ON THE LINEAR CODES OVER THE RING $Z_{4}+v_{1} Z_{4}+\ldots+v_{t} Z_{4}$

ABDULLAH DERTLI AND YASEMIN CENGELLENMIS

Abstract

Some results on linear codes over the ring $Z_{4}+u Z_{4}+v Z_{4}, u^{2}=$ $u, v^{2}=v, u v=v u=0$ in [6,7] are generalized to the ring $D_{t}=Z_{4}+v_{1} Z_{4}+$ $\ldots+v_{t} Z_{4}, v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}=0$ for $i \neq j, 1 \leq i, j \leq t$. A Gray map Φ_{t} from D_{t}^{n} to $Z_{4}^{(t+1) n}$ is defined. The Gray images of the cyclic, constacyclic and quasi-cyclic codes over D_{t} are determined. The cyclic DNA codes over D_{t} are introduced. The binary images of them are determined. The nontrivial automorphism on D_{i} for $i=2,3, \ldots, t$ is given. The skew cyclic, skew constacyclic and skew quasi-cyclic codes over D_{t} are introduced. The Gray images of them are determined. The skew cyclic DNA codes over D_{t} are introduced. Moreover, some properties of MDS codes over D_{t} are discussed.

1. Introduction

The certain type of codes over many finite rings were studied $[2,4,5,8,9,13,15,16,20$, $21,22]$. Many of good codes were obtained from them.

Some special error correcting codes over some finite fields and finite rings with 4^{n} elements where $n \in N$ were used for DNA computing applications. The construction of DNA codes were by several authors in $[1,6,12,14,18]$.

Optimal codes attain maximum minimum distances. So their class is very important class of codes. Optimal codes over finite rings were studied by several authors in $[3,10,11,17,19]$.

In [6], the finite ring $D=Z_{4}+u Z_{4}+v Z_{4}, u^{2}=u, v^{2}=v, u v=v u=0$ was introduced, firstly. Some results on linear codes over D were obtained. Moreover, in [7], the MacWilliams identities and optimal codes over D were studied. In this paper, we generalize some results to the linear codes over D_{t}.

This paper is organized as follows. In section 2, a Gray map from D_{t} to $Z_{4}^{(t+1)}$ is defined. The Gray images of cyclic, constacyclic, and quasi-cyclic codes over D_{t} are determined. A linear code C over D_{t} is represented by means of $(t+1)$ codes over Z_{4}. In section 3 , the constacyclic codes over D_{t} are investigated. In section

[^0]4, the cyclic codes of odd length over D_{t} satisfy reverse and reverse complement properties are studied. In section 5 , the binary images of cyclic DNA codes over D_{t} are determined. In section 6 , the nontrivial automorphism on D_{i} for $i=2,3, \ldots, t$ is determined. By introducing the skew cyclic, skew constacyclic and skew quasicyclic codes over D_{t}, the Gray images of them are found in section 7. In section 8 , we investigated skew cyclic DNA codes over D_{t}. In section 9 , some properties of optimal codes over D_{t} are determined.

2. Preliminaries

Let $D_{t}=Z_{4}+v_{1} Z_{4}+\ldots+v_{t} Z_{4}$, where $v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}=0$ for $i \neq j, 1 \leq i$, $j \leq t$. The ring D_{t} can be also viewed as the quotient ring

$$
Z_{4}\left[v_{1}, v_{2}, \ldots, v_{t}\right] /\left\langle v_{i}^{2}-v_{i}, v_{i} v_{j}=v_{j} v_{i}\right\rangle
$$

Let d be any element of D_{t}, which can be expressed uniquely as $d=d_{0}+v_{1} d_{1}+$ $\ldots+v_{t} d_{t}$.

A code of length n over D_{t} is a subset of D_{t}^{n}. C is a linear iff C is an $D_{t^{-}}$ submodule of D_{t}^{n}.The elements of the code (linear code) are called codewords.

Let $\sigma, \sigma_{\lambda}, \zeta$ be maps from D_{t}^{n} to D_{t}^{n} given by

$$
\begin{aligned}
\sigma\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) & =\left(\alpha_{n-1}, \alpha_{0}, \ldots, \alpha_{n-2}\right) \\
\sigma_{\lambda}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) & =\left(\lambda \alpha_{n-1}, \alpha_{0}, \ldots, \alpha_{n-2}\right) \\
\zeta\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) & =\left(-\alpha_{n-1}, \alpha_{0} \ldots, \alpha_{n-2}\right)
\end{aligned}
$$

where λ is a unit in D_{t}. Let C be a linear code of length n over D_{t}. Then C is said to be cyclic if $\sigma(C)=C, \lambda$-constacyclic if $\sigma_{\lambda}(C)=C$, negacyclic, if $\zeta(C)=C$.

Let $a \in Z_{4}^{(t+1) n}$ with $a=\left(a_{0}, a_{1}, \ldots, a_{(t+1) n-1}\right)=\left(a^{(0)}\left|a^{(1)}\right| \ldots \mid a^{(t)}\right), a^{(i)} \in Z_{4}^{n}$ for $i=0,1, \ldots, t$. Let φ be a map from $Z_{4}^{(t+1) n}$ to $Z_{4}^{(t+1) n}$ given by $\varphi(a)=$ $\left(\sigma\left(a^{(0)}\right)\left|\sigma\left(a^{(1)}\right)\right| \ldots \mid \sigma\left(a^{(t)}\right)\right)$, where σ is a cyclic shift from Z_{4}^{n} to Z_{4}^{n} given by $\sigma\left(a^{(i)}\right)=\left(\left(a^{(i, n-1)}\right),\left(a^{(i, 0)}\right), \ldots,\left(a^{(i, n-2)}\right)\right)$ for every $a^{(i)}=\left(a^{(i, 0)}, \ldots, a^{(i, n-1)}\right)$, where $a^{(i, j)} \in Z_{4}, j=0,1, \ldots, n-1$. A code of length $(t+1) n$ over Z_{4} is said to be a quasicyclic code of index $t+1$ if $\varphi(C)=C$.

We define the Gray map as follows

$$
\begin{array}{rll}
\Phi_{t} & : & D_{t} \longrightarrow Z_{4}^{t+1} \\
d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t} & \longmapsto & \left(d_{0}, d_{0}+d_{1}, \ldots, d_{0}+d_{t}\right)
\end{array}
$$

This map is extended componentwise to

$$
\begin{aligned}
\Phi_{t} & : D_{t}^{n} \longrightarrow Z_{4}^{(t+1) n} \\
\left(\alpha_{1}, \ldots, \alpha_{n}\right) & =\left(d_{0}^{1}, d_{0}^{2}, \ldots, d_{0}^{n}, \ldots, d_{0}^{1}+d_{t}^{1}, \ldots, d_{0}^{n}+d_{t}^{n}\right)
\end{aligned}
$$

where $\alpha_{i}=d_{0}^{i}+v_{1} d_{1}^{i}+\ldots+v_{t} d_{t}^{i}$ with $i=1,2, \ldots, n$.
Φ_{t} is a Z_{4}-module isomorphism.
The Lee weights of $0,1,2,3 \in Z_{4}$ are defined by $w_{L}(0)=0, w_{L}(1)=w_{L}(3)=$ $1, w_{L}(2)=2$.

Let $d=d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t}$ be an element of D_{t}, then Lee weight of d is defined as $w_{L}(d)=w_{L}\left(d_{0}, d_{0}+d_{1}, \ldots, d_{0}+d_{t}\right)$, where $d_{0}, d_{1}, \ldots, d_{t} \in Z_{4}$. The Lee weight of a vector $c=\left(c_{0}, \ldots, c_{n-1}\right) \in D_{t}^{n}$ to be the sum of Lee weights its components. For any elements $c_{1}, c_{2} \in D_{t}^{n}$, the Lee distance between c_{1} and c_{2} is given by $d_{L}\left(c_{1}, c_{2}\right)=$ $w_{L}\left(c_{1}-c_{2}\right)$. The minimum Lee distance of C is defined as $d_{L}(C)=\min d_{L}(c, \dot{c})$, where for any $\dot{c} \in C, c \neq \dot{c}$.

For any $x=\left(x_{0}, \ldots, x_{n-1}\right), y=\left(y_{0}, \ldots, y_{n-1}\right)$ the inner product is defined as

$$
x y=\sum_{i=0}^{n-1} x_{i} y_{i}
$$

If $x y=0$, then x and y are said to be orthogonal. Let C be a linear code of length n over D_{t}, the dual of C

$$
C^{\perp}=\{x: \forall y \in C, x y=0\}
$$

which is also a linear code over D_{t} of length. A code C is self orthogonal, if $C \subset C^{\perp}$ and self dual, if $C=C^{\perp}$.

Theorem 1. The Gray map Φ_{t} is distance preserving map from (D_{t}^{n},Lee distance) to ($Z_{4}^{(t+1) n}$, Lee distance).

Proof. Let $z_{1}=\left(z_{1,0}, \ldots, z_{1, n-1}\right), z_{2}=\left(z_{2,0}, \ldots, z_{2, n-1}\right)$ be the elements of D_{t}^{n}, where $z_{1, i}=d_{1, i}^{0}+v_{1} d_{1, i}^{1}+\ldots+v_{t} d_{1, i}^{t}$ and $z_{2, i}=d_{2, i}^{0}+v_{1} d_{2, i}^{1}+\ldots+v_{t} d_{2, i}^{t}, i=0,1, \ldots, n-$ 1. Then $z_{1}-z_{2}=\left(z_{1,0}-z_{2,0}, \ldots, z_{1, n-1}-z_{2, n-1}\right)$ and $\Phi_{t}\left(z_{1}-z_{2}\right)=\Phi_{t}\left(z_{1}\right)-$ $\Phi_{t}\left(z_{2}\right)$. So, $d_{L}\left(z_{1}, z_{2}\right)=w_{L}\left(z_{1}-z_{2}\right)=w_{L}\left(\Phi_{t}\left(z_{1}-z_{2}\right)\right)=w_{L}\left(\Phi_{t}\left(z_{1}\right)-\Phi_{t}\left(z_{2}\right)\right)=$ $d_{L}\left(\Phi_{t}\left(z_{1}\right), \Phi_{t}\left(z_{2}\right)\right)$.

Theorem 2. If C is self orthogonal, so is $\Phi_{t}(C)$.
Proof. Let $x_{1}=d_{0}^{1}+v_{1} d_{1}^{1}+\ldots+v_{t} d_{t}^{1}, x_{2}=d_{0}^{2}+v_{1} d_{1}^{2}+\ldots+v_{t} d_{t}^{2} \in D_{t}$. From $x_{1} x_{2}=$ $d_{0}^{1} d_{0}^{2}+v_{1}\left(d_{0}^{1} d_{1}^{2}+d_{1}^{1} d_{0}^{2}+d_{1}^{1} d_{1}^{2}\right)+\ldots+v_{t}\left(d_{0}^{1} d_{t}^{2}+d_{t}^{1} d_{0}^{2}+d_{t}^{1} d_{t}^{2}\right)$. If C is self orthogonal, so we have $d_{0}^{1} d_{0}^{2}=0, d_{0}^{1} d_{1}^{2}+d_{1}^{1} d_{0}^{2}+d_{1}^{1} d_{1}^{2}=0, \ldots, d_{0}^{1} d_{t}^{2}+d_{t}^{1} d_{0}^{2}+d_{t}^{1} d_{t}^{2}=0$. From this, we have $\Phi_{t}\left(x_{1}\right) \Phi_{t}\left(x_{2}\right)=\left(d_{0}^{1}, d_{0}^{1}+d_{1}^{1}, \ldots, d_{0}^{1}+d_{t}^{1}\right)\left(d_{0}^{2}, d_{0}^{2}+d_{1}^{2}, \ldots, d_{0}^{2}+d_{t}^{2}\right)=0$. Therefore $\Phi_{t}(C)$ is self orthogonal.

Proposition 3. Let Φ_{t} be Gray map from D_{t}^{n} to $Z_{4}^{(t+1) n}$, let σ be the cyclic shift and let φ be a map as above. Then $\Phi_{t} \sigma=\varphi \Phi_{t}$.

Proof. Let $a=\left(a_{0}, \ldots, a_{n-1}\right) \in D_{t}^{n}$. Let $a_{i}=d_{i}^{0}+v_{1} d_{i}^{1}+\ldots+v_{t} d_{i}^{t}$ where $d_{i}^{0}, d_{i}^{1}, \ldots, d_{i}^{t} \in$ Z_{4}, for $i=0,1, \ldots, n-1$. From definition Φ_{t}, we have $\Phi_{t}(a)=\left(d_{0}^{0}, d_{1}^{0}, \ldots, d_{n-1}^{0}, d_{0}^{0}+\right.$ $\left.d_{0}^{1}, \ldots, d_{0}^{0}+d_{n-1}^{t}, \ldots, d_{n-1}^{0}+d_{n-1}^{1}, \ldots, d_{n-1}^{0}+d_{n-1}^{t}\right)$. By applying φ, we have $\varphi\left(\Phi_{t}(a)\right)=$ $\left(d_{n-1}^{0}, d_{0}^{0}, \ldots, d_{n-2}^{0}, d_{0}^{0}+d_{n-1}^{t}, \ldots, d_{0}^{0}+d_{n-2}^{t}, \ldots, d_{n-1}^{0}+d_{n-1}^{t}, \ldots, d_{n-2}^{0}+d_{n-2}^{t}\right)$.

On the other hand, $\sigma(a)=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right)$. If we apply Φ_{t}, we have $\Phi_{t}(\sigma(a))=$ $\left(d_{n-1}^{0}, d_{0}^{0}, \ldots, d_{n-2}^{0}, d_{0}^{0}+d_{n-1}^{t}, \ldots, d_{0}^{0}+d_{n-2}^{t}, \ldots, d_{n-1}^{0}+d_{n-1}^{t}, \ldots, d_{n-2}^{0}+d_{n-2}^{t}\right)$

Theorem 4. Let σ and φ be as in section 2. A code C of length n over D_{t} is a cyclic code iff $\Phi_{t}(C)$ is a quasi-cyclic code of index $t+1$ over Z_{4} with length $(t+1) n$.

Proof. Let C be a cyclic code. Then $\sigma(C)=C$. If we apply Φ_{t}, we have $\Phi_{t}(\sigma(C))=$ $\Phi_{t}(C)$. By using Proposition 3, $\Phi_{t}(\sigma(C))=\varphi\left(\Phi_{t}(C)\right)=\Phi_{t}(C)$. Hence, $\Phi_{t}(C)$ is a quasi- cyclic code of index $t+1$.

For the other part, if $\Phi_{t}(C)$ is a quasi-cyclic code of index $t+1$, then we have $\varphi\left(\Phi_{t}(C)\right)=\Phi_{t}(C)$. By using Proposition 3, we have $\varphi\left(\Phi_{t}(C)\right)=\Phi_{t}(\sigma(C))=$ $\Phi_{t}(C)$. Since Φ_{t} is injective, we have $\sigma(C)=C$.

Let $A_{1}, A_{2}, \ldots, A_{t+1}$ be linear codes.

$$
A_{1} \otimes A_{2} \otimes \ldots \otimes A_{t+1}=\left\{\left(a_{1}, a_{2}, \ldots, a_{t+1}\right): a_{i} \in A_{i}, i=1,2, \ldots, t+1\right\}
$$

and

$$
A_{1} \oplus A_{2} \oplus \ldots \oplus A_{t+1}=\left\{a_{1}+a_{2}+\ldots+a_{t+1}: a_{i} \in A_{i}, i=1,2, \ldots, t+1\right\}
$$

Definition 5. Let $C^{(t)}$ be a linear code of length n over D_{t}. Define

$$
\begin{aligned}
C_{1}^{(t)}= & \left\{d_{0}: \exists d_{1}, \ldots, d_{t} \in Z_{4}^{n}, d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t} \in C^{(t)}\right\} \\
C_{2}^{(t)}= & \left\{d_{0}+d_{1}: \exists d_{2}, \ldots, d_{t} \in Z_{4}^{n}, d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t} \in C^{(t)}\right\} \\
C_{3}^{(t)}= & \left\{d_{0}+d_{2}: \exists d_{1}, d_{3}, \ldots, d_{t} \in Z_{4}^{n}, d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t} \in C^{(t)}\right\} \\
& \vdots \\
C_{t+1}^{(t)}= & \left\{d_{0}+d_{t}: \exists d_{1}, d_{2}, \ldots, d_{t-1} \in Z_{4}^{n}, d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t} \in C^{(t)}\right\}
\end{aligned}
$$

where $C_{1}^{(t)}, C_{2}^{(t)}, \ldots, C_{t+1}^{(t)}$ are linear codes over Z_{4} of length n.
Theorem 6. Let $C^{(t)}$ be a linear code of length n over D_{t}. Then $\Phi_{t}\left(C^{(t)}\right)=$ $C_{1}^{(t)} \otimes C_{2}^{(t)} \otimes \cdots \otimes C_{t+1}^{(t)}$ and $\left|C^{(t)}\right|=\left|C_{1}^{(t)}\right|\left|C_{2}^{(t)}\right| \cdots\left|C_{t+1}^{(t)}\right|$.

