Araştırma Makalesi
BibTex RIS Kaynak Göster

Bilyalı dövme ve plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına etkisi

Yıl 2024, Cilt: 12 Sayı: 2, 1126 - 1135, 29.04.2024
https://doi.org/10.29130/dubited.1225813

Öz

Mevcut çalışmada endüstriyel uygulamalarda sıklıkla kullanılan AISI 4140 çeliğinin yüzey özelliklerinin geliştirilmesi ile aşınma dayanımının nasıl değiştiğinin belirlenmesi amaçlanmıştır. Bu kapsamda AISI 4140 çeliği farklı iki şiddette bilyalı dövme işlemine ve plazma nitrasyon işlemlerine tabi tutulmuştur. Mikroyapıda meydana gelen değişimler SEM ve XRD aracılığıyla belirlenirken yüzey dayanımında meydana gelen değişim mikrosertlik ölçümü ile belirlenmiştir. Plazma nitrürleme sonucunda yüzeyde oluşan ilave katmanın demir nitrür fazları olduğu görülmüş bununla beraber bilyalı dövme işlemlerinden sonra herhangi bir faz değişimi meydana gelmemiştir. Tüm işlemlerle birlikte numunelerin yüzey sertliklerinde artış sağlanmış ve plazma nitrürleme ile yüzeyde 700 HV0.2’ye varan sertlik artışı görülmüştür. Buna bağlı olarak en iyi aşınma dayanımı plazma nitrürleme işlemi ile sağlanmıştır. Aşırı bilyalı dövme de aşınma kayıplarının kayda değer miktarda azaltırken geleneksel bilyalı dövme işlemi aşınma dayanımı üzerinde sınırlı bir etki göstermiştir. Uygulanan yüzey modifikasyon işlemlerinin sağladığı sertlik artışı aşınma dayanımında görülen artışa neden olarak gösterilmiştir. Bilyalı dövmede beklenen etkinin görülmemesi ise yüzeyde oluşan pürüzlülüğe atfedilmiştir.

