(x)ft(x))∗ = q∗t (x)f∗t (x). Since ft(x) is self recipro-
cal, so c∗t (x) = q∗t (x)etft(x), where et ∈ Z4\{0}. Therefore c∗t (x) ∈ C(t) = 〈ft(x)〉.
Let ct(x) = ct0 + ct1x+ ...+ ctrx

r ∈ C(t). Since C(t) is a cyclic code, we get

ct(x)xn−r−1 = ct0x
n−r−1 + ct1x

n−r + ...+ ctrx
n−1 ∈ C(t)

The vector correspond to this polynomial is

(0, 0, ..., 0, ct0, c
t
1, ..., c

t
r) ∈ C(t)

Since (1, 1, ..., 1) ∈ C(t) and C(t) linear, we have

(1, 1, ..., 1)− (0, 0, ..., 0, ct0, c
t
1, ..., c

t
r) = (1, ..., 1, 1− ct0, ..., 1− ctr) ∈ C(t)

By using a+ a = 1, for a ∈ Dt, we get

(1, 1, ..., 1, ct0, ..., c
t
r) ∈ C(t)

which is equal to (ct(x)∗)
rc. This shows that ((ct(x)∗)

rc
)
∗

= ct(x)rc ∈ C(t). �
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9. MDS codes over Dt

In this section, we investigate some properties of MDS codes over Dt.
It is well known that C(i) is a linear code of length n over Di, where i = 1, 2, ..., t

and dHi
is the minimum distance, then∣∣∣C(i)∣∣∣ ≤ |Di|n−dHi+1

where i = 1, 2, ..., t. So dHi
≤ n − log|Di|

∣∣C(i)∣∣ + 1, where i = 1, 2, ..., t. This
inequality is called Singleton bound. If C(i), where i = 1, 2, ..., t meet the Singleton
bound, then C(i), where i = 1, 2, ..., t are called MDS codes.

Lemma 43. Let C be a linear code of length n over Z4, the C is a MDS code if and
only if C is either Zn4 with parameters (n, 4n, 1) or 〈1〉 with parameters (n, 4, n) or
〈1〉⊥ with parameters (n, 4n−1, 2), where 1 denotes the all 1 vectors, [17].

We know that if C(i) is a linear code of length n over Di, where i = 1, 2, ..., t,
then

C(i) = (1− v1 − · · · − vi)C(i)1 ⊕ v1C
(i)
2 ⊕ · · · ⊕ viC

(i)
i+1

where C(i)j is a linear code of length n over Z4, where j = 1, ..., i+ 1.
Let dHi be the Hamming distance of C

(i). Then dHi = min
{
dHi,j

}
for 1 ≤ i ≤ t,

1 ≤ j ≤ i + 1, where dHi,j
is Hamming distance of C(i)j . So the Singleton bound

can be written as

dHi ≤ n−
1

i+ 1

i+1∑
j=1

log4

∣∣∣C(i)j ∣∣∣+ 1

Lemma 44. Let C(i) be a MDS codes over Di, where i = 1, 2, ..., t.

i. If dHi
= 1, then all of C(i)j , j = 1, ..., i+1, are MDS codes with parameters

(n, 4n, 1).
ii. If dHi

= 2, then all of C(i)j , j = 1, ..., i+1, are MDS codes with parameters
(n, 4n−1, 2).

Proof. (i) If dHi = 1, then
∑i+1
j=1 log4

∣∣∣C(i)j ∣∣∣ = (i + 1)n. Since C(i) is a MDS code

over Di, where i = 1, 2, ..., t, but |C(i)j | ≤ 4n, then the identity is true iff |C(i)j | = 4n,
where 1 ≤ i ≤ t, 1 ≤ j ≤ i + 1. Therefore C(i) is a (n, 4(i+1)n, 1) MDS code iff all
of C(i)j are (n, 4n, 1) MDS codes, where 1 ≤ i ≤ t, 1 ≤ j ≤ i+ 1.

(ii) If dHi
= 2, then

∑i+1
j=1 log4

∣∣∣C(i)j ∣∣∣ = (i+ 1)(n− 1). Since dHi
= min

{
dHi,j

}
,

then dHi,j ≥ 2, for 1 ≤ i ≤ t, j = 1, ..., i+ 1. By using Singleton bound of code over

Z4, we get |C(i)j | ≤ 4n−dHi,j+1. For all i, since dHi,j
≥ 2, we have 4n−dHi,j+1 ≤ 4n−1.

Then we have all of C(i)j are (n, 4n−1, 2),where 1 ≤ i ≤ t, 1 ≤ j ≤ i+ 1. �
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Theorem 45. If C(i) is a MDS code over Di, where i = 1, 2, ..., t, then there is at
least one C(i)j , 1 ≤ i ≤ t, j = 1, ..., i+ 1, be MDS code.

Proof. It is proved that as in the proof the Theorem 4.3 in [7]. �

Theorem 46. If C(i) is a MDS code over Di, where i = 1, 2, ..., t and there exist
i numbers MDS codes of C(i)j , 1 ≤ i ≤ t, 1 ≤ j ≤ i+ 1, then the other C(i)j must be

MDS code and all C(i)j with same parameters.

Proof. It is proved that as in the proof the Theorem 4.4 in [7]. �

Corollary 47. C(i) is a MDS code over Di iff all of C
(i)
j for 1 ≤ i ≤ t, j = 1, ..., i+1

are MDS codes over Z4 with same parameters.

10. Conclusion

In this paper, we generalize some results which are given in the papers [6] and
[7], to the linear codes over Di, where i = 1, 2, ..., t.
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