Available online: September 29, 2018

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 809-823 (2019) DOI: 10.31801/cfsuasmas.478655 ISSN 1303-5991 E-ISSN 2618-6470 http://communications.science.ankara.edu.tr/index.php?series=A1

ON THE LINEAR CODES OVER THE RING $Z_4 + v_1 Z_4 + ... + v_t Z_4$

ABDULLAH DERTLI AND YASEMIN CENGELLENMIS

ABSTRACT. Some results on linear codes over the ring $Z_4 + uZ_4 + vZ_4, u^2 = u, v^2 = v, uv = vu = 0$ in [6,7] are generalized to the ring $D_t = Z_4 + v_1Z_4 + \dots + v_tZ_4, v_i^2 = v_i, v_iv_j = v_jv_i = 0$ for $i \neq j, 1 \leq i, j \leq t$. A Gray map Φ_t from D_t^n to $Z_4^{(t+1)n}$ is defined. The Gray images of the cyclic, constacyclic and quasi-cyclic codes over D_t are determined. The cyclic DNA codes over D_t are introduced. The binary images of them are determined. The nontrivial automorphism on D_i for $i = 2, 3, \dots, t$ is given. The skew cyclic, skew constacyclic and skew quasi-cyclic codes over D_t are introduced. The Gray images of them are determined. The routival automorphism on D_i for $i = 2, 3, \dots, t$ is given. The skew cyclic, skew constacyclic and skew quasi-cyclic codes over D_t are introduced. The Gray images of them are determined. The skew cyclic DNA codes over D_t are introduced. Moreover, some properties of MDS codes over D_t are discussed.

1. INTRODUCTION

The certain type of codes over many finite rings were studied [2,4,5,8,9,13,15,16,20, 21,22]. Many of good codes were obtained from them.

Some special error correcting codes over some finite fields and finite rings with 4^n elements where $n \in N$ were used for DNA computing applications. The construction of DNA codes were by several authors in [1,6,12,14,18].

Optimal codes attain maximum minimum distances. So their class is very important class of codes. Optimal codes over finite rings were studied by several authors in [3,10,11,17,19].

In [6], the finite ring $D = Z_4 + uZ_4 + vZ_4, u^2 = u, v^2 = v, uv = vu = 0$ was introduced, firstly. Some results on linear codes over D were obtained. Moreover, in [7], the MacWilliams identities and optimal codes over D were studied. In this paper, we generalize some results to the linear codes over D_t .

This paper is organized as follows. In section 2, a Gray map from D_t to $Z_4^{(t+1)}$ is defined. The Gray images of cyclic, constacyclic, and quasi-cyclic codes over D_t are determined. A linear code C over D_t is represented by means of (t+1) codes over Z_4 . In section 3, the constacyclic codes over D_t are investigated. In section

©2018 Ankara University Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

Received by the editors: August 27, 2016; Accepted: December 30, 2017.

²⁰¹⁰ Mathematics Subject Classification. 94B05, 94B15.

Key words and phrases. Cyclic codes, skew codes, DNA codes, MDS codes.

4, the cyclic codes of odd length over D_t satisfy reverse and reverse complement properties are studied. In section 5, the binary images of cyclic DNA codes over D_t are determined. In section 6, the nontrivial automorphism on D_i for i = 2, 3, ..., tis determined. By introducing the skew cyclic, skew constacyclic and skew quasicyclic codes over D_t , the Gray images of them are found in section 7. In section 8, we investigated skew cyclic DNA codes over D_t . In section 9, some properties of optimal codes over D_t are determined.

2. Preliminaries

Let $D_t = Z_4 + v_1 Z_4 + \ldots + v_t Z_4$, where $v_i^2 = v_i, v_i v_j = v_j v_i = 0$ for $i \neq j, 1 \leq i, j \leq t$. The ring D_t can be also viewed as the quotient ring

$$Z_4[v_1, v_2, ..., v_t] / \langle v_i^2 - v_i, v_i v_j = v_j v_i \rangle$$

Let d be any element of D_t , which can be expressed uniquely as $d = d_0 + v_1 d_1 + \dots + v_t d_t$.

A code of length n over D_t is a subset of D_t^n . C is a linear iff C is an D_t -submodule of D_t^n . The elements of the code (linear code) are called codewords.

Let $\sigma, \sigma_{\lambda}, \zeta$ be maps from D_t^n to D_t^n given by

$$\sigma(\alpha_0, ..., \alpha_{n-1}) = (\alpha_{n-1}, \alpha_0, ..., \alpha_{n-2})$$

$$\sigma_{\lambda}(\alpha_0, ..., \alpha_{n-1}) = (\lambda \alpha_{n-1}, \alpha_0, ..., \alpha_{n-2})$$

$$\zeta(\alpha_0, ..., \alpha_{n-1}) = (-\alpha_{n-1}, \alpha_0 ..., \alpha_{n-2})$$

where λ is a unit in D_t . Let C be a linear code of length n over D_t . Then C is said to be cyclic if $\sigma(C) = C$, λ -constacyclic if $\sigma_{\lambda}(C) = C$, negacyclic, if $\zeta(C) = C$.

Let $a \in Z_4^{(t+1)n}$ with $a = (a_0, a_1, ..., a_{(t+1)n-1}) = (a^{(0)}|a^{(1)}|...|a^{(t)})$, $a^{(i)} \in Z_4^n$ for i = 0, 1, ..., t. Let φ be a map from $Z_4^{(t+1)n}$ to $Z_4^{(t+1)n}$ given by $\varphi(a) = (\sigma(a^{(0)}) |\sigma(a^{(1)})| ... |\sigma(a^{(t)}))$, where σ is a cyclic shift from Z_4^n to Z_4^n given by $\sigma(a^{(i)}) = ((a^{(i,n-1)}), (a^{(i,0)}), ..., (a^{(i,n-2)}))$ for every $a^{(i)} = (a^{(i,0)}, ..., a^{(i,n-1)})$, where $a^{(i,j)} \in Z_4$, j = 0, 1, ..., n-1. A code of length (t+1)n over Z_4 is said to be a quasicyclic code of index t+1 if $\varphi(C) = C$.

We define the Gray map as follows

$$\begin{aligned} \Phi_t & : \quad D_t \longrightarrow Z_4^{t+1} \\ d_0 + v_1 d_1 + \ldots + v_t d_t & \longmapsto \quad (d_0, d_0 + d_1, \ldots, d_0 + d_t) \end{aligned}$$

This map is extended componentwise to

$$\begin{array}{rcl} \Phi_t & : & D_t^n \longrightarrow Z_4^{(t+1)n} \\ (\alpha_1,...,\alpha_n) & = & (d_0^1,d_0^2,...,d_0^n,...,d_0^1+d_t^1,...,d_0^n+d_t^n) \end{array}$$

where $\alpha_i = d_0^i + v_1 d_1^i + ... + v_t d_t^i$ with i = 1, 2, ..., n.

 Φ_t is a Z_4 -module isomorphism.

The Lee weights of $0, 1, 2, 3 \in \mathbb{Z}_4$ are defined by $w_L(0) = 0, w_L(1) = w_L(3) = 1, w_L(2) = 2.$

Let $d = d_0 + v_1 d_1 + ... + v_t d_t$ be an element of D_t , then Lee weight of d is defined as $w_L(d) = w_L(d_0, d_0 + d_1, ..., d_0 + d_t)$, where $d_0, d_1, ..., d_t \in Z_4$. The Lee weight of a vector $c = (c_0, ..., c_{n-1}) \in D_t^n$ to be the sum of Lee weights its components. For any elements $c_1, c_2 \in D_t^n$, the Lee distance between c_1 and c_2 is given by $d_L(c_1, c_2) = w_L(c_1 - c_2)$. The minimum Lee distance of C is defined as $d_L(C) = \min d_L(c, c)$, where for any $c \in C, c \neq c$.

For any $x = (x_0, \dots, x_{n-1}), y = (y_0, \dots, y_{n-1})$ the inner product is defined as

$$xy = \sum_{i=0}^{n-1} x_i y_i$$

If xy = 0, then x and y are said to be orthogonal. Let C be a linear code of length n over D_t , the dual of C

$$C^{\perp} = \{x : \forall y \in C, xy = 0\}$$

which is also a linear code over D_t of length. A code C is self orthogonal, if $C \subset C^{\perp}$ and self dual, if $C = C^{\perp}$.

Theorem 1. The Gray map Φ_t is distance preserving map from $(D_t^n, Lee \ distance)$ to $(Z_t^{(t+1)n}, Lee \ distance)$.

Proof. Let $z_1 = (z_{1,0}, ..., z_{1,n-1}), z_2 = (z_{2,0}, ..., z_{2,n-1})$ be the elements of D_t^n , where $z_{1,i} = d_{1,i}^0 + v_1 d_{1,i}^1 + ... + v_t d_{1,i}^t$ and $z_{2,i} = d_{2,i}^0 + v_1 d_{2,i}^1 + ... + v_t d_{2,i}^t, i = 0, 1, ..., n - 1$. Then $z_1 - z_2 = (z_{1,0} - z_{2,0}, ..., z_{1,n-1} - z_{2,n-1})$ and $\Phi_t(z_1 - z_2) = \Phi_t(z_1) - \Phi_t(z_2)$. So, $d_L(z_1, z_2) = w_L(z_1 - z_2) = w_L(\Phi_t(z_1 - z_2)) = w_L(\Phi_t(z_1) - \Phi_t(z_2)) = d_L(\Phi_t(z_1), \Phi_t(z_2))$.

Theorem 2. If C is self orthogonal, so is $\Phi_t(C)$.

 $\begin{array}{l} Proof. \ \text{Let} \ x_1 = d_0^1 + v_1 d_1^1 + \ldots + v_t d_t^1, x_2 = d_0^2 + v_1 d_1^2 + \ldots + v_t d_t^2 \in D_t. \ \text{From} \ x_1 x_2 = d_0^1 d_0^2 + v_1 (d_0^1 d_1^2 + d_1^1 d_0^2 + d_1^1 d_1^2) + \ldots + v_t (d_0^1 d_t^2 + d_t^1 d_0^2 + d_t^1 d_t^2). \ \text{If} \ C \ \text{is self orthogonal}, \\ \text{so we have} \ d_0^1 d_0^2 = 0, d_0^1 d_1^2 + d_1^1 d_0^2 + d_1^1 d_1^2 = 0, \ldots, d_0^1 d_t^2 + d_t^1 d_0^2 + d_t^1 d_t^2 = 0. \ \text{From} \\ \text{this, we have} \ \Phi_t (x_1) \ \Phi_t (x_2) = (d_0^1, d_0^1 + d_1^1, \ldots, d_0^1 + d_t^1) (d_0^2, d_0^2 + d_1^2, \ldots, d_0^2 + d_t^2) = 0. \\ \text{Therefore} \ \Phi_t (C) \ \text{is self orthogonal}. \end{array}$

Proposition 3. Let Φ_t be Gray map from D_t^n to $Z_4^{(t+1)n}$, let σ be the cyclic shift and let φ be a map as above. Then $\Phi_t \sigma = \varphi \Phi_t$.

 $\begin{array}{l} \textit{Proof. Let } a = (a_0, ..., a_{n-1}) \in D_t^n. \, \textit{Let } a_i = d_i^0 + v_1 d_i^1 + ... + v_t d_i^t \, \textit{where } d_i^0, d_i^1, ..., d_i^t \in Z_4, \, \textit{for } i = 0, 1, ..., n-1. \, \textit{From definition } \Phi_t, \, \textit{we have } \Phi_t(a) = (d_0^0, d_1^0, ..., d_{n-1}^0, d_0^0 + d_{n-1}^1, ..., d_0^0 + d_{n-1}^t, ..., d_{n-1}^0 + d_{n-1}^t). \, \textit{By applying } \varphi, \textit{we have } \varphi(\Phi_t(a)) = (d_{n-1}^0, d_0^0, ..., d_{n-2}^0, d_0^0 + d_{n-1}^t, ..., d_0^0 + d_{n-2}^t, ..., d_{n-1}^0 + d_{n-1}^t, ..., d_{n-2}^0 + d_{n-2}^t). \, \textit{On the other hand, } \sigma(a) = (a_{n-1}, a_0, ..., a_{n-2}). \, \textit{If we apply } \Phi_t, \textit{we have } \Phi_t(\sigma(a)) = (d_{n-1}^0, d_0^0, ..., d_{n-2}^0, d_0^0 + d_{n-1}^t, ..., d_0^0 + d_{n-2}^t, ..., d_{n-1}^0 + d_{n-1}^t, ..., d_{n-2}^0 + d_{n-2}^t). \, \Box \end{array}$

Theorem 4. Let σ and φ be as in section 2. A code C of length n over D_t is a cyclic code iff $\Phi_t(C)$ is a quasi-cyclic code of index t + 1 over Z_4 with length (t+1)n.

Proof. Let C be a cyclic code. Then $\sigma(C) = C$. If we apply Φ_t , we have $\Phi_t(\sigma(C)) = \Phi_t(C)$. By using Proposition 3, $\Phi_t(\sigma(C)) = \varphi(\Phi_t(C)) = \Phi_t(C)$. Hence, $\Phi_t(C)$ is a quasi- cyclic code of index t + 1.

For the other part, if $\Phi_t(C)$ is a quasi-cyclic code of index t + 1, then we have $\varphi(\Phi_t(C)) = \Phi_t(C)$. By using Proposition 3, we have $\varphi(\Phi_t(C)) = \Phi_t(\sigma(C)) = \Phi_t(C)$. Since Φ_t is injective, we have $\sigma(C) = C$.

Let $A_1, A_2, ..., A_{t+1}$ be linear codes.

$$A_1 \otimes A_2 \otimes \ldots \otimes A_{t+1} = \{(a_1, a_2, \dots, a_{t+1}) : a_i \in A_i, i = 1, 2, \dots, t+1\}$$

and

$$A_1 \oplus A_2 \oplus \dots \oplus A_{t+1} = \{a_1 + a_2 + \dots + a_{t+1} : a_i \in A_i, i = 1, 2, \dots, t+1\}$$

Definition 5. Let $C^{(t)}$ be a linear code of length n over D_t . Define

$$C_{1}^{(t)} = \{d_{0} : \exists \ d_{1}, ..., d_{t} \in Z_{4}^{n}, d_{0} + v_{1}d_{1} + ... + v_{t}d_{t} \in C^{(t)}\}$$

$$C_{2}^{(t)} = \{d_{0} + d_{1} : \exists \ d_{2}, ..., d_{t} \in Z_{4}^{n}, d_{0} + v_{1}d_{1} + ... + v_{t}d_{t} \in C^{(t)}\}$$

$$C_{3}^{(t)} = \{d_{0} + d_{2} : \exists \ d_{1}, d_{3}, ..., d_{t} \in Z_{4}^{n}, d_{0} + v_{1}d_{1} + ... + v_{t}d_{t} \in C^{(t)}\}$$

$$\vdots$$

$$C_{t+1}^{(t)} = \{d_{0} + d_{t} : \exists \ d_{1}, d_{2}, ..., d_{t-1} \in Z_{4}^{n}, d_{0} + v_{1}d_{1} + ... + v_{t}d_{t} \in C^{(t)}\}$$

where $C_1^{(t)}, C_2^{(t)}, \dots, C_{t+1}^{(t)}$ are linear codes over Z_4 of length n.

Theorem 6. Let $C^{(t)}$ be a linear code of length *n* over D_t . Then $\Phi_t(C^{(t)}) = C_1^{(t)} \otimes C_2^{(t)} \otimes \cdots \otimes C_{t+1}^{(t)}$ and $|C^{(t)}| = |C_1^{(t)}| |C_2^{(t)}| \cdots |C_{t+1}^{(t)}|$.

Corollary 7. If $\Phi_t(C^{(t)}) = C_1^{(t)} \otimes C_2^{(t)} \otimes \cdots \otimes C_{t+1}^{(t)}$, then $C^{(t)} = (1 - v_1 - \cdots - v_t) C_1^{(t)} \oplus v_1 C_2^{(t)} \oplus \cdots \oplus v_t C_{t+1}^{(t)}$.

Theorem 8. Let $C^{(t)} = (1 - v_1 - \dots - v_t) C_1^{(t)} \oplus v_1 C_2^{(t)} \oplus \dots \oplus v_t C_{t+1}^{(t)}$ be a linear code of any length n over D_t . Then $C^{(t)}$ is a cyclic code over D_t if and only if $C_1^{(t)}, C_2^{(t)}, \dots, C_{t+1}^{(t)}$ are all cyclic codes over Z_4 .

Proof. It is proved that as in proof of Proposition 15, in [8].

Lemma 9. (17) Let n be an odd positive integer and $x^n - 1 = \prod_{i=1}^r f_i(x)$ be the unique factorization of $x^n - 1$, where $f_1(x), ..., f_r(x)$ are basic irreducible polynomials over Z_4

Theorem 10. (17) Let C be a cyclic code of odd length n over Z_4 , then

$$C = (f_0(x), 2f_1(x)) = (f_0(x) + 2f_1(x))$$

where $f_0(x)$ and $f_1(x)$ are monic factors of $x^n - 1$ and $f_1(x)|f_0(x)$.

If C is a linear code of any length n over Z_4 , then there exist monic polynomials $f(x), g(x), p(x) \in Z_4$ such that

$$C = (f(x) + 2p(x), 2g(x))$$

where $g(x)|f(x)|x^n - 1$, $g(x)|p(x)[x^n - 1/f(x)]$ and $|C| = 2^{2n - \deg f(x) - \deg g(x)}$.

Theorem 11. Let $C^{(t)} = (1 - v_1 - \dots - v_t) C_1^{(t)} \oplus v_1 C_2^{(t)} \oplus \dots \oplus v_t C_{t+1}^{(t)}$ be a cyclic code of any length *n* over D_t . If there exist $f_i^1(x), f_i^2(x), f_i^3(x) \in Z_4[x]$ for $i = 1, \dots, t+1$ such that $C_i^{(t)} = (f_i^1(x) + 2f_i^2(x), 2f_i^3(x))$, then

$$C^{(t)} = \left((1 - v_1 - \dots - v_t) f_1^1(x) + \dots + v_t f_{t+1}^1(x) + 2[(1 - v_1 - \dots - v_t) f_1^2(x) + \dots + v_t f_{t+1}^2(x)], 2[(1 - v_1 - \dots - v_t) f_1^3(x) + \dots + v_t f_{t+1}^3(x)] \right).$$

If n is odd, then $C^{(t)} = ((1 - v_1 - \dots - v_t) (f_1^1(x) + 2f_1^2(x)) + \dots + v_t (f_{t+1}^1(x) + 2f_{t+1}^2(x))).$

Proof. It is proved that as in proof of Theorem 10, in [17].

Definition 12. A subset C of D_t^n is called a quasi-cyclic code of length n = sl if C is satisfies the following conditions

i) C is a submodule of D_t^n

 $\begin{array}{l} \mbox{ii) if } e = (e_{0,0},...,e_{0,l-1},e_{1,0},...,e_{1,l-1},...,e_{s-1,0},...,e_{s-1,l-1}) \in C, \mbox{ then } T_{s,l} \left(e \right) = (e_{s-1,0,...,}e_{s-1,l-1},e_{0,0},...,e_{0,l-1},...,e_{s-2,0},...,e_{s-2,l-1}) \in C. \end{array}$

Definition 13. Let $a \in Z_4^{(t+1)n}$ with $a = (a_0, a_1, ..., a_{(t+1)n-1}) = (a^{(0)} |a^{(1)}| ... |a^{(t)})$, $a^{(i)} \in Z_4^n$, for i = 0, 1, ..., t. Let Γ be a map from $Z_4^{(t+1)n}$ to $Z_4^{(t+1)n}$ given by

$$\Gamma(a) = \left(\mu\left(a^{(0)}\right) \left| \mu\left(a^{(1)}\right) \right| \dots \left| \mu\left(a^{(t)}\right) \right)$$

where μ is the map from Z_4^n to Z_4^n given by

$$\mu\left(a^{(i)}\right) = \left((a^{(i,s-1)}), (a^{(i,0)}), ..., (a^{(i,s-2)})\right)$$

for every $a^{(i)} = (a^{(i,0)}, ..., a^{(i,s-1)})$ where $a^{(i,j)} \in Z_4^l$, j = 0, 1, ..., s-1 and n = sl. A code of length (t+1)n over Z_4 is said to be l-quasi cyclic code of index t+1 if $\Gamma(C) = C$.

Proposition 14. Let $T_{s,l}$ be the quasi-cyclic shift on D_t . Then $\Phi_t T_{s,l} = \Gamma \Phi_t$, where Γ is as above.

Theorem 15. The Gray image of a quasi-cyclic code over D_t of length n with index l is a l-quasi-cyclic code of index t + 1 over Z_4 with length (t + 1)n.

3. Constacyclic codes over D_t

We investigate λ_t -constacyclic codes over D_t , where λ_t is unit.

For any element $\lambda_i = d_0 + v_1 d_1 + ... + v_i d_i \in D_i^*$ for $i = 1, 2, ..., t, \lambda_i$ is a unit if and only if $d_0 \neq 0, d_0 + d_1 \neq 0, ..., d_0 + d_i \neq 0$ for i = 1, 2, ..., t.

In [13], it was shown that the units are $1, 3, 1 + 2v_1, 3 + 2v_1$, for $D_1 = Z_4 + v_1Z_4, v_1^2 = v_1$. In [6], it was shown that the units are $1, 3, 1 + 2v_1, 1 + 2v_2, 3 + 2v_1, 3 + 2v_2, 1 + 2v_1 + 2v_2, 3 + 2v_1 + 2v_2$ for $D_2 = Z_4 + v_1Z_4 + v_2Z_4, v_1^2 = v_1, v_2^2 = v_2, v_1v_2 = v_2v_1 = 0$.

Moreover, one can verify that if λ_i is a unit of D_i for i = 1, 2, ..., t, then $\lambda_i^2 = 1$, for i = 1, 2, ..., t.

Theorem 16. Let $C^{(t)} = (1 - v_1 - \dots - v_t) C_1^{(t)} \oplus v_1 C_2^{(t)} \oplus \dots \oplus v_t C_{t+1}^{(t)}$ be a linear code of length n over D_t . Then $C^{(t)}$ is λ_t -constacyclic code over D_t if and only if $C_1^{(t)}$ is a d_0 -constacyclic, $C_2^{(t)}$ is d_0+d_1 -constacyclic,..., $C_{t+1}^{(t)}$ is a d_0+d_t -constacyclic codes of length n over Z_4 .

4. The reverse and reverse complement codes over D_t

In this section, we study cyclic codes of odd length over D_t satisfy reverse and reverse complement properties.

The elements 0, 1, 2, 3 of Z_4 are in one to one correspondence with the nucleotide DNA bases A, T, C, G such that $0 \longrightarrow A, 1 \longrightarrow T, 2 \longrightarrow C$ and $3 \longrightarrow G$. The Watson Crick Complement is given by $\overline{A} = T, \overline{T} = A, \overline{G} = C, \overline{C} = G$. Since the ring D_t is cardinality 4^{t+1} , then we give a one to one correspondence

Since the ring D_t is cardinality 4^{t+1} , then we give a one to one correspondence between the elements of D_t and the 4^{t+1} codons over the alphabet $\{A, T, G, C\}^{t+1}$ by using the Gray map. For example

Elements	Gray image	Codons
0	(0, 0,, 0)	\underline{AAA}
	t+1 times	t+1 times
1	(1, 1,, 1)	\underline{TTT}
	t+1 times	t+1 times
2	(2, 2,, 2)	\underline{CCC}
	t+1 times	t+1 times
3	$\underbrace{(3,3,,3)}$	\underline{GGG}
	t+1 times	t+1 times
v_1	(0, 1, 0,, 0)	\underline{ATAA}
	t+1 times	t+1 times
$1 + v_1$	(1, 2, 1,, 1)	\underline{TCTT}
	t+1 times	t+1 times
:	:	:
•	•	•

The codons satisfy the Watson Crick Complement.

Definition 17. For $x = (x_0, x_1, ..., x_{n-1}) \in D_t^n$, the vector $(x_{n-1}, x_{n-2}, ..., x_1, x_0)$ is called the reverse of x and is denoted by x^r . A linear code $C^{(t)}$ of length n over D_t , is said to be reversible if $x^r \in C^{(t)}$ for every $x \in C^{(t)}$.

For $x = (x_0, x_1, ..., x_{n-1}) \in D_t^n$, the vector $(\overline{x}_0, \overline{x}_1, ..., \overline{x}_{n-1})$ is called the complement of x and is denoted by x^c . A linear code $C^{(t)}$ of length n over D_t , is said to be complement if $x^c \in C^{(t)}$ for every $x \in C^{(t)}$.

For $x = (x_0, x_1, ..., x_{n-1}) \in D_t^n$, the vector $(\overline{x}_{n-1}, \overline{x}_{n-2}, ..., \overline{x}_1, \overline{x}_0)$ is called the reversible complement of x and is denoted by x^{rc} . A linear code $C^{(t)}$ of length n over D_t , is said to be reversible complement if $x^{rc} \in C^{(t)}$ for every $x \in C^{(t)}$.

Definition 18. Let $f(x) = a_0 + a_1x + ... + a_rx^r$ with $a_r \neq 0$ be polynomial. The reciprocal of f(x) is defined as $f^*(x) = x^r f(\frac{1}{x})$. It is easy to see that deg $f^*(x) \leq \deg f(x)$ and if $a_0 \neq 0$, then deg $f^*(x) = \deg f(x)$. f(x) is called a self reciprocal polynomial if there is a constant m such that $f^*(x) = mf(x)$.

Lemma 19. Let f(x), g(x) be polynomials in $D_i[x], 1 \le i \le t$. Suppose deg $f(x) - \deg g(x) = m$ then,

i)
$$(f(x)g(x))^* = f^*(x)g^*(x)$$

ii) $(f(x) + g(x))^* = f^*(x) + x^m g^*(x)$

Theorem 20. Let $C^{(t)} = (1 - v_1 - \dots - v_t) C_1^{(t)} \oplus v_1 C_2^{(t)} \oplus \dots \oplus v_t C_{t+1}^{(t)}$ be a cyclic code of odd length over D_t . Then $C^{(t)}$ is reversible code over D_t if and only if $C_1^{(t)}, C_2^{(t)}, \dots, C_{t+1}^{(t)}$ are reversible codes over Z_4 .

Proof. Let $C_i^{(t)}$ be reversible codes, where i = 1, 2, ..., t + 1. For any $b \in C^{(t)}, b = (1 - v_1 - \cdots - v_t) b_1 + v_1 b_2 + ... + v_t b_{t+1}$, where $b_i \in C_i^{(t)}$, for $1 \le i \le t + 1$. Since $C_i^{(t)}$ are reversible codes for all $i, b_i^r \in C_i^{(t)}$, where i = 1, 2, ..., t + 1. So, $b^r = (1 - v_1 - \cdots - v_t) b_1^r + v_2 b_2^r + ... + v_t b_{t+1}^r \in C^{(t)}$. Hence $C^{(t)}$ is reversible code.

On the other hand, let $C^{(t)}$ be a reversible code over D_t . So for any

 $(1 - v_1 - \dots - v_t) b_1 + v_1 b_2 + \dots + v_t b_{t+1},$

where $b_i \in C_i^{(t)}$, for $1 \le i \le t+1$, we get $b^r = (1 - v_1 - \dots - v_t) b_1^r + v_2 b_2^r + \dots + v_t b_{t+1}^r \in C^{(t)}$. Let $b^r = (1 - v_1 - \dots - v_t) b_1^r + v_2 b_2^r + \dots + v_t b_{t+1}^r = (1 - v_1 - \dots - v_t) s_1 + v_1 s_2 + \dots + v_t s_{t+1}$, where $s_i \in C_i^{(t)}$, for $1 \le i \le t+1$. Therefore $C_i^{(t)}$ are reversible codes over Z_4 for $i = 1, 2, \dots, t+1$.

Lemma 21. For any $c \in D_i$, where i = 1, 2, ..., t, we have $c + \overline{c} = 1$.

Lemma 22. For any $a \in D_i$, where i = 1, 2, ..., t, we have $\overline{a} + 3\overline{0} = 3a$.

Theorem 23. Let $C^{(t)} = (1 - v_1 - \dots - v_t) C_1^{(t)} \oplus v_1 C_2^{(t)} \oplus \dots \oplus v_t C_{t+1}^{(t)}$ be a cyclic code of odd length n over D_t . Then $C^{(t)}$ is reversible complement over D_t iff $C^{(t)}$ is reversible over D_t and $(\overline{0}, \overline{0}, \dots, \overline{0}) \in C^{(t)}$.

Proof. Since $C^{(t)}$ is reversible complement, for any $c = (c_0, c_1, ..., c_{n-1}) \in C^{(t)}, c^{rc} = (\overline{c}_{n-1}, \overline{c}_{n-2}, ..., \overline{c}_0) \in C^{(t)}$. Since $C^{(t)}$ is a linear code, so $(0, 0, ..., 0) \in C^{(t)}$. Since $C^{(t)}$ is reversible complement, so $(\overline{0}, \overline{0}, ..., \overline{0}) \in C^{(t)}$. By using Lemma 22, we get

$$3c^{r} = 3(c_{n-1}, c_{n-2}, ..., c_{0}) = (\overline{c}_{n-1}, \overline{c}_{n-2}, ..., \overline{c}_{0}) + 3(\overline{0}, \overline{0}, ..., \overline{0}) \in C^{(t)}$$

Hence for any $c \in C^{(t)}$, we have $c^r \in C^{(t)}$.

On the other hand, let $C^{(t)}$ be reversible code over D_t . So, for any $c = (c_0, c_1, ..., c_{n-1}) \in C^{(t)}$, then $c^r = (c_{n-1}, c_{n-2}, ..., c_0) \in C^{(t)}$. For any $c \in C^{(t)}$,

$$c^{rc} = (\overline{c}_{n-1}, \overline{c}_{n-2}, ..., \overline{c}_0) = 3(c_{n-1}, c_{n-2}, ..., c_0) + (\overline{0}, \overline{0}, ..., \overline{0}) \in C^{(t)}$$

So, $C^{(t)}$ is reversible complement code over D_t .

Theorem 24. Let S_1 and S_2 be two reversible complement cyclic codes of length n over D_i , where i = 1, 2, ..., t. Then $S_1 + S_2$ and $S_1 \cap S_2$ are reversible complement cyclic codes.

Proof. It is shown that as in proof of Theorem 23, in [6].

5. Binary images of cyclic DNA codes over D_t

In this section, we will determine binary images of cyclic DNA codes over D_i , where i = 1, 2, ..., t.

The 2-adic expansion of $c \in Z_4$ is $c = \alpha(c) + 2\beta(c)$ such that $\alpha(c) + \beta(c) + \gamma(c) = 0$ for all $c \in Z_4$

$$\begin{array}{cccc} c & \alpha(c) & \beta(c) & \gamma(c) \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 1 \\ 3 & 1 & 1 & 0 \end{array}$$

The Gray map is given by

$$\Psi : Z_4 \longrightarrow Z_2^2
c \longmapsto \Psi(c) = (\beta(c), \gamma(c))$$

for all $c \in \mathbb{Z}_4$ in [18]. We define

$$\begin{split} \check{O}_t &: D_t \longrightarrow Z_2^{2(t+1)} \\ d_0 + v_1 d_1 + \ldots + v_t d_t &\longmapsto \check{O}_t (d_0 + v_1 d_1 + \ldots + v_t d_t) = \Psi \left(\Phi_t \left(d_0 + v_1 d_1 + \ldots + v_t d_t \right) \right) \\ &= \Psi (d_0, d_0 + d_1, \ldots, d_0 + d_t) \\ &= (\beta(d_0), \gamma(d_0), \beta(d_0 + d_1), \gamma(d_0 + d_1), \ldots, \beta(d_0 + d_t), \gamma(d_0 + d_t)) \end{split}$$

where Φ_t is a Gray map from D_t to Z_4^{t+1} .

Let $d_0 + v_1 d_1 + \ldots + v_t d_t$ be any element of the ring D_t . The Lee weight w_L of the ring D_t is defined as follows

$$w_L(d_0 + v_1d_1 + \dots + v_td_t) = w_L(d_0, d_0 + d_1, \dots, d_0 + d_t)$$

where $w_L(d_0, d_0 + d_1, ..., d_0 + d_t)$ described the usual Lee weight on Z_4^{t+1} . For any $c_1, c_2 \in D_t$ the Lee distance d_L is given by $d_L(c_1, c_2) = w_L(c_1 - c_2)$.

The Hamming distance $d_H(c_1, c_2)$ between two codewords c_1 and c_2 is the Hamming weight of the codewords $c_1 - c_2$.

<u>AAA</u>	\longrightarrow	(0, 0,, 0)
t+1 times		2(t+1) times
\underline{TTT}	\longrightarrow	(0, 1, 0, 1,, 0, 1)
t+1 times		2(t+1) times
\underline{GGG}	\longrightarrow	(1, 0, 1, 0,, 1, 0)
t+1 times		2(t+1) times
\underbrace{CCC}	\longrightarrow	(1, 1,, 1)
t+1 times		2(t+1) times
÷	÷	÷

Lemma 25. The Gray map \check{O}_t is a distance preserving map from $(D_t^n, Lee \ distance)$ to $(Z_2^{2(t+1)n}, Hamming \ distance)$. It is also Z_2 -linear.

Proof. For $c_1, c_2 \in D_t^n$, we have $\check{O}_t(c_1 - c_2) = \check{O}_t(c_1) - \check{O}_t(c_2)$. So, $d_L(c_1, c_2) = w_L(c_1 - c_2) = w_H(\check{O}_t(c_1 - c_2)) = w_H(\check{O}_t(c_1) - \check{O}_t(c_2)) = d_H(\check{O}_t(c_1), \check{O}_t(c_2))$. So, the Gray map \check{O}_t is distance preserving map. For Z_2 -linear, it is easily seen that $\check{O}_t(k_1c_1 + k_2c_2) = k_1\check{O}_t(c_1) + k_2\check{O}_t(c_2)$, where $c_1, c_2 \in D_t^n, k_1, k_2 \in Z_2$.

Proposition 26. Let σ be the cyclic shift of D_t^n and η be the 2(t+1)-quasi-cyclic shift of $Z_2^{2(t+1)n}$. Let \check{O}_t be the Gray map from D_t^n to $Z_2^{2(t+1)n}$. Then $\check{O}_t\sigma = \eta\check{O}_t$.

Theorem 27. If C is a cyclic DNA code of length n over D_t then $\check{O}_t(C)$ is a binary quasi-cyclic DNA code of length 2(t+1)n with index 2(t+1).

6. Skew codes over D_t

We are interested in studying skew codes over D_i for i = 2, ..., t, in this section. Firstly, we define a nontrivial automorphism θ_t on the ring D_t for $t \ge 2$, by $\theta_t(v_i) = v_{i+1 \pmod{t}}$, where i = 1, 2, ..., t.

For example, for t = 2, a nontrivial automorphism θ_2 on the ring D_2 as follows

$$\begin{array}{rcl} \theta_2 & : & D_2 \longrightarrow D_2 \\ d_0 + v_1 d_1 + v_2 d_2 & \longmapsto & d_0 + v_1 d_2 + v_2 d_2 \end{array}$$

where $d_0, d_1, d_2 \in Z_4$.

The ring $D_t[x, \theta_t] = \{a_0 + a_1x + \ldots + a_{n-1}x^{n-1} : a_i \in D_t, i = 0, \ldots, n-1, n \in N\}$ is called skew polynomial ring. The ring is a non-commutative ring. The addition in the ring $D_t[x, \theta_t]$ is the usual polynomial additional and multiplication is defined using the rule, $(ax^i)(bx^j) = a\theta_t^i(b)x^{i+j}$. The order of the automorphism θ_t is t.

Definition 28. A subset $C^{(t)}$ of D_t^n is called a skew cyclic code of length n if $C^{(t)}$ satisfies the following conditions,

i) $C^{(t)}$ is a submodule of D_t^n ,

ii) If $c = (c_0, c_1, ..., c_{n-1}) \in C^{(t)}$, then $\sigma_{\theta_t}(c) = (\theta_t(c_{n-1}), \theta_t(c_0), ..., \theta_t(c_{n-2})) \in C^{(t)}$

Let $f_t(x) + \langle x^n - 1 \rangle$ be an element in the set $S_{t,n} = D_t[x, \theta_t] / \langle x^n - 1 \rangle$ and let $r_t(x) \in D_t[x, \theta_t]$. Define multiplication from left as follows,

$$r_t(x)(f_t(x) + \langle x^n - 1 \rangle) = r_t(x)f_t(x) + \langle x^n - 1 \rangle$$

for any $r_t(x) \in D_t[x, \theta_t]$.

Theorem 29. $S_{t,n}$ is a left $D_t[x, \theta_t]$ -module where multiplication defined as in above.

Theorem 30. A code $C^{(t)}$ in $S_{t,n}$ of length n is a skew cyclic code if and only if $C^{(t)}$ is a left $D_t[x, \theta_t]$ -submodule of the left $D_t[x, \theta_t]$ -module $S_{t,n}$.

Theorem 31. Let $C^{(t)}$ be a skew cyclic code over D_t of length n and let $f_t(x)$ be a polynomial in $C^{(t)}$ of minimal degree. If $f_t(x)$ is monic polynomial, then $C^{(t)} = \langle f_t(x) \rangle$, where $f_t(x)$ is a right divisor of $x^n - 1$.

Definition 32. A subset $C^{(t)}$ of D_t^n is called a skew quasi-cyclic code of length n if $C^{(t)}$ satisfies the following conditions,

i) $C^{(t)}$ is a submodule of D_t^n ,

ii) If $e = (e_{0,0}, ..., e_{0,l-1}, e_{1,0}, ..., e_{1,l-1}, ..., e_{s-1,0}, ..., e_{s-1,l-1}) \in C^{(t)}$, then $\tau_{\theta_t,s,l}(e) = (\theta_t(e_{s-1,0}), ..., \theta_t(e_{s-1,l-1}), \theta_t(e_{0,0}), ..., \theta_t(e_{0,l-1}), ..., \theta_t(e_{s-2,0}), ..., \theta_t(e_{s-2,l-1})) \in C^{(t)}$.

We note that $x^s - 1$ is a two sided ideal in $D_t[x, \theta_t]$ if t|s where t is the order of θ_t . So $D_t[x, \theta_t]/(x^s - 1)$ is well defined.

The ring $R_s^l = (D_t[x, \theta_t]/(x^s-1))^l$ is a left $R_s = D_t[x, \theta_t]/(x^s-1)$ module by the following multiplication on the left $f(x)(g_1(x), ..., g_l(x)) = (f(x)g_1(x), ..., f(x)g_l(x))$. If the map Λ_t is defined by

$$\Lambda_t: D_t^n \longrightarrow R_s^l$$

 $(e_{0,0}, ..., e_{0,l-1}, e_{1,0}, ..., e_{1,l-1}, ..., e_{s-1,0}, ..., e_{s-1,l-1}) \mapsto (c_0(x), ..., c_{l-1}(x))$ such that $c_j(x) = \sum_{i=0}^{s-1} e_{i,j} x^i \in R_s$ where j = 0, 1, ..., l-1 then the map Λ_t gives a one to one correspondence D_t^n and the ring R_s^l .

Theorem 33. A subset $C^{(t)}$ of D_t^n is a skew quasi-cyclic code of length n = sl and index l if and only if $\Lambda_t(C^{(t)})$ is a left R_s -submodule of R_s^l .

Definition 34. Let θ_t be an automorphism of D_t , λ_t be a unit in D_t , $C^{(t)}$ be a linear code D_t . A linear code $C^{(t)}$ is said to be a skew constacyclic code if $C^{(t)}$ is closed under the $\theta_t - \lambda_t$ -constacyclic shift $\tau_{\theta_t,\lambda_t} : D_t^n \longrightarrow D_t^n$ defined by

$$\tau_{\theta_t,\lambda_t}(c_0,...,c_{n-1}) = (\theta_t(\lambda_t c_{n-1}),\theta_t(c_0),...,\theta_t(c_{n-2}))$$

7. The Gray images of skew cyclic, quasi-cyclic and constacyclic codes over ${\cal D}_t$

Proposition 35. Let σ_{θ_t} be the skew cyclic shift on D_t^n , Let Φ_t be the Gray map from D_t^n to $Z_4^{(t+1)n}$ and φ be as in the preliminaries. Then

$$\Phi_t \sigma_{\theta_t} = \upsilon \varphi \Phi_t$$

where v is map such that $v(x_1, x_2, ..., x_{t+1}) = (x_1, x_{t+1}, x_t, ..., x_2)$ for $x_i \in \mathbb{Z}_4^n, i = 1, ..., t+1$.

Proof. It is proved that as in the proof the Proposition 3. \Box

Theorem 36. The Gray image of a skew cyclic code over D_t of length n is permutation equivalent to a quasi-cyclic code of index t + 1 with length (t + 1)n.

Proof. It is proved that as in the proof the Theorem 4. \Box

Proposition 37. Let $\tau_{\theta_t,s,l}$ be the skew quasi-cyclic shift, Γ be as in the preliminaries, Φ_t be the Gray map from D_t^n to $Z_4^{(t+1)n}$. Then

$$\Phi_t \tau_{\theta_t,s,l} = v \Gamma \Phi_t$$

where v is map such that $v(x_1, x_2, ..., x_{t+1}) = (x_1, x_{t+1}, x_t, ..., x_2)$ for $x_i \in \mathbb{Z}_4^n, i = 1, ..., t+1$.

Theorem 38. The Gray image of a skew quasi-cyclic code over D_t of length n is permutation equivalent to a l-quasi-cyclic code of index t + 1 with length (t + 1)n.

Proposition 39. Let $\tau_{\theta_t,\lambda}$ be the θ_t - λ_t -cyclic shift, let Φ_t be the Gray map from D_t^n to $Z_4^{(t+1)n}$ and σ_{λ_t} be constacyclic shift. Then

$$\Phi_t \tau_{\theta_t,\lambda t} = v \Phi_t \sigma_{\lambda_t}$$

where v is a map such as above.

Theorem 40. The Gray image of a skew constacyclic code over D_t of length n is permutation equivalent to the Gray image of a constacyclic code over D_t of length n.

8. Skew cyclic DNA codes over D_t

In this section, we introduce a family of DNA skew cyclic codes over D_t . We study its property of being reverse complement.

For all $x \in D_t$, we have

$$\theta_t(x) + \theta_t(\overline{x}) = 1$$

Theorem 41. Let $C^{(t)} = \langle f_t(x) \rangle$ be a skew cyclic code over D_t of length n, where $f_t(x)$ is a monic polynomial in $C^{(t)}$ of minimal degree. If $C^{(t)}$ is reversible complement, the polynomial $f_t(x)$ is self reciprocal and $(1, 1, ..., 1) \in C^{(t)}$.

Proof. Let $C^{(t)} = \langle f_t(x) \rangle$ be a skew cyclic code over D_t , where $f_t(x)$ is a monic polynomial in $C^{(t)}$. Since $(0, 0, ..., 0) \in C^{(t)}$ and $C^{(t)}$ is reversible complement, we have $(\overline{0}, \overline{0}, ..., \overline{0}) = (1, 1, ..., 1) \in C^{(t)}$.

Let $f_t(x) = 1 + a_1^t x + \dots + a_{r-1}^t x^{r-1} + x^r$. Since $C^{(t)}$ is reversible complement, we have $f_t^{rc}(x) \in C^{(t)}$. That is

$$f_t^{rc}(x) = 1 + x + \dots + x^{n-r-2} + 0x^{n-r-1} + \overline{a^t}_{r-1}x^{n-r} + \dots + \overline{a^t}_1x^{n-2} + 0x^{n-1}$$

Since $C^{(t)}$ is a linear code, we have $f_t^{rc}(x) - \frac{x^n - 1}{x - 1} \in C^{(t)}$. This implies that

$$-x^{n-r-1} + (\overline{a^t}_{r-1} - 1)x^{n-r} + \dots + (\overline{a^t}_1 - 1)x^{n-2} - x^{n-1} \in C^{(t)}$$

By multiplying on the right by x^{r+1-n} , we have

$$-1 + (\overline{a^t}_{r-1} - 1)\theta_t(1)x + \dots + (\overline{a^t}_1 - 1)\theta_t^{r-1}(1)x^{r-1} - \theta_t^r(1)x^r \in C^{(t)}$$

By using $a + \overline{a} = 1$, for $a \in D_t$, we have

$$-1 - a_{r-1}^t x - a_{r-2}^t x^2 - \dots - a_1^t x^{r-1} - x^r = 3f_t^*(x) \in C^{(t)}$$

Since $C^{(t)} = \langle f_t(x) \rangle$, there exist $q_t(x) \in D_t[x, \theta_t]$ such that $3f_t^*(x) = q_t(x)f_t(x)$. Since deg $f_t(x) = \text{deg } f_t^*(x)$, we have $q_t(x) = 1$. Since $3f_t^*(x) = f_t(x)$, we have $f_t^*(x) = 3f_t(x)$. So, $f_t(x)$ is self reciprocal.

Theorem 42. Let $C^{(t)} = \langle f_t(x) \rangle$ be a skew cyclic code over D_t of length n, where $f_t(x)$ is a monic polynomial in $C^{(t)}$ of minimal degree. If $(1, 1, ..., 1) \in C^{(t)}$ and $f_t(x)$ is self reciprocal, then $C^{(t)}$ is reversible complement.

Proof. Let $f_t(x) = 1 + a_1^t x + \dots + a_{r-1}^t x^{r-1} + x^r$ be a monic polynomial of the minimal degree.

Let $c_t(x) \in C^{(t)}$. So, $c_t(x) = q_t(x)f_t(x)$, where $q_t(x) \in D_t[x, \theta_t]$. By using Lemma 19, we have $c_t^*(x) = (q_t(x)f_t(x))^* = q_t^*(x)f_t^*(x)$. Since $f_t(x)$ is self reciprocal, so $c_t^*(x) = q_t^*(x)e_tf_t(x)$, where $e_t \in Z_4 \setminus \{0\}$. Therefore $c_t^*(x) \in C^{(t)} = \langle f_t(x) \rangle$. Let $c_t(x) = c_0^t + c_1^t x + \ldots + c_r^t x^r \in C^{(t)}$. Since $C^{(t)}$ is a cyclic code, we get

$$c_t(x)x^{n-r-1} = c_0^t x^{n-r-1} + c_1^t x^{n-r} + \ldots + c_r^t x^{n-1} \in C^{(t)}$$

The vector correspond to this polynomial is

$$(0, 0, ..., 0, c_0^t, c_1^t, ..., c_r^t) \in C^{(t)}$$

Since $(1, 1, ..., 1) \in C^{(t)}$ and $C^{(t)}$ linear, we have

$$(1, 1, ..., 1) - (0, 0, ..., 0, c_0^t, c_1^t, ..., c_r^t) = (1, ..., 1, 1 - c_0^t, ..., 1 - c_r^t) \in C^{(t)}$$

By using $a + \overline{a} = 1$, for $a \in D_t$, we get

$$(1,1,...,1,\overline{c_0^t},...,\overline{c_r^t}) \in C^{(t)}$$

which is equal to $(c_t(x)^*)^{rc}$. This shows that $((c_t(x)^*)^{rc})^* = c_t(x)^{rc} \in C^{(t)}$.

9. MDS CODES OVER D_t

In this section, we investigate some properties of MDS codes over D_t .

It is well known that $C^{(i)}$ is a linear code of length n over D_i , where i = 1, 2, ..., tand d_{H_i} is the minimum distance, then

$$\left| C^{(i)} \right| \le \left| D_i \right|^{n - d_{H_i} + 1}$$

where i = 1, 2, ..., t. So $d_{H_i} \leq n - \log_{|D_i|} |C^{(i)}| + 1$, where i = 1, 2, ..., t. This inequality is called Singleton bound. If $C^{(i)}$, where i = 1, 2, ..., t meet the Singleton bound, then $C^{(i)}$, where i = 1, 2, ..., t are called MDS codes.

Lemma 43. Let C be a linear code of length n over Z_4 , the C is a MDS code if and only if C is either Z_4^n with parameters $(n, 4^n, 1)$ or $\langle 1 \rangle$ with parameters (n, 4, n) or $\langle 1 \rangle^{\perp}$ with parameters $(n, 4^{n-1}, 2)$, where 1 denotes the all 1 vectors, [17].

We know that if $C^{(i)}$ is a linear code of length n over D_i , where i = 1, 2, ..., t, then

$$C^{(i)} = (1 - v_1 - \dots - v_i) C_1^{(i)} \oplus v_1 C_2^{(i)} \oplus \dots \oplus v_i C_{i+1}^{(i)}$$

where $C_j^{(i)}$ is a linear code of length *n* over Z_4 , where j = 1, ..., i + 1.

Let d_{H_i} be the Hamming distance of $C^{(i)}$. Then $d_{H_i} = \min \{ d_{H_{i,j}} \}$ for $1 \le i \le t$, $1 \le j \le i+1$, where $d_{H_{i,j}}$ is Hamming distance of $C_j^{(i)}$. So the Singleton bound can be written as

$$d_{H_i} \le n - \frac{1}{i+1} \sum_{j=1}^{i+1} \log_4 \left| C_j^{(i)} \right| + 1$$

Lemma 44. Let $C^{(i)}$ be a MDS codes over D_i , where i = 1, 2, ..., t.

i. If $d_{H_i} = 1$, then all of $C_j^{(i)}$, j = 1, ..., i+1, are MDS codes with parameters $(n, 4^n, 1)$.

ii. If $d_{H_i} = 2$, then all of $C_j^{(i)}$, j = 1, ..., i+1, are MDS codes with parameters $(n, 4^{n-1}, 2)$.

Proof. (i) If $d_{H_i} = 1$, then $\sum_{j=1}^{i+1} \log_4 \left| C_j^{(i)} \right| = (i+1)n$. Since $C^{(i)}$ is a MDS code over D_i , where i = 1, 2, ..., t, but $|C_j^{(i)}| \le 4^n$, then the identity is true iff $|C_j^{(i)}| = 4^n$, where $1 \le i \le t, 1 \le j \le i+1$. Therefore $C^{(i)}$ is a $(n, 4^{(i+1)n}, 1)$ MDS code iff all of $C_i^{(i)}$ are $(n, 4^n, 1)$ MDS codes, where $1 \le i \le t, 1 \le j \le i+1$.

(*ii*) If $d_{H_i} = 2$, then $\sum_{j=1}^{i+1} \log_4 \left| C_j^{(i)} \right| = (i+1)(n-1)$. Since $d_{H_i} = \min\left\{ d_{H_{i,j}} \right\}$, then $d_{H_{i,j}} \ge 2$, for $1 \le i \le t, j = 1, ..., i+1$. By using Singleton bound of code over Z_4 , we get $|C_j^{(i)}| \le 4^{n-d_{H_{i,j}}+1}$. For all *i*, since $d_{H_{i,j}} \ge 2$, we have $4^{n-d_{H_i,j}+1} \le 4^{n-1}$. Then we have all of $C_j^{(i)}$ are $(n, 4^{n-1}, 2)$, where $1 \le i \le t, 1 \le j \le i+1$.

Theorem 45. If $C^{(i)}$ is a MDS code over D_i , where i = 1, 2, ..., t, then there is at least one $C_i^{(i)}, 1 \le i \le t, j = 1, ..., i + 1$, be MDS code.

Proof. It is proved that as in the proof the Theorem 4.3 in [7].

Theorem 46. If $C^{(i)}$ is a MDS code over D_i , where i = 1, 2, ..., t and there exist i numbers MDS codes of $C_j^{(i)}, 1 \le i \le t, 1 \le j \le i+1$, then the other $C_j^{(i)}$ must be MDS code and all $C_j^{(i)}$ with same parameters.

Proof. It is proved that as in the proof the Theorem 4.4 in [7]. \Box

Corollary 47. $C^{(i)}$ is a MDS code over D_i iff all of $C_j^{(i)}$ for $1 \le i \le t$, j = 1, ..., i+1 are MDS codes over Z_4 with same parameters.

10. CONCLUSION

In this paper, we generalize some results which are given in the papers [6] and [7], to the linear codes over D_i , where i = 1, 2, ..., t.

References

- Abualrub, T., Ghrayeb, A. and Zeng, X., Construction of cyclic codes over GF(4) for DNA computing, J. Franklin Institute, 343, (2006) 448-457.
- [2] Abualrub, T. and Seneviratne, P., On θ-cyclic codes over F₂ + vF₂, Australasian Journal of Com., 54, (2012) 115-126.
- [3] Bandi, R. K. and Bhaintwal, M., Codes over $Z_4 + vZ_4$, *IEEE*, (2014) 978-14799-3080-7.
- Bhaintwal, M., Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr., DOI: 0.1007/s10623-011-9494-0.
- [5] Cengellenmis, Y., Dertli, A. and Dougherty, S.T., Codes over an infinite family of rings with a Gray map, *Designs, Codes and Cryptography*, 72, (2014) 559-580.
- [6] Dertli, A. and Cengellenmis, Y., On the codes over the ring $Z_4+uZ_4+vZ_4$ cyclic, constacyclic, quasi-cyclic codes, their skew codes, cyclic DNA and skew cyclic DNA codes, *Journal of Science*, to be submitted.
- [7] Dertli, A. and Cengellenmis, Y., Some results on linear codes over the finite ring $Z_4 + uZ_4 + vZ_4$; MacWilliams identities, MDS codes, Journal of Science and Arts, (2016) 36, 209-215.
- [8] Dertli, A. and Cengellenmis, Y. and Eren, S., On the Codes over a Semilocal Finite Ring, Inter. Journal of Advanced Computer Science & Applications, 6, (2015) 283-292.
- [9] Dertli, A. and Cengellenmis, Y. and Eren, S., On Skew Cyclic and Quasi-cyclic Codes Over F₂ + uF₂ + u²F₂, Palestine Journal of Mathematics, 4, (2015) 540–546.
- [10] Dougherty, S. T. and Shiromoto, K., MDS codes over Z_k, *IEEE Trans. Inform. Theory*, (2000) 46, 265-269.
- [11] Dougherty, S. T. and Shiromoto, K., Maximum distance codes over rings of order 4, IEEE Trans. Inform. Theory, 47, (2001) 400-404.
- [12] Gaborit, P. and King, O. D., Linear construction for DNA codes, *Theor. Computer Science*, (2005) 334, 99-113.
- [13] Gao, J. and Gao, Y., Some Results on Linear Codes over $Z_4 + vZ_4$, arXiv:1402.6 771v1, (2014).
- [14] Guenda, K. and Gulliver, T. A., Construction of cyclic codes over $F_2 + uF_2$ for DNA computing, AAECC, 24, (2013) 445-459.

- [15] Hammons, A. R., Kumar, V., Calderbank, A. R., Sloane, N. J. A. and Sole, P., The Z₄linearity of Kerdock, Preparata, Goethals and related codes, *IEEE Trans. Inf. Theory*, 40, (1994) 301-319.
- [16] Jitman, S., Ling, S. and Udomkovanich, P., Skew constacyclic codes over finite chain rings, AIMS Journal.
- [17] Li, P., Guo, X. and Zhu, S., Some results of linear codes over the ring $Z_4 + uZ_4 + vZ_4 + uvZ_4$, arXiv:1601.04453v1, (2016).
- [18] Pattanayak, S. and Singh, A. K., On cyclic DNA codes over the ring $Z_4 + uZ_4$, arXiv:1508.02015v1, (2015).
- [19] Shiromoto, K., Singleton bounds for codes over finite rings, Journal of Algebraic Combinatorics, 12, (2000) 95-99.
- [20] Wu, M., Skew cyclic and quasi-cyclic codes of arbitrary length over Galois rings, International Journal of Algebra, 7, (2013) 803-807.
- [21] Yildiz, B. and Karadeniz, S., Linear codes over $Z_4 + uZ_4$, MacWilliams identities, projections and formally self-dual codes, *Finite fields and their applications*, 27, (2014) 24-40.
- [22] Zhu, S. and Wang, L., A class of constacyclic codes over $F_p + vF_p$ and their Gray images, Discrete Math. 311, (2011), 2677-2682.
- *Current address*: Abdullah Dertli: Ondokuz Mayıs University, Faculty of Arts and Sciences, Mathematics Department, Samsun, Turkey

E-mail address: abdullah.dertli@gmail.com

ORCID Address: http://orcid.org/0000-0001-8687-032X

Current address: Yasemin Cengellenmis: Trakya University, Faculty of Sciences, Mathematics Department, Edirne, Turkey

E-mail address: ycengellenmis@gmail.com

ORCID Address: http://orcid.org/0000-0002-8133-9836