Corollary 7. If $\Phi_{t}\left(C^{(t)}\right)=C_{1}^{(t)} \otimes C_{2}^{(t)} \otimes \cdots \otimes C_{t+1}^{(t)}$, then $C^{(t)}=\left(1-v_{1}-\cdots-v_{t}\right) C_{1}^{(t)} \oplus$ $v_{1} C_{2}^{(t)} \oplus \cdots \oplus v_{t} C_{t+1}^{(t)}$.
Theorem 8. Let $C^{(t)}=\left(1-v_{1}-\cdots-v_{t}\right) C_{1}^{(t)} \oplus v_{1} C_{2}^{(t)} \oplus \cdots \oplus v_{t} C_{t+1}^{(t)}$ be a linear code of any length n over D_{t}. Then $C^{(t)}$ is a cyclic code over D_{t} if and only if $C_{1}^{(t)}, C_{2}^{(t)}, \ldots, C_{t+1}^{(t)}$ are all cyclic codes over Z_{4}.
Proof. It is proved that as in proof of Proposition 15, in [8].
Lemma 9. (17) Let n be an odd positive integer and $x^{n}-1=\prod_{i=1}^{r} f_{i}(x)$ be the unique factorization of $x^{n}-1$, where $f_{1}(x), \ldots, f_{r}(x)$ are basic irreducible polynomials over Z_{4}

Theorem 10. (17) Let C be a cyclic code of odd length n over Z_{4}, then

$$
C=\left(f_{0}(x), 2 f_{1}(x)\right)=\left(f_{0}(x)+2 f_{1}(x)\right)
$$

where $f_{0}(x)$ and $f_{1}(x)$ are monic factors of $x^{n}-1$ and $f_{1}(x) \mid f_{0}(x)$.
If C is a linear code of any length n over Z_{4}, then there exist monic polynomials $f(x), g(x), p(x) \in Z_{4}$ such that

$$
C=(f(x)+2 p(x), 2 g(x))
$$

where $g(x)|f(x)| x^{n}-1, g(x) \mid p(x)\left[x^{n}-1 / f(x)\right]$ and $|C|=2^{2 n-\operatorname{deg} f(x)-\operatorname{deg} g(x)}$.
Theorem 11. Let $C^{(t)}=\left(1-v_{1}-\cdots-v_{t}\right) C_{1}^{(t)} \oplus v_{1} C_{2}^{(t)} \oplus \cdots \oplus v_{t} C_{t+1}^{(t)}$ be a cyclic code of any length n over D_{t}. If there exist $f_{i}^{1}(x), f_{i}^{2}(x), f_{i}^{3}(x) \in Z_{4}[x]$ for $i=1, \cdots, t+1$ such that $C_{i}^{(t)}=\left(f_{i}^{1}(x)+2 f_{i}^{2}(x), 2 f_{i}^{3}(x)\right)$, then

$$
\begin{aligned}
C^{(t)}= & \left(\left(1-v_{1}-\cdots-v_{t}\right) f_{1}^{1}(x)+\cdots+v_{t} f_{t+1}^{1}(x)+2\left[\left(1-v_{1}-\cdots-v_{t}\right) f_{1}^{2}(x)\right.\right. \\
& \left.\left.+\cdots+v_{t} f_{t+1}^{2}(x)\right], \quad 2\left[\left(1-v_{1}-\cdots-v_{t}\right) f_{1}^{3}(x)+\cdots+v_{t} f_{t+1}^{3}(x)\right]\right)
\end{aligned}
$$

If n is odd, then $C^{(t)}=\left(\left(1-v_{1}-\cdots-v_{t}\right)\left(f_{1}^{1}(x)+2 f_{1}^{2}(x)\right)+\cdots+v_{t}\left(f_{t+1}^{1}(x)+\right.\right.$ $\left.2 f_{t+1}^{2}(x)\right)$).
Proof. It is proved that as in proof of Theorem 10, in [17].
Definition 12. A subset C of D_{t}^{n} is called a quasi-cyclic code of length $n=s l$ if C is satisfies the following conditions
i) C is a submodule of D_{t}^{n}
ii) if $e=\left(e_{0,0}, \ldots, e_{0, l-1}, e_{1,0}, \ldots, e_{1, l-1}, \ldots, e_{s-1,0}, \ldots, e_{s-1, l-1}\right) \in C$, then $T_{s, l}(e)=$ $\left(e_{s-1,0, \ldots,}, e_{s-1, l-1}, e_{0,0}, \ldots, e_{0, l-1}, \ldots, e_{s-2,0}, \ldots, e_{s-2, l-1}\right) \in C$.

Definition 13. Let $a \in Z_{4}^{(t+1) n}$ with $a=\left(a_{0}, a_{1}, \ldots, a_{(t+1) n-1}\right)=\left(a^{(0)}\left|a^{(1)}\right| \ldots \mid a^{(t)}\right)$, $a^{(i)} \in Z_{4}^{n}$, for $i=0,1, \ldots, t$. Let Γ be a map from $Z_{4}^{(t+1) n}$ to $Z_{4}^{(t+1) n}$ given by

$$
\Gamma(a)=\left(\mu\left(a^{(0)}\right)\left|\mu\left(a^{(1)}\right)\right| \ldots \mid \mu\left(a^{(t)}\right)\right)
$$

where μ is the map from Z_{4}^{n} to Z_{4}^{n} given by

$$
\mu\left(a^{(i)}\right)=\left(\left(a^{(i, s-1)}\right),\left(a^{(i, 0)}\right), \ldots,\left(a^{(i, s-2)}\right)\right)
$$

for every $a^{(i)}=\left(a^{(i, 0)}, \ldots, a^{(i, s-1)}\right)$ where $a^{(i, j)} \in Z_{4}^{l}, j=0,1, \ldots, s-1$ and $n=s l$. A code of length $(t+1) n$ over Z_{4} is said to be l-quasi cyclic code of index $t+1$ if $\Gamma(C)=C$.

Proposition 14. Let $T_{s, l}$ be the quasi-cyclic shift on D_{t}. Then $\Phi_{t} T_{s, l}=\Gamma \Phi_{t}$, where Γ is as above.

Theorem 15. The Gray image of a quasi-cyclic code over D_{t} of length n with index l is a l-quasi-cyclic code of index $t+1$ over Z_{4} with length $(t+1) n$.

3. Constacyclic codes over D_{t}

We investigate λ_{t}-constacyclic codes over D_{t}, where λ_{t} is unit.
For any element $\lambda_{i}=d_{0}+v_{1} d_{1}+\ldots+v_{i} d_{i} \in D_{i}^{*}$ for $i=1,2, \ldots, t, \lambda_{i}$ is a unit if and only if $d_{0} \neq 0, d_{0}+d_{1} \neq 0, \ldots, d_{0}+d_{i} \neq 0$ for $i=1,2, \ldots, t$.

In [13], it was shown that the units are $1,3,1+2 v_{1}, 3+2 v_{1}$, for $D_{1}=Z_{4}+$ $v_{1} Z_{4}, v_{1}^{2}=v_{1}$. In [6], it was shown that the units are $1,3,1+2 v_{1}, 1+2 v_{2}, 3+$ $2 v_{1}, 3+2 v_{2}, 1+2 v_{1}+2 v_{2}, 3+2 v_{1}+2 v_{2}$ for $D_{2}=Z_{4}+v_{1} Z_{4}+v_{2} Z_{4}, v_{1}^{2}=v_{1}, v_{2}^{2}=$ $v_{2}, v_{1} v_{2}=v_{2} v_{1}=0$.

Moreover, one can verify that if λ_{i} is a unit of D_{i} for $i=1,2, \ldots, t$, then $\lambda_{i}^{2}=1$, for $i=1,2, \ldots, t$.
Theorem 16. Let $C^{(t)}=\left(1-v_{1}-\cdots-v_{t}\right) C_{1}^{(t)} \oplus v_{1} C_{2}^{(t)} \oplus \cdots \oplus v_{t} C_{t+1}^{(t)}$ be a linear code of length n over D_{t}. Then $C^{(t)}$ is λ_{t}-constacyclic code over D_{t} if and only if $C_{1}^{(t)}$ is a d_{0}-constacyclic, $C_{2}^{(t)}$ is $d_{0}+d_{1}$-constacyclic, $\ldots, C_{t+1}^{(t)}$ is a $d_{0}+d_{t}$-constacyclic codes of length n over Z_{4}.

4. The reverse and reverse complement codes over D_{t}

In this section, we study cyclic codes of odd length over D_{t} satisfy reverse and reverse complement properties.

The elements $0,1,2,3$ of Z_{4} are in one to one correspondence with the nucleotide DNA bases A, T, C, G such that $0 \longrightarrow A, 1 \longrightarrow T, 2 \longrightarrow C$ and $3 \longrightarrow G$. The Watson Crick Complement is given by $\bar{A}=T, \bar{T}=A, \bar{G}=C, \bar{C}=G$.

Since the ring D_{t} is cardinality 4^{t+1}, then we give a one to one correspondence between the elements of D_{t} and the 4^{t+1} codons over the alphabet $\{A, T, G, C\}^{t+1}$ by using the Gray map. For example

Elements	Gray image	Codons
0	$(0,0, \ldots, 0)$	$\underbrace{A A \ldots A}$
	$t+1$ times	$t+1$ times
1	$\underbrace{(1,1, \ldots, 1)}$	$\underbrace{T T \ldots T}$
	$t+1$ times	$t+1$ times
2	$\underbrace{(2,2, \ldots, 2)}$	$\underbrace{C C \ldots C}$
	$t+1$ times	$t+1$ times
3	$\underbrace{(3,3, \ldots, 3)}$	$\underbrace{G G \ldots G}$
	$t+1$ times	$t+1$ times
v_{1}	$(0,1,0, \ldots, 0)$	$\underbrace{A T A \ldots A}$
	$t+1$ times	${ }^{t+1}$ times
$1+v_{1}$	$(1,2,1, \ldots, 1)$	$\underbrace{T C T \ldots T}$
	$t+1$ times	$t+1$ times

The codons satisfy the Watson Crick Complement.

Definition 17. For $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in D_{t}^{n}$, the vector $\left(x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}\right)$ is called the reverse of x and is denoted by x^{r}. A linear code $C^{(t)}$ of length n over D_{t}, is said to be reversible if $x^{r} \in C^{(t)}$ for every $x \in C^{(t)}$.

For $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in D_{t}^{n}$, the vector $\left(\bar{x}_{0}, \bar{x}_{1}, \ldots, \bar{x}_{n-1}\right)$ is called the complement of x and is denoted by x^{c}. A linear code $C^{(t)}$ of length n over D_{t}, is said to be complement if $x^{c} \in C^{(t)}$ for every $x \in C^{(t)}$.

For $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in D_{t}^{n}$, the vector $\left(\bar{x}_{n-1}, \bar{x}_{n-2}, \ldots, \bar{x}_{1}, \bar{x}_{0}\right)$ is called the reversible complement of x and is denoted by $x^{r c}$. A linear code $C^{(t)}$ of length n over D_{t}, is said to be reversible complement if $x^{r c} \in C^{(t)}$ for every $x \in C^{(t)}$.

Definition 18. Let $f(x)=a_{0}+a_{1} x+\ldots+a_{r} x^{r}$ with $a_{r} \neq 0$ be polynomial. The reciprocal of $f(x)$ is defined as $f^{*}(x)=x^{r} f\left(\frac{1}{x}\right)$. It is easy to see that $\operatorname{deg} f^{*}(x) \leq$ $\operatorname{deg} f(x)$ and if $a_{0} \neq 0$, then $\operatorname{deg} f^{*}(x)=\operatorname{deg} f(x) . f(x)$ is called a self reciprocal polynomial if there is a constant m such that $f^{*}(x)=m f(x)$.

Lemma 19. Let $f(x), g(x)$ be polynomials in $D_{i}[x], 1 \leq i \leq t$. Suppose $\operatorname{deg} f(x)-$ $\operatorname{deg} g(x)=m$ then,
i) $(f(x) g(x))^{*}=f^{*}(x) g^{*}(x)$
ii) $(f(x)+g(x))^{*}=f^{*}(x)+x^{m} g^{*}(x)$

Theorem 20. Let $C^{(t)}=\left(1-v_{1}-\cdots-v_{t}\right) C_{1}^{(t)} \oplus v_{1} C_{2}^{(t)} \oplus \cdots \oplus v_{t} C_{t+1}^{(t)}$ be a cyclic code of odd length over D_{t}. Then $C^{(t)}$ is reversible code over D_{t} if and only if $C_{1}^{(t)}, C_{2}^{(t)}, \ldots, C_{t+1}^{(t)}$ are reversible codes over Z_{4}.

Proof. Let $C_{i}^{(t)}$ be reversible codes, where $i=1,2, \ldots, t+1$. For any $b \in C^{(t)}, b=$ $\left(1-v_{1}-\cdots-v_{t}\right) b_{1}+v_{1} b_{2}+\ldots+v_{t} b_{t+1}$, where $b_{i} \in C_{i}^{(t)}$, for $1 \leq i \leq t+1$. Since $C_{i}^{(t)}$ are reversible codes for all $i, b_{i}^{r} \in C_{i}^{(t)}$, where $i=1,2, \ldots, t+1$. So, $b^{r}=\left(1-v_{1}-\cdots-v_{t}\right) b_{1}^{r}+v_{2} b_{2}^{r}+\ldots+v_{t} b_{t+1}^{r} \in C^{(t)}$. Hence $C^{(t)}$ is reversible code.

On the other hand, let $C^{(t)}$ be a reversible code over D_{t}. So for any

$$
\left(1-v_{1}-\cdots-v_{t}\right) b_{1}+v_{1} b_{2}+\ldots+v_{t} b_{t+1}
$$

where $b_{i} \in C_{i}^{(t)}$, for $1 \leq i \leq t+1$, we get $b^{r}=\left(1-v_{1}-\cdots-v_{t}\right) b_{1}^{r}+v_{2} b_{2}^{r}+\ldots+$ $v_{t} b_{t+1}^{r} \in C^{(t)}$. Let $b^{r}=\left(1-v_{1}-\cdots-v_{t}\right) b_{1}^{r}+v_{2} b_{2}^{r}+\ldots+v_{t} b_{t+1}^{r}=\left(1-v_{1}-\cdots-v_{t}\right) s_{1}+$ $v_{1} s_{2}+\ldots+v_{t} s_{t+1}$, where $s_{i} \in C_{i}^{(t)}$, for $1 \leq i \leq t+1$. Therefore $C_{i}^{(t)}$ are reversible codes over Z_{4} for $i=1,2, \ldots, t+1$.

Lemma 21. For any $c \in D_{i}$, where $i=1,2, \ldots, t$, we have $c+\bar{c}=1$.
Lemma 22. For any $a \in D_{i}$, where $i=1,2, \ldots, t$, we have $\bar{a}+3 \overline{0}=3 a$.
Theorem 23. Let $C^{(t)}=\left(1-v_{1}-\cdots-v_{t}\right) C_{1}^{(t)} \oplus v_{1} C_{2}^{(t)} \oplus \cdots \oplus v_{t} C_{t+1}^{(t)}$ be a cyclic code of odd length n over D_{t}. Then $C^{(t)}$ is reversible complement over D_{t} iff $C^{(t)}$ is reversible over D_{t} and $(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C^{(t)}$.

Proof. Since $C^{(t)}$ is reversible complement, for any $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C^{(t)}, c^{r c}=$ $\left(\bar{c}_{n-1}, \bar{c}_{n-2}, \ldots, \bar{c}_{0}\right) \in C^{(t)}$. Since $C^{(t)}$ is a linear code, so $(0,0, \ldots, 0) \in C^{(t)}$. Since $C^{(t)}$ is reversible complement, so $(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C^{(t)}$. By using Lemma 22, we get

$$
3 c^{r}=3\left(c_{n-1}, c_{n-2}, \ldots, c_{0}\right)=\left(\bar{c}_{n-1}, \bar{c}_{n-2}, \ldots, \bar{c}_{0}\right)+3(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C^{(t)}
$$

Hence for any $c \in C^{(t)}$, we have $c^{r} \in C^{(t)}$.
On the other hand, let $C^{(t)}$ be reversible code over D_{t}. So, for any $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in$ $C^{(t)}$, then $c^{r}=\left(c_{n-1}, c_{n-2}, \ldots, c_{0}\right) \in C^{(t)}$. For any $c \in C^{(t)}$,

$$
c^{r c}=\left(\bar{c}_{n-1}, \bar{c}_{n-2}, \ldots, \bar{c}_{0}\right)=3\left(c_{n-1}, c_{n-2}, \ldots, c_{0}\right)+(\overline{0}, \overline{0}, \ldots, \overline{0}) \in C^{(t)}
$$

So, $C^{(t)}$ is reversible complement code over D_{t}.
Theorem 24. Let S_{1} and S_{2} be two reversible complement cyclic codes of length n over D_{i}, where $i=1,2, \ldots, t$. Then $S_{1}+S_{2}$ and $S_{1} \cap S_{2}$ are reversible complement cyclic codes.

Proof. It is shown that as in proof of Theorem 23, in [6].

5. Binary images of cyclic DNA codes over D_{t}

In this section, we will determine binary images of cyclic DNA codes over D_{i}, where $i=1,2, \ldots, t$.

The 2-adic expansion of $c \in Z_{4}$ is $c=\alpha(c)+2 \beta(c)$ such that $\alpha(c)+\beta(c)+\gamma(c)=0$ for all $c \in Z_{4}$

c	$\alpha(c)$	$\beta(c)$	$\gamma(c)$
0	0	0	0
1	1	0	1
2	0	1	1
3	1	1	0

The Gray map is given by

$$
\begin{array}{rll}
\Psi & : \quad Z_{4} \longrightarrow Z_{2}^{2} \\
c & \longmapsto & \Psi(c)=(\beta(c), \gamma(c))
\end{array}
$$

for all $c \in Z_{4}$ in [18]. We define

$$
\begin{aligned}
\breve{O}_{t} & : D_{t} \longrightarrow Z_{2}^{2(t+1)} \\
d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t} & \longmapsto \breve{O}_{t}\left(d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t}\right)=\Psi\left(\Phi_{t}\left(d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t}\right)\right) \\
& =\Psi\left(d_{0}, d_{0}+d_{1}, \ldots, d_{0}+d_{t}\right) \\
& =\left(\beta\left(d_{0}\right), \gamma\left(d_{0}\right), \beta\left(d_{0}+d_{1}\right), \gamma\left(d_{0}+d_{1}\right), \ldots, \beta\left(d_{0}+d_{t}\right), \gamma\left(d_{0}+d_{t}\right)\right)
\end{aligned}
$$

where Φ_{t} is a Gray map from D_{t} to Z_{4}^{t+1}.
Let $d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t}$ be any element of the ring D_{t}. The Lee weight w_{L} of the ring D_{t} is defined as follows

$$
w_{L}\left(d_{0}+v_{1} d_{1}+\ldots+v_{t} d_{t}\right)=w_{L}\left(d_{0}, d_{0}+d_{1}, \ldots, d_{0}+d_{t}\right)
$$

where $w_{L}\left(d_{0}, d_{0}+d_{1}, \ldots, d_{0}+d_{t}\right)$ described the usual Lee weight on Z_{4}^{t+1}. For any $c_{1}, c_{2} \in D_{t}$ the Lee distance d_{L} is given by $d_{L}\left(c_{1}, c_{2}\right)=w_{L}\left(c_{1}-c_{2}\right)$.

The Hamming distance $d_{H}\left(c_{1}, c_{2}\right)$ between two codewords c_{1} and c_{2} is the Hamming weight of the codewords $c_{1}-c_{2}$.

$$
\begin{aligned}
& \underbrace{A A \ldots A}_{t+1 \text { times }} \longrightarrow \underbrace{(0,0, \ldots, 0)}_{2(t+1) \text { times }} \\
& \underbrace{T T \ldots T}_{t+1 \text { times }} \longrightarrow \underbrace{(0,1,0,1, \ldots, 0,1)}_{2(t+1) \text { times }} \\
& \begin{array}{c}
\underbrace{G G \ldots G}_{t+1 \text { times }}
\end{array} \longrightarrow \underbrace{(1,0,1,0, \ldots, 1,0)}_{2(t+1) \text { times }}, ~ \underbrace{(1,1, \ldots, 1)}_{2(t+1) \text { times }}
\end{aligned}
$$

Lemma 25. The Gray map \breve{O}_{t} is a distance preserving map from $\left(D_{t}^{n}\right.$, Lee distance) to ($Z_{2}^{2(t+1) n}$, Hamming distance). It is also Z_{2}-linear.
Proof. For $c_{1}, c_{2} \in D_{t}^{n}$, we have $\breve{O}_{t}\left(c_{1}-c_{2}\right)=\breve{O}_{t}\left(c_{1}\right)-\breve{O}_{t}\left(c_{2}\right)$. So, $d_{L}\left(c_{1}, c_{2}\right)=$ $w_{L}\left(c_{1}-c_{2}\right)=w_{H}\left(\breve{O}_{t}\left(c_{1}-c_{2}\right)\right)=w_{H}\left(\breve{O}_{t}\left(c_{1}\right)-\breve{O}_{t}\left(c_{2}\right)\right)=d_{H}\left(\breve{O}_{t}\left(c_{1}\right), \breve{O}_{t}\left(c_{2}\right)\right)$. So, the Gray map \breve{O}_{t} is distance preserving map. For Z_{2}-linear, it is easily seen that $\breve{O}_{t}\left(k_{1} c_{1}+k_{2} c_{2}\right)=k_{1} \breve{O}_{t}\left(c_{1}\right)+k_{2} \breve{O}_{t}\left(c_{2}\right)$, where $c_{1}, c_{2} \in D_{t}^{n}, k_{1}, k_{2} \in Z_{2}$.
Proposition 26. Let σ be the cyclic shift of D_{t}^{n} and η be the $2(t+1)$-quasi-cyclic shift of $Z_{2}^{2(t+1) n}$. Let \breve{O}_{t} be the Gray map from D_{t}^{n} to $Z_{2}^{2(t+1) n}$. Then $\breve{O}_{t} \sigma=\eta \breve{O}_{t}$.
Theorem 27. If C is a cyclic DNA code of length n over D_{t} then $\breve{O}_{t}(C)$ is a binary quasi-cyclic DNA code of length $2(t+1) n$ with index $2(t+1)$.

6. Skew codes over D_{t}

We are interested in studying skew codes over D_{i} for $i=2, \ldots, t$, in this section. Firstly, we define a nontrivial automorphism θ_{t} on the ring D_{t} for $t \geq 2$, by $\theta_{t}\left(v_{i}\right)=$ $v_{i+1(\bmod t)}$, where $i=1,2, \ldots, t$.

For example, for $t=2$, a nontrivial automorphism θ_{2} on the ring D_{2} as follows

$$
\begin{array}{rll}
\theta_{2} & : & D_{2} \longrightarrow D_{2} \\
d_{0}+v_{1} d_{1}+v_{2} d_{2} & \longmapsto & d_{0}+v_{1} d_{2}+v_{2} d_{1}
\end{array}
$$

where $d_{0}, d_{1}, d_{2} \in Z_{4}$.
The ring $D_{t}\left[x, \theta_{t}\right]=\left\{a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}: a_{i} \in D_{t}, i=0, \ldots, n-1, n \in N\right\}$ is called skew polynomial ring. The ring is a non-commutative ring. The addition in the ring $D_{t}\left[x, \theta_{t}\right]$ is the usual polynomial additional and multiplication is defined using the rule, $\left(a x^{i}\right)\left(b x^{j}\right)=a \theta_{t}^{i}(b) x^{i+j}$. The order of the automorphism θ_{t} is t .

Definition 28. A subset $C^{(t)}$ of D_{t}^{n} is called a skew cyclic code of length n if $C^{(t)}$ satisfies the following conditions,
i) $C^{(t)}$ is a submodule of D_{t}^{n},
ii) If $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C^{(t)}$, then $\sigma_{\theta_{t}}(c)=\left(\theta_{t}\left(c_{n-1}\right), \theta_{t}\left(c_{0}\right), \ldots, \theta_{t}\left(c_{n-2}\right)\right) \in$ $C^{(t)}$

Let $f_{t}(x)+\left\langle x^{n}-1\right\rangle$ be an element in the set $S_{t, n}=D_{t}\left[x, \theta_{t}\right] /\left\langle x^{n}-1\right\rangle$ and let $r_{t}(x) \in D_{t}\left[x, \theta_{t}\right]$. Define multiplication from left as follows,

$$
r_{t}(x)\left(f_{t}(x)+\left\langle x^{n}-1\right\rangle\right)=r_{t}(x) f_{t}(x)+\left\langle x^{n}-1\right\rangle
$$

for any $r_{t}(x) \in D_{t}\left[x, \theta_{t}\right]$.
Theorem 29. $S_{t, n}$ is a left $D_{t}\left[x, \theta_{t}\right]$-module where multiplication defined as in above.
Theorem 30. A code $C^{(t)}$ in $S_{t, n}$ of length n is a skew cyclic code if and only if $C^{(t)}$ is a left $D_{t}\left[x, \theta_{t}\right]$-submodule of the left $D_{t}\left[x, \theta_{t}\right]$-module $S_{t, n}$.
Theorem 31. Let $C^{(t)}$ be a skew cyclic code over D_{t} of length n and let $f_{t}(x)$ be a polynomial in $C^{(t)}$ of minimal degree. If $f_{t}(x)$ is monic polynomial, then $C^{(t)}=\left\langle f_{t}(x)\right\rangle$, where $f_{t}(x)$ is a right divisor of $x^{n}-1$.
Definition 32. A subset $C^{(t)}$ of D_{t}^{n} is called a skew quasi-cyclic code of length n if $C^{(t)}$ satisfies the following conditions,
i) $C^{(t)}$ is a submodule of D_{t}^{n},
ii) If $e=\left(e_{0,0}, \ldots, e_{0, l-1}, e_{1,0}, \ldots, e_{1, l-1}, \ldots, e_{s-1,0}, . ., e_{s-1, l-1}\right) \in C^{(t)}$, then $\tau_{\theta_{t}, s, l}(e)=$ $\left(\theta_{t}\left(e_{s-1,0}\right), \ldots, \theta_{t}\left(e_{s-1, l-1}\right), \theta_{t}\left(e_{0,0}\right), \ldots, \theta_{t}\left(e_{0, l-1}\right), \ldots, \theta_{t}\left(e_{s-2,0}\right), \ldots, \theta_{t}\left(e_{s-2, l-1}\right)\right) \in C^{(t)}$.

We note that $x^{s}-1$ is a two sided ideal in $D_{t}\left[x, \theta_{t}\right]$ if $t \mid s$ where t is the order of θ_{t}. So $D_{t}\left[x, \theta_{t}\right] /\left(x^{s}-1\right)$ is well defined.

The ring $R_{s}^{l}=\left(D_{t}\left[x, \theta_{t}\right] /\left(x^{s}-1\right)\right)^{l}$ is a left $R_{s}=D_{t}\left[x, \theta_{t}\right] /\left(x^{s}-1\right)$ module by the following multiplication on the left $f(x)\left(g_{1}(x), \ldots, g_{l}(x)\right)=\left(f(x) g_{1}(x), \ldots f(x) g_{l}(x)\right)$. If the map Λ_{t} is defined by

$$
\Lambda_{t}: D_{t}^{n} \longrightarrow R_{s}^{l}
$$

$\left(e_{0,0}, \ldots, e_{0, l-1}, e_{1,0}, \ldots, e_{1, l-1}, \ldots, e_{s-1,0}, \ldots, e_{s-1, l-1}\right) \mapsto\left(c_{0}(x), \ldots, c_{l-1}(x)\right)$ such that $c_{j}(x)=\sum_{i=0}^{s-1} e_{i, j} x^{i} \in R_{s}$ where $j=0,1, \ldots, l-1$ then the map Λ_{t} gives a one to one correspondence D_{t}^{n} and the ring R_{s}^{l}.
Theorem 33. A subset $C^{(t)}$ of D_{t}^{n} is a skew quasi-cyclic code of length $n=$ sl and index l if and only if $\Lambda_{t}\left(C^{(t)}\right)$ is a left R_{s}-submodule of R_{s}^{l}.
Definition 34. Let θ_{t} be an automorphism of D_{t}, λ_{t} be a unit in $D_{t}, C^{(t)}$ be a linear code D_{t}. A linear code $C^{(t)}$ is said to be a skew constacyclic code if $C^{(t)}$ is closed under the $\theta_{t}-\lambda_{t}$-constacyclic shift $\tau_{\theta_{t}, \lambda_{t}}: D_{t}^{n} \longrightarrow D_{t}^{n}$ defined by

$$
\tau_{\theta_{t}, \lambda_{t}}\left(c_{0}, \ldots, c_{n-1}\right)=\left(\theta_{t}\left(\lambda_{t} c_{n-1}\right), \theta_{t}\left(c_{0}\right), \ldots, \theta_{t}\left(c_{n-2}\right)\right)
$$

7. The Gray images of skew cyclic, quasi-cyclic and constacyclic codes over D_{t}

Proposition 35. Let $\sigma_{\theta_{t}}$ be the skew cyclic shift on D_{t}^{n}, Let Φ_{t} be the Gray map from D_{t}^{n} to $Z_{4}^{(t+1) n}$ and φ be as in the preliminaries. Then

$$
\Phi_{t} \sigma_{\theta_{t}}=v \varphi \Phi_{t}
$$

where v is map such that $v\left(x_{1}, x_{2}, \ldots, x_{t+1}\right)=\left(x_{1}, x_{t+1}, x_{t}, \ldots, x_{2}\right)$ for $x_{i} \in Z_{4}^{n}, i=$ $1, \ldots, t+1$.

Proof. It is proved that as in the proof the Proposition 3.
Theorem 36. The Gray image of a skew cyclic code over D_{t} of length n is permutation equivalent to a quasi-cyclic code of index $t+1$ with length $(t+1) n$.

Proof. It is proved that as in the proof the Theorem 4.
Proposition 37. Let $\tau_{\theta_{t}, s, l}$ be the skew quasi-cyclic shift, Γ be as in the preliminaries, Φ_{t} be the Gray map from D_{t}^{n} to $Z_{4}^{(t+1) n}$. Then

$$
\Phi_{t} \tau_{\theta_{t}, s, l}=v \Gamma \Phi_{t}
$$

where v is map such that $v\left(x_{1}, x_{2}, \ldots, x_{t+1}\right)=\left(x_{1}, x_{t+1}, x_{t}, \ldots, x_{2}\right)$ for $x_{i} \in Z_{4}^{n}, i=$ $1, \ldots, t+1$.

Theorem 38. The Gray image of a skew quasi-cyclic code over D_{t} of length n is permutation equivalent to a l-quasi-cyclic code of index $t+1$ with length $(t+1) n$.

Proposition 39. Let $\tau_{\theta_{t}, \lambda}$ be the $\theta_{t}-\lambda_{t}$-cyclic shift, let Φ_{t} be the Gray map from D_{t}^{n} to $Z_{4}^{(t+1) n}$ and $\sigma_{\lambda_{t}}$ be constacyclic shift. Then

$$
\Phi_{t} \tau_{\theta_{t}, \lambda t}=v \Phi_{t} \sigma_{\lambda_{t}}
$$

where v is a map such as above.
Theorem 40. The Gray image of a skew constacyclic code over D_{t} of length n is permutation equivalent to the Gray image of a constacyclic code over D_{t} of length n.

8. Skew cyclic DNA codes over D_{t}

In this section, we introduce a family of DNA skew cyclic codes over D_{t}. We study its property of being reverse complement.

For all $x \in D_{t}$, we have

$$
\theta_{t}(x)+\theta_{t}(\bar{x})=1
$$

Theorem 41. Let $C^{(t)}=\left\langle f_{t}(x)\right\rangle$ be a skew cyclic code over D_{t} of length n, where $f_{t}(x)$ is a monic polynomial in $C^{(t)}$ of minimal degree. If $C^{(t)}$ is reversible complement, the polynomial $f_{t}(x)$ is self reciprocal and $(1,1, \ldots, 1) \in C^{(t)}$.

Proof. Let $C^{(t)}=\left\langle f_{t}(x)\right\rangle$ be a skew cyclic code over D_{t}, where $f_{t}(x)$ is a monic polynomial in $C^{(t)}$. Since $(0,0, \ldots, 0) \in C^{(t)}$ and $C^{(t)}$ is reversible complement, we have $(\overline{0}, \overline{0}, \ldots, \overline{0})=(1,1, \ldots, 1) \in C^{(t)}$.

Let $f_{t}(x)=1+a_{1}^{t} x+\ldots+a_{r-1}^{t} x^{r-1}+x^{r}$. Since $C^{(t)}$ is reversible complement, we have $f_{t}^{r c}(x) \in C^{(t)}$. That is

$$
f_{t}^{r c}(x)=1+x+\ldots+x^{n-r-2}+0 x^{n-r-1}+{\overline{a^{t}}}_{r-1} x^{n-r}+\ldots+{\overline{a^{t}}}_{1} x^{n-2}+0 x^{n-1}
$$

Since $C^{(t)}$ is a linear code, we have $f_{t}^{r c}(x)-\frac{x^{n}-1}{x-1} \in C^{(t)}$. This implies that

$$
-x^{n-r-1}+\left({\overline{a^{t}}}_{r-1}-1\right) x^{n-r}+\ldots+\left({\overline{a^{t}}}_{1}-1\right) x^{n-2}-x^{n-1} \in C^{(t)}
$$

By multiplying on the right by x^{r+1-n}, we have

$$
-1+\left({\overline{a^{t}}}_{r-1}-1\right) \theta_{t}(1) x+\ldots+\left({\overline{a^{t}}}_{1}-1\right) \theta_{t}^{r-1}(1) x^{r-1}-\theta_{t}^{r}(1) x^{r} \in C^{(t)}
$$

By using $a+\bar{a}=1$, for $a \in D_{t}$, we have

$$
-1-a_{r-1}^{t} x-a_{r-2}^{t} x^{2}-\ldots-a_{1}^{t} x^{r-1}-x^{r}=3 f_{t}^{*}(x) \in C^{(t)}
$$

Since $C^{(t)}=\left\langle f_{t}(x)\right\rangle$, there exist $q_{t}(x) \in D_{t}\left[x, \theta_{t}\right]$ such that $3 f_{t}^{*}(x)=q_{t}(x) f_{t}(x)$. Since $\operatorname{deg} f_{t}(x)=\operatorname{deg} f_{t}^{*}(x)$, we have $q_{t}(x)=1$. Since $3 f_{t}^{*}(x)=f_{t}(x)$, we have $f_{t}^{*}(x)=3 f_{t}(x)$. So, $f_{t}(x)$ is self reciprocal.

Theorem 42. Let $C^{(t)}=\left\langle f_{t}(x)\right\rangle$ be a skew cyclic code over D_{t} of length n, where $f_{t}(x)$ is a monic polynomial in $C^{(t)}$ of minimal degree. If $(1,1, \ldots, 1) \in C^{(t)}$ and $f_{t}(x)$ is self reciprocal, then $C^{(t)}$ is reversible complement.

Proof. Let $f_{t}(x)=1+a_{1}^{t} x+\ldots+a_{r-1}^{t} x^{r-1}+x^{r}$ be a monic polynomial of the minimal degree.

Let $c_{t}(x) \in C^{(t)}$. So, $c_{t}(x)=q_{t}(x) f_{t}(x)$, where $q_{t}(x) \in D_{t}\left[x, \theta_{t}\right]$. By using Lemma 19, we have $c_{t}^{*}(x)=\left(q_{t}(x) f_{t}(x)\right)^{*}=q_{t}^{*}(x) f_{t}^{*}(x)$. Since $f_{t}(x)$ is self reciprocal, so $c_{t}^{*}(x)=q_{t}^{*}(x) e_{t} f_{t}(x)$, where $e_{t} \in Z_{4} \backslash\{0\}$. Therefore $c_{t}^{*}(x) \in C^{(t)}=\left\langle f_{t}(x)\right\rangle$. Let $c_{t}(x)=c_{0}^{t}+c_{1}^{t} x+\ldots+c_{r}^{t} x^{r} \in C^{(t)}$. Since $C^{(t)}$ is a cyclic code, we get

$$
c_{t}(x) x^{n-r-1}=c_{0}^{t} x^{n-r-1}+c_{1}^{t} x^{n-r}+\ldots+c_{r}^{t} x^{n-1} \in C^{(t)}
$$

The vector correspond to this polynomial is

$$
\left(0,0, \ldots, 0, c_{0}^{t}, c_{1}^{t}, \ldots, c_{r}^{t}\right) \in C^{(t)}
$$

Since $(1,1, \ldots, 1) \in C^{(t)}$ and $C^{(t)}$ linear, we have

$$
(1,1, \ldots, 1)-\left(0,0, \ldots, 0, c_{0}^{t}, c_{1}^{t}, \ldots, c_{r}^{t}\right)=\left(1, \ldots, 1,1-c_{0}^{t}, \ldots, 1-c_{r}^{t}\right) \in C^{(t)}
$$

By using $a+\bar{a}=1$, for $a \in D_{t}$, we get

$$
\left(1,1, \ldots, 1, \overline{c_{0}^{t}}, \ldots, \overline{c_{r}^{t}}\right) \in C^{(t)}
$$

which is equal to $\left(c_{t}(x)^{*}\right)^{r c}$. This shows that $\left(\left(c_{t}(x)^{*}\right)^{r c}\right)^{*}=c_{t}(x)^{r c} \in C^{(t)}$.

9. MDS codes over D_{t}

In this section, we investigate some properties of MDS codes over D_{t}.
It is well known that $C^{(i)}$ is a linear code of length n over D_{i}, where $i=1,2, \ldots, t$ and $d_{H_{i}}$ is the minimum distance, then

$$
\left|C^{(i)}\right| \leq\left|D_{i}\right|^{n-d_{H_{i}}+1}
$$

where $i=1,2, \ldots, t$. So $d_{H_{i}} \leq n-\log _{\left|D_{i}\right|}\left|C^{(i)}\right|+1$, where $i=1,2, \ldots, t$. This inequality is called Singleton bound. If $C^{(i)}$, where $i=1,2, \ldots, t$ meet the Singleton bound, then $C^{(i)}$, where $i=1,2, \ldots, t$ are called MDS codes.

Lemma 43. Let C be a linear code of length nover Z_{4}, the C is a MDS code if and only if C is either Z_{4}^{n} with parameters $\left(n, 4^{n}, 1\right)$ or $\langle 1\rangle$ with parameters $(n, 4, n)$ or $\langle 1\rangle^{\perp}$ with parameters $\left(n, 4^{n-1}, 2\right)$, where 1 denotes the all 1 vectors, [17].

We know that if $C^{(i)}$ is a linear code of length n over D_{i}, where $i=1,2, \ldots, t$, then

$$
C^{(i)}=\left(1-v_{1}-\cdots-v_{i}\right) C_{1}^{(i)} \oplus v_{1} C_{2}^{(i)} \oplus \cdots \oplus v_{i} C_{i+1}^{(i)}
$$

where $C_{j}^{(i)}$ is a linear code of length n over Z_{4}, where $j=1, \ldots, i+1$.
Let $d_{H_{i}}$ be the Hamming distance of $C^{(i)}$. Then $d_{H_{i}}=\min \left\{d_{H_{i, j}}\right\}$ for $1 \leq i \leq t$, $1 \leq j \leq i+1$, where $d_{H_{i, j}}$ is Hamming distance of $C_{j}^{(i)}$. So the Singleton bound can be written as

$$
d_{H_{i}} \leq n-\frac{1}{i+1} \sum_{j=1}^{i+1} \log _{4}\left|C_{j}^{(i)}\right|+1
$$

Lemma 44. Let $C^{(i)}$ be a MDS codes over D_{i}, where $i=1,2, \ldots, t$.
i. If $d_{H_{i}}=1$, then all of $C_{j}^{(i)}, j=1, \ldots, i+1$, are MDS codes with parameters $\left(n, 4^{n}, 1\right)$.
ii. If $d_{H_{i}}=2$, then all of $C_{j}^{(i)}, j=1, \ldots, i+1$, are MDS codes with parameters $\left(n, 4^{n-1}, 2\right)$.
Proof. (i) If $d_{H_{i}}=1$, then $\sum_{j=1}^{i+1} \log _{4}\left|C_{j}^{(i)}\right|=(i+1) n$. Since $C^{(i)}$ is a MDS code over D_{i}, where $i=1,2, \ldots, t$, but $\left|C_{j}^{(i)}\right| \leq 4^{n}$, then the identity is true iff $\left|C_{j}^{(i)}\right|=4^{n}$, where $1 \leq i \leq t, 1 \leq j \leq i+1$. Therefore $C^{(i)}$ is a $\left(n, 4^{(i+1) n}, 1\right)$ MDS code iff all of $C_{j}^{(i)}$ are $\left(n, 4^{n}, 1\right)$ MDS codes, where $1 \leq i \leq t, 1 \leq j \leq i+1$.
(ii) If $d_{H_{i}}=2$, then $\sum_{j=1}^{i+1} \log _{4}\left|C_{j}^{(i)}\right|=(i+1)(n-1)$. Since $d_{H_{i}}=\min \left\{d_{H_{i, j}}\right\}$, then $d_{H_{i, j}} \geq 2$, for $1 \leq i \leq t, j=1, \ldots, i+1$. By using Singleton bound of code over Z_{4}, we get $\left|C_{j}^{(i)}\right| \leq 4^{n-d_{H_{i, j}}+1}$. For all i, since $d_{H_{i, j}} \geq 2$, we have $4^{n-d_{H_{i}, j}+1} \leq 4^{n-1}$. Then we have all of $C_{j}^{(i)}$ are $\left(n, 4^{n-1}, 2\right)$, where $1 \leq i \leq t, 1 \leq j \leq i+1$.

Theorem 45. If $C^{(i)}$ is a MDS code over D_{i}, where $i=1,2, \ldots, t$, then there is at least one $C_{j}^{(i)}, 1 \leq i \leq t, j=1, \ldots, i+1$, be MDS code.

Proof. It is proved that as in the proof the Theorem 4.3 in [7].
Theorem 46. If $C^{(i)}$ is a MDS code over D_{i}, where $i=1,2, \ldots, t$ and there exist i numbers $M D S$ codes of $C_{j}^{(i)}, 1 \leq i \leq t, 1 \leq j \leq i+1$, then the other $C_{j}^{(i)}$ must be MDS code and all $C_{j}^{(i)}$ with same parameters.

Proof. It is proved that as in the proof the Theorem 4.4 in [7].
Corollary 47. $C^{(i)}$ is a MDS code over D_{i} iff all of $C_{j}^{(i)}$ for $1 \leq i \leq t, j=1, \ldots, i+1$ are MDS codes over Z_{4} with same parameters.

10. Conclusion

In this paper, we generalize some results which are given in the papers [6] and [7], to the linear codes over D_{i}, where $i=1,2, \ldots, t$.

References

[1] Abualrub, T., Ghrayeb, A. and Zeng, X., Construction of cyclic codes over GF(4) for DNA computing, J. Franklin Institute, 343, (2006) 448-457.
[2] Abualrub, T. and Seneviratne, P., On θ-cyclic codes over $F_{2}+v F_{2}$, Australasian Journal of Com., 54, (2012) 115-126.
[3] Bandi, R. K. and Bhaintwal, M., Codes over $Z_{4}+v Z_{4}$, IEEE, (2014) 978-14799-3080-7.
[4] Bhaintwal, M., Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr., DOI: 0.1007/s10623-011-9494-0.
[5] Cengellenmis, Y., Dertli, A. and Dougherty, S.T., Codes over an infinite family of rings with a Gray map, Designs, Codes and Cryptography, 72, (2014) 559-580.
[6] Dertli, A. and Cengellenmis, Y., On the codes over the ring $Z_{4}+u Z_{4}+v Z_{4}$ cyclic, constacyclic, quasi-cyclic codes, their skew codes, cyclic DNA and skew cyclic DNA codes, Journal of Science, to be submitted.
[7] Dertli, A. and Cengellenmis, Y., Some results on linear codes over the finite ring $Z_{4}+u Z_{4}+$ $v Z_{4}$; MacWilliams identities, MDS codes, Journal of Science and Arts, (2016) 36, 209-215.
[8] Dertli, A. and Cengellenmis, Y. and Eren, S., On the Codes over a Semilocal Finite Ring, Inter. Journal of Advanced Computer Science \mathcal{G} Applications, 6, (2015) 283-292.
[9] Dertli, A. and Cengellenmis, Y. and Eren, S., On Skew Cyclic and Quasi-cyclic Codes Over $F_{2}+u F_{2}+u^{2} F_{2}$, Palestine Journal of Mathematics, 4, (2015) 540-546.
[10] Dougherty, S. T. and Shiromoto, K., MDS codes over Z_{k}, IEEE Trans. Inform. Theory, (2000) 46, 265-269.
[11] Dougherty, S. T. and Shiromoto, K., Maximum distance codes over rings of order 4, IEEE Trans. Inform. Theory, 47, (2001) 400-404.
[12] Gaborit, P. and King, O. D., Linear construction for DNA codes, Theor. Computer Science, (2005) 334, 99-113.
[13] Gao, J. and Gao, Y., Some Results on Linear Codes over $Z_{4}+v Z_{4}$, arXiv:1402.6 771v1, (2014).
[14] Guenda, K. and Gulliver, T. A., Construction of cyclic codes over $F_{2}+u F_{2}$ for DNA computing, $A A E C C, 24$, (2013) 445-459.
[15] Hammons, A. R., Kumar, V., Calderbank, A. R., Sloane, N. J. A. and Sole, P., The $Z_{4^{-}}$ linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inf. Theory, 40, (1994) 301-319.
[16] Jitman, S., Ling, S. and Udomkovanich, P., Skew constacyclic codes over finite chain rings, AIMS Journal.
[17] Li, P., Guo, X. and Zhu, S., Some results of linear codes over the ring $Z_{4}+u Z_{4}+v Z_{4}+u v Z_{4}$, arXiv:1601.04453v1, (2016).
[18] Pattanayak, S. and Singh, A. K., On cyclic DNA codes over the ring $Z_{4}+u Z_{4}$, arXiv:1508.02015v1, (2015).
[19] Shiromoto, K., Singleton bounds for codes over finite rings, Journal of Algebraic Combinatorics, 12, (2000) 95-99.
[20] Wu, M., Skew cyclic and quasi-cyclic codes of arbitrary length over Galois rings, International Journal of Algebra, 7, (2013) 803-807.
[21] Yildiz, B. and Karadeniz, S., Linear codes over $Z_{4}+u Z_{4}$, MacWilliams identities, projections and formally self-dual codes, Finite fields and their applications, 27, (2014) 24-40.
[22] Zhu, S. and Wang, L., A class of constacyclic codes over $F_{p}+v F_{p}$ and their Gray images, Discrete Math. 311, (2011), 2677-2682.
Current address: Abdullah Dertli: Ondokuz Mayıs University, Faculty of Arts and Sciences, Mathematics Department, Samsun, Turkey

E-mail address: abdullah.dertli@gmail.com
ORCID Address: http://orcid.org/0000-0001-8687-032X
Current address: Yasemin Cengellenmis: Trakya University, Faculty of Sciences, Mathematics Department, Edirne, Turkey

E-mail address: ycengellenmis@gmail.com
ORCID Address: http://orcid.org/0000-0002-8133-9836

[^0]: Received by the editors: August 27, 2016; Accepted: December 30, 2017.
 2010 Mathematics Subject Classification. 94B05, 94B15.
 Key words and phrases. Cyclic codes, skew codes, DNA codes, MDS codes.