Destekleyen Kurum

Bartın Üniversitesi

Proje Numarası

2021-FEN-CY-005

Kaynakça

  • [1] Z. Yang, J. Zheng, K. Zhan, C. Jiang, and V. Ji, “Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating,” J. Mater. Res. Technol., vol. 18, pp. 978–989, 2022, doi: 10.1016/j.jmrt.2022.02.124.
  • [2] H. Yan, P. Zhu, Z. Chen, H. Zhang, Y. Zhang, and Y. Zhang, “Effect of shot peening on the surface properties and wear behavior of heavy-duty-axle gear steels,” J. Mater. Res. Technol., vol. 17, pp. 22–32, 2022, doi: 10.1016/j.jmrt.2021.12.126.
  • [3] Y. B. Bozkurt, H. Kovacı, A. F. Yetim, and A. Çelik, “Tribocorrosion properties and mechanism of a shot peened AISI 4140 low-alloy steel,” Surf. Coatings Technol., vol. 440, no. April, p. 128444, 2022, doi: 10.1016/j.surfcoat.2022.128444.
  • [4] H. Xiao et al., “Promoted low-temperature plasma nitriding for improving wear performance of arc-deposited ceramic coatings on Ti6Al4V alloy via shot peening pretreatment,” J. Mater. Res. Technol., vol. 19, pp. 2981–2990, 2022, doi: 10.1016/j.jmrt.2022.06.067.
  • [5] J. Wang, S. Qu, H. Shao, X. Hu, B. Guo, and X. Li, “Ultra-high fatigue property and fracture mechanism of modified 20CrMoH steel by gas carburizing technology combined with shot peening treatment,” Int. J. Fatigue, vol. 165, no. May, p. 107221, 2022, doi: 10.1016/j.ijfatigue.2022.107221.
  • [6] J. Zheng et al., “Surface characteristic and corrosion resistance of different plasma-sprayed coatings (Zn, Al6061and Zn/23Al) on S960 high strength steel with subsequent micro-shot peening,” Surf. Coatings Technol., vol. 451, no. July, p. 129046, 2022, doi: 10.1016/j.surfcoat.2022.129046.
  • [7] X. Han, Z. Zhang, B. Wang, S. J. Thrush, G. C. Barber, and F. Qiu, “Microstructures, compressive residual stress, friction behavior, and wear mechanism of quenched and tempered shot peened medium carbon steel,” Wear, vol. 488–489, no. 5988, p. 204131, 2022, doi: 10.1016/j.wear.2021.204131.
  • [8] M. Neslušan et al., “Barkhausen noise emission of AISI 304 stainless steel originating from strain induced martensite by shot peening,” J. Mater. Res. Technol., vol. 20, pp. 748–762, 2022, doi: 10.1016/j.jmrt.2022.07.107.
  • [9] T. Gundgire, T. Jokiaho, S. Santa-aho, T. Rautio, A. Järvenpää, and M. Vippola, “Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stresses,” Mater. Charact., vol. 191, no. July, 2022, doi: 10.1016/j.matchar.2022.112162. [10] Y. Zhang, K. Zhang, Z. Hu, T. Chen, L. Susmel, and B. Wei, “The synergetic effects of shot peening and laser-shot peening on the microstructural evolution and fatigue performance of a medium carbon steel,” Int. J. Fatigue, vol. 166, no. July 2022, p. 107246, 2023, doi: 10.1016/j.ijfatigue.2022.107246. [11] H. Liu, C. Jiang, M. Chen, L. Wang, and V. Ji, “Surface layer microstructures and wear properties modifications of Mg-8Gd-3Y alloy treated by shot peening,” Mater. Charact., vol. 158, no. June, p. 109952, 2019, doi: 10.1016/j.matchar.2019.109952.
  • [12] Z. Ma et al., “Improving the oxidation resistance of SIMP steel to liquid Pb-Bi eutectic by shot peening treatments,” Appl. Surf. Sci., vol. 578, no. July 2021, p. 151910, 2022, doi: 10.1016/j.apsusc.2021.151910.
  • [13] S. Kikuchi, K. Minamizawa, J. Arakawa, H. Akebono, S. Takesue, and M. Hayakawa, “Combined effect of surface morphology and residual stress induced by fine particle and shot peening on the fatigue limit for carburized steels,” Int. J. Fatigue, vol. 168, no. July 2022, p. 107441, 2023, doi: 10.1016/j.ijfatigue.2022.107441.
  • [14] M. Ozturk, F. Husem, I. Karademir, E. Maleki, A. Amanov, and O. Unal, “Fatigue crack growth rate of AISI 4140 low alloy steel treated via shot peening and plasma nitriding,” Vacuum, vol. 207, no. September 2022, p. 111552, 2023, doi: 10.1016/j.vacuum.2022.111552.
  • [15] T. Bergelt, P. Landgraf, T. Grund, G. Bräuer, and T. Lampke, “Modelling of layer development and nitrogen distribution on different microstructures during plasma nitriding,” Surf. Coatings Technol., vol. 447, no. July, 2022, doi: 10.1016/j.surfcoat.2022.128813.
  • [16] Q. Kang, H. Fan, X. Yang, X. An, and J. Hu, “Evolution of aluminum hydroxide film during plasma nitriding and its enhancement effect,” Mater. Lett., vol. 330, no. October 2022, p. 133348, 2023, doi: 10.1016/j.matlet.2022.133348.
  • [17] M. Naeem et al., “Improved wear resistance of AISI-1045 steel by hybrid treatment of plasma nitriding and post-oxidation,” Tribol. Int., vol. 175, no. June, pp. 3–13, 2022, doi: 10.1016/j.triboint.2022.107869.
  • [18] Z. Han et al., “Composition, microstructure, and phase evolution of 17-4PH stainless steel with a work-hardened layer in the low-temperature plasma nitriding process,” Surf. Coatings Technol., vol. 451, no. September, p. 128950, 2022, doi: 10.1016/j.surfcoat.2022.128950.
  • [19] S. Qu, C. Duan, X. Hu, S. Jia, and X. Li, “Effect of shot peening on microstructure and contact fatigue crack growth mechanism of shaft steel,” Mater. Chem. Phys., vol. 274, no. April, p. 125116, 2021, doi: 10.1016/j.matchemphys.2021.125116.
  • [20] B. Podgornik and A. Kocijan, “Surface & Coatings Technology Improving the surface properties of additive-manufactured Inconel 625 by plasma nitriding ˇ,” vol. 452, no. November 2022, pp. 16–19, 2023, doi: 10.1016/j.surfcoat.2022.129130.
  • [21] A. G. Poshtahani, S. Roostaie, and M. Azadi, “Plasma nitriding effect on tribological and corrosion properties of Stellite 6 and 12 PTA weld clad hardfaced on stainless steel 410,” Results in Surfaces and Interfaces, vol. 11, no. February, p. 100108, 2023, doi: 10.1016/j.rsurfi.2023.100108.
  • [22] I. F. Ostrovski et al., “Effect of the plasma nitriding on the mechanical properties of the 18Ni300 steel obtained by selective laser melting,” Surf. Coatings Technol., vol. 466, no. June, p. 129688, 2023, doi: 10.1016/j.surfcoat.2023.129688.
  • [23] T. Das, A. Erdogan, B. Kursuncu, E. Maleki, and O. Unal, “Effect of severe vibratory peening on microstructural and tribological properties of hot rolled AISI 1020 mild steel,” Surf. Coatings Technol., vol. 403, p. 126383, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126383.
  • [24] Y. Küçük, K. M. Döleker, M. S. Gök, S. Dal, Y. Altınay, and A. Erdoğan, “Microstructure, hardness and high temperature wear characteristics of boronized Monel 400,” Surf. Coatings Technol., vol. 436, no. December 2021, 2022, doi: 10.1016/j.surfcoat.2022.128277.
  • [25] A. Erdogan, B. Kursuncu, A. Günen, M. Kalkandelen, and M. S. Gok, “A new approach to sintering and boriding of steels ‘Boro-sintering’: Formation, microstructure and wear behaviors,” Surf. Coatings Technol., vol. 386, p. 125482, Mar. 2020, doi: 10.1016/j.surfcoat.2020.125482.
  • [26] Y. Küçük, A. Erdoğan, B. Kurşuncu, and M. S. Gök, “Effects of surface roughness and counter body variables on the dry sliding wear behavior of AISI 4140 steel based on the elastoplastic flattening model,” Surf. Topogr. Metrol. Prop., vol. 11, no. 2, 2023, doi: 10.1088/2051-672X/accafe.

Effect of shot peening and plasma nitriding processes on wear resistance of AISI 4140 steel

Yıl 2024, Cilt: 12 Sayı: 2, 1126 - 1135, 29.04.2024
https://doi.org/10.29130/dubited.1225813

Öz

It is aimed to determine how the wear resistance changes by improving the surface properties of AISI 4140 steel, which is frequently used in industrial applications. In this context, AISI 4140 steel was subjected to two different intensities of shot peening and plasma nitration processes. While the changes in the microstructure were determined by SEM and XRD, the change in the surface strength was determined by the microhardness measurement. It was observed that the extra layer formed on the surface as a result of plasma nitriding was iron nitride phases, however, no phase change occurred after the shot peeening processes. All processes increased the surface hardness of the samples and an increase of up to 700 HV was observed on the surface with plasma nitriding. Accordingly, the best wear resistance was achieved by plasma nitriding process. Conventional shot peening had a limited effect on wear resistance, while severe shot peening reduced wear losses considerably. The increase in hardness provided by the applied surface modification processes has been shown to cause the increase in wear resistance. The lack of the expected effect in shot peening is attributed to the roughness on the surface.

Proje Numarası

2021-FEN-CY-005

Kaynakça

  • [1] Z. Yang, J. Zheng, K. Zhan, C. Jiang, and V. Ji, “Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating,” J. Mater. Res. Technol., vol. 18, pp. 978–989, 2022, doi: 10.1016/j.jmrt.2022.02.124.
  • [2] H. Yan, P. Zhu, Z. Chen, H. Zhang, Y. Zhang, and Y. Zhang, “Effect of shot peening on the surface properties and wear behavior of heavy-duty-axle gear steels,” J. Mater. Res. Technol., vol. 17, pp. 22–32, 2022, doi: 10.1016/j.jmrt.2021.12.126.
  • [3] Y. B. Bozkurt, H. Kovacı, A. F. Yetim, and A. Çelik, “Tribocorrosion properties and mechanism of a shot peened AISI 4140 low-alloy steel,” Surf. Coatings Technol., vol. 440, no. April, p. 128444, 2022, doi: 10.1016/j.surfcoat.2022.128444.
  • [4] H. Xiao et al., “Promoted low-temperature plasma nitriding for improving wear performance of arc-deposited ceramic coatings on Ti6Al4V alloy via shot peening pretreatment,” J. Mater. Res. Technol., vol. 19, pp. 2981–2990, 2022, doi: 10.1016/j.jmrt.2022.06.067.
  • [5] J. Wang, S. Qu, H. Shao, X. Hu, B. Guo, and X. Li, “Ultra-high fatigue property and fracture mechanism of modified 20CrMoH steel by gas carburizing technology combined with shot peening treatment,” Int. J. Fatigue, vol. 165, no. May, p. 107221, 2022, doi: 10.1016/j.ijfatigue.2022.107221.
  • [6] J. Zheng et al., “Surface characteristic and corrosion resistance of different plasma-sprayed coatings (Zn, Al6061and Zn/23Al) on S960 high strength steel with subsequent micro-shot peening,” Surf. Coatings Technol., vol. 451, no. July, p. 129046, 2022, doi: 10.1016/j.surfcoat.2022.129046.
  • [7] X. Han, Z. Zhang, B. Wang, S. J. Thrush, G. C. Barber, and F. Qiu, “Microstructures, compressive residual stress, friction behavior, and wear mechanism of quenched and tempered shot peened medium carbon steel,” Wear, vol. 488–489, no. 5988, p. 204131, 2022, doi: 10.1016/j.wear.2021.204131.
  • [8] M. Neslušan et al., “Barkhausen noise emission of AISI 304 stainless steel originating from strain induced martensite by shot peening,” J. Mater. Res. Technol., vol. 20, pp. 748–762, 2022, doi: 10.1016/j.jmrt.2022.07.107.
  • [9] T. Gundgire, T. Jokiaho, S. Santa-aho, T. Rautio, A. Järvenpää, and M. Vippola, “Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stresses,” Mater. Charact., vol. 191, no. July, 2022, doi: 10.1016/j.matchar.2022.112162. [10] Y. Zhang, K. Zhang, Z. Hu, T. Chen, L. Susmel, and B. Wei, “The synergetic effects of shot peening and laser-shot peening on the microstructural evolution and fatigue performance of a medium carbon steel,” Int. J. Fatigue, vol. 166, no. July 2022, p. 107246, 2023, doi: 10.1016/j.ijfatigue.2022.107246. [11] H. Liu, C. Jiang, M. Chen, L. Wang, and V. Ji, “Surface layer microstructures and wear properties modifications of Mg-8Gd-3Y alloy treated by shot peening,” Mater. Charact., vol. 158, no. June, p. 109952, 2019, doi: 10.1016/j.matchar.2019.109952.
  • [12] Z. Ma et al., “Improving the oxidation resistance of SIMP steel to liquid Pb-Bi eