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 Abstract 

Notches are the stress raiser regions. Along the notch section, not only the stress 

distribution becomes non-uniform, but also the stress level reaches the maximum 

value. These geometrical disorders can be undesirable such as casting cavity but 
sometimes these disorders are created deliberately for assembly process such as 

keyway holes or shaft steps. Because of the necessity of these notches. This is 

important to understand material behavior along this region. 

In this study, three different strain paths were generated by the cyclic tensile and 

torsional loadings and strains of the notch root of a shaft which contains 
circumferential notch, were investigated through the finite element method 

(FEM). MSC. Marc commercial program have been used in this study as finite 

element software. The results have been obtained for kinematic hardening rules 
and compared with the experimental results obtained from literature studies. Also 

in this study, a subroutine file was used to calculate the Chaboche kinematic 

hardening rule parameters according to Swift equation.  
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1. INTRODUCTION

The main purpose of this study is to investigate the notch root strains for circumferentially notched bar 

under the combined stress situation using FEM and also examine the effect of the back stress value for 

kinematic hardening. MSC.Marc software was used for finite element simulations. Strain paths were 

created through the tensile loadings and torsial loadings together.  

There is a lot of similar studies in literature. Neuber [1] examined the shear stress distribution on sharp 

notched prismatic material subjected to shear loading and developed a mathematical model establishing 

relationship between elastic stress concentration factor, elastic – plastic stress factor and strain factor. 

Crews Jr. [2] investigated notch root stress and strains under the cyclic loadings by using Neuber and 

modified Stowell equations for different materials SAE 4130 and 2024-T3 aluminum alloy which had the 

same notch geometry. Barkey [3] developed a method for calculating the elasto-plastic strains at notch root 

under multiaxial loadings and compared the results with the finite element analyzes results. He recorded 

that the finite element results were compatible with experimental results. Hoffman [4] realized FE analysis 

of a shaft which has circumferential notch under incremental axial loading, bending moments. Koettgen [5] 

et al. used notch stress calculation method suggested by Hoffman and Seeger on a fatigue assessment of 

preloaded fuel injection pump and compared notch stress –strain results with elasto plastic FE analyzes.
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Moftakhar [6] calculated notch stress – strain of filled and empty both two shafts using FE method under 

incremental axial loading and bending loads and he obtained suitable correlations. Firat [7] modeled 

circumferentially notched round bar and fulfilled FE analysis under combined axial and torsion loading and 

he compared notch root deformations with the notch root strain history. For both elastic and elastoplastic 

notch deformations, he obtained suitable results. Firat [8] also proposed simplified method related to stress 

– strain calculations at notch root under bending – torsion loads for fatigue life predictions. This method is

based on the total strain energy density and he performed in phase, out phase cyclic loading simulations of 

SAE 1045 steel under combined bending – torsion loads according to constant amplitude. Critical plane 

based multiaxial damage assessments was fulfilled through Smith – Watson – Topper and Fatemi – Socie 

criteria. For both criteria, suitable cycle predictions were obtained in comparison with crack initiation 

cycles.  

Figure 1. Circumferentially notched bar in 2D [3] 

In this study, a circumferentially notched bar was modeled using Ansys software and the model was 

transferred to Marc finite element software. The dimensions of the circumferentially notched bar can be 

seen in Fig 1. Materials plastic properties were calculated according to Swift equation and the plastic 

parameters of the Swift equation were obtained from Hollomon parameters. In order to calculate materials 

plasticity parameters, a user subroutine file was used. This subroutine file requires Swift parameters for 

isotropic hardening solutions and besides the Swift parameters, saturation stress and saturation strain values 

for kinematic hardening solutions. So as to decrease solution time, because of the symmetry, half of the 

model was generated. Boundary condition of the half symmetric model can be shown in Fig 2. 

Figure 2. Boundary conditions applied on circumferentially notched bar in 2D 

Torsional loadings were applied to 

the nodes outside of the top surface 

Tension and compression loading was 

applied to the nodes on the top surface 

Symmetry boundary conditions were applied to 

the all nodes being on bottom surface 
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2. MATERIALS AND METHODS

2.1. Determination of Flow Curve 

Material of the notched bar was determined as SAE1070 steel. The mechanical properties of SAE1070 steel 

were procured from the literature studies. The mechanical properties of the material are shown in Table 1. 

Table 1. Mechanical properties of SAE1070 [3] 

Parameter  Value 

Young Modulus [MPa] 210000 

Poisson Ratio 0,3 

Yield Stress [MPa] 250 

Cyclic Strength Coefficient [MPa] 1736 

Cyclic Hardening Exponent 0,199 

The stress values beyond the yield stress can be calculated according to power law equation shown in Eq. 

(1) [9]. 

σTrue = K .  εp
n          (1) 

In the equation above, K is the strength coefficient, n is the strain hardening exponent. Plastic strain which 

is expressed as ‘’Ɛp‘’ can be calculated by the following equation.  

εp = εT −  
σTrue

E
 (2) 

In this study, materials plastic parameters were calculated according to Swift equation and in order to obtain 

Swifts parameters, curve fitting method was implemented in Excel program. The flow curve obtained from 

the Hollomon power equation was matched with the Swift’s equation. According to Swift’s equation, true 

stress beyond the yield strength can be expressed by the following equation [9]. 

σTrue = C . ( 𝜀0 + 𝜀𝑝)𝑝  (3) 

In Swift equation, C is the strength coefficient, p is the hardening exponent. To determine these parameters, 

curve fitting was applied and strength coefficient was obtained as 1800 MPa, hardening exponent was 

obtained as 0,215. 

Figure 3. Curve fitting for Swift parameters 
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Along with the yield criteria and flow rule, hardening rule is required to define plasticity. Hardening rules 

describe the change of the yield surface and can be disintegrated into isotropic hardening and kinematic 

hardening rules. Backstress concept is associated with the kinematic hardening rule. Armstrong and 

Frederick expressed the backstress tensor increment as following equation [7], [8].  

dα =
2

3
 C dεp − γ α dp                    (4) 

In Eq. (4), C and γ are the material constants; dεp and dp are the plastic strain tensor and equivalent plastic 

strain increment respectively. Chaboche and Rousselier disintegrated the back stress tensor into few parts 

which has different hardening properties. It is assumed that 5 parts will be adequate to calculate the plastic 

part of the material [7], [8], [10], [11], [14], [15].  

a = ∑ a(i)n
i=1  ;      i =  1,2, . . . , m                                         (5)  

dα(i) =
2

3
 C(i) dεp − γ(i) α dp                               (6) 

‘’i'’ represents the arbitrary partition number which the back stress was divided. Equivalent plastic strain 

increment can be expressed as following inequality [7], [16]. 

0 ≤ dp(i) ≤ √
2

3
 εp εp                   (7) 

Jiang and Sehitoglu proposed another kinematic hardening model and define the backstress tensor 

increment as following equation [7], [14].  

dα(i) = c(i) . r(i). [n − (
‖α(i)‖

r(i) )

(χ)+1

. L(i)] . dp ;      i =  1,2, . . . , m               (8)        

                    

Here c(i), r(i) and χ(i) are the scalar parameters; L is the unit tensor of the back stress tensor which can be 

expressed as following equation [7]. 

L(i) = 
α(i)

‖α(i)‖
;      (i = 1, 2, … , m)                                            (9)      

n is the unit tensor of the yield surface normal which belongs to the related stress point and expressed by 

Eq. (10) [7], [12], [17]. 

n = 
S−α

‖S−α‖
                               (10) 

Yield surface is the limit which the material can endure without exposed to any plastic deformation and can 

be define by following equation [7], [12]. 

F = ‖S − α‖ − √
2

3
 . σ0                  (11) 

In Eq. (11), S is the deviatoric stress component. According to the consistency condition, yield surface 

remains steady during plastic deformation as expressed in Eq. (12) [7] [12]. 

dF = 0                   (12) 

Additionally, consistency condition can be expressed as Eq. (13). 

dS ∶  n − dα ∶  n = 0                 (13) 

Plastic hardening modulus can be defined by Eq. (14). 

h = 
dα∶ n

dp
                  (14) 

Through substituting Eq. (8) and Eq. (14), hardening modulus may be expressed as following equation [7], 

[12]. 
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h = c(i) r(i) (1 − (
‖α(i)‖

r(i) )

χ(i)+1

 L(i) ∶ n) ;     (i = 1, 2, … , m)                             (15) 

c(i), r(i) which are also known as Jiang parameters can be calculated according to the following equations 

[7], [10], [11], [12], [14], [15]. 

c(i) = √
2

3
 .

1

ε
a(i)
p  ;      i =  1,2, . . . , m                                                    (11)         

r(i) =
2

3
 .

H(i)−H(i+1)

c(i)  ;      i =  1,2, . . . , m                              (12) 

In the Eq. (12), H represents the slope between two points in sequence which belong to the stabilized cyclic 

stress –strain curve [7]. These points have to be selected between yield stress and ultimate tensile stress. 

Slope of the curve can be calculated according to Eq. 13 [7], [12]. 

H(i) =
σa(i)−σa(i−1)

ε
a(i)
p

−ε
a(i−1)
p   ;      i =  1,2, . . . , m                             (13) 

Hardening slope which belongs to the last point is zero. Other initial conditions are described in Eq. (14) 

[7], [10], [11], [12]. 

σa(0) = 0; εa(0) = 0; H(m+1) = 0                (14) 

2.2. Finite Element Method 

The model was generated in Ansys software. The coordinate systems of the nodes were transferred from 

the cartesian to cylindirical coordinate system and the boundary conditions were regulated for cylindirical 

coordinate system in Ansys. Then the model was transferred from Ansys to Marc software.  Element density 

at the notch root was increased toward to the specimen surface because it is assumed that the stress level 

will reach the maximum level on surface.  

 

     

                              a)                                                            b)                           c) 

Figure 4. a) Model created through Ansys software. b) Cyl. coord. sys. of the nodes. c) Bottom view of the 

model. 

 

In Fig. 5, green line represents ϴ axis which is transformed from the y axis and black line represents the r 

axis which is transformed from the x axis. Also there is z axis in cylindirical coordinate system which is 

perpendicular to the r - ϴ plane. The notched bar model transferred to Marc software can be seen in Fig 5. 
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Figure 5. Model transferred to Marc software 

 

2.2.1. Boundary Conditions  

There strain paths which contain torsional and cyclic tension-compression loadings, were applied to the 

notched shaft. These strain paths are proportional loading, box type non-proportional loading and zig-zag 

type non-proportional loading, Strain paths can be shown in Fig 6.  

 

 

                                                   a)                  b)                 c) 

Figure 6. a) Proportional loading, b) Box type non-proportional loading. c)Zig-zag type non-

proportional loading [3], [7] 

 

The stress occurred at the notch root is determined according to the nominal stress defined by Barkey. The 

nominal stresses created at the notch root can be seen in following table.  
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Table 2. Nominal stresses created at the notch root [3], [7] 

Test Number Nominal Axial Stress [MPa] Nominal Shear Stress [MPa] Loading Condition 

    
1 296 193 Proportional Loading 

2 296 193 Non-proportional Loading (Box) 

3 296 193 Zig – Zag Type Loading 

 

Because of the stress concentration at the notch root, the stress level reach the maximum level which is 

much more than the nominal stress. So, stress values in table 2 represent the stresses calculated at the notch 

root according to geometrical dimensions regardless of plastic deformation and stress concentration.  

2.2.2. Subroutine File Regulations 

A subroutine file called as Hypela 2 was used in this study for calculating the kinematic hardening rule 

parameters. In order to regulate the isotropic hardening parameters, in addition to the Young Modulus, 

Poisson ratio and yield stress, Swift parameters should be entered to the subroutine file. Besides the 

isotropic parameters, back stress components which are saturation stress and saturation strain data were 

entered to this subroutine file. Analyzes according to kinematic hardening rule assumptions were realized. 

To predict the accurate back stress parameters certain analyzes were performed in rows. First back stress 

parameters are determined by offsetting the flow curve to below as yield stress and the saturation stress 

value determined as 855 MPa for saturation strain equal to 0,1. According to the deviations and the 

convergence to the experimental results, the back stress parameters were updated at every turn until the 

appropriate results were obtained. The first saturation stress and saturation strain values obtained from the 

flow curve can be shown in Fig 7. 

 

 

Figure 7. Saturation stress and saturation strain values obtained from the flow curve 

 

3. RESULTS AND DISCUSSION 

In order to examine strain behavior, a node which is located at the notch root, on the surface of the bar was 

examined. The results were compared with the experimental outcomes obtained by Barkey [3]. The results 

under proportional loadings can be shown in following Fig 8 for different saturation stresses. 
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                a)                                                                                                 b) 

   

            c)                                                                                                 d) 

Figure 8. Axial strain – shear strain results under proportional loadings. a) Saturation stress 855 MPa, 

b) Saturation stress 700 MPa, c) Saturation stress 650 MPa, d) Saturation stress 685 MPa 
 

 

The results under the box type non-proportional loadings can be shown in Fig 9 for different saturation 

stresses. 

 

   

              a)                                                                                                 b) 

   

             c)                                                                                                 d) 

Figure 9. Axial strain – shear strain results under box type non-proportional loadings. a) Saturation 

stress 855 MPa, b) Saturation stress 700 MPa, c) Saturation stress 650 MPa, d) Saturation stress 685 

MPa 

 

 

-0.60

-0.30

0.00

0.30

0.60

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

S
h

ea
r 

st
ra

in
 (

%
)

Axial strain (%)

Axial Strain - Shear Strain

Experimental X_sat_855

-0.60

-0.30

0.00

0.30

0.60

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

S
h

ea
r 

S
tr

ai
n

 (
%

)

Axial Strain (%)

Axial Strain - Shear Strain

Experimental X_sat_700

-0.60

-0.30

0.00

0.30

0.60

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

S
h

ea
r 

S
tr

ai
n

 (
%

)

Axial Strain (%)

Axial Strain - Shear Strain

Experimental X_sat_650

-0.60

-0.30

0.00

0.30

0.60

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

S
h

ea
r 

S
tr

ai
n

 (
%

)

Axia Strain (%)

Axial Strain - Shear Strain

Experimental X_sat_685

-0.80

-0.40

0.00

0.40

0.80

-0.40 -0.20 0.00 0.20 0.40

S
h

ea
r 

S
tr

ai
n

 (
%

)

Axial Strain (%)

Axial Strain - Shear Strain

Experimental X_sat_855

-0.60

-0.30

0.00

0.30

0.60

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

S
h

ea
r 

S
tr

ai
n

 (
%

)

Axial Strain (%)

Axial Strain - Shear Strain

Experimental X_sat_700

-0.60

-0.30

0.00

0.30

0.60

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

S
h

ea
r 

S
tr

ai
n

 (
%

)

Axial Strain (%)

Axial Strain - Shear Strain

Experimental X_sat_650

-0.60

-0.30

0.00

0.30

0.60

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

S
h

ea
r 

S
tr

ai
n

 (
%

)

Axial Strain (%)

Axial Strain - Shear Stress

Experimental X_sat_685



 

European Journal of Engineering and Natural Sciences  
 

5022 Aksen et al. 

The results under the zig-zag type non-proportional loadings can be shown in Fig 10 for different saturation 

stresses. 
 

   

               a)                                                                                               b) 

   

             c)                                                                                                d) 

Figure 10. Axial strain – shear strain results under zig-zag type non-proportional loadings. a) Saturation 

stress 855 MPa, b) Saturation stress 700 MPa, c) Saturation stress 650 MPa, d) Saturation stress 685 

MPa 
 

4. CONCLUSION 

In this study, under the combined loadings, notch root strain behaviors of a circumferentially notched bar 

were investigated.  These combined loadings were proportional loadings, box type non-proportional 

loadings and zig-zag type non-proportional loadings. Analysis were performed according to the kinematic 

hardening rule assumptions. To define the kinematic hardening rule parameters, a user subroutine file was 

used and the plasticity calculations were realized according to Swift equation. Swift parameters were 

obtained from the Hollomon parameters which were procured from the literature studies. In order to 

calculate the back stress, saturation stress values were updated repeatedly. Then the solutions were 

compared with the experimental results. 

It can be seen that the results were in accord with the experimental data. For all loading types, this is similar 

that, the results obtained according to 855 MPa saturation value, showed deviations in comparison with the 

experiments. Then the saturation stress values were updated to 700 MPa, 650 MPa and 685 MPa 

respectively. The results were close to each other and the deviations were fell off. For the results obtained 

according to the 650 MPa saturation stress, deviations were the lowest but the results diverged from the 

experimental results.  The optimal results were obtained according to the saturation stress equal to the 685 

MPa because the outcomes were in accord with the experimental results and the deviations were lower. In 

addition, calculating the strain behaviors at notch root according to the different back stress values is 

difficult and time consuming process. In this study this process accomplished readily through a user 

subroutine file. 
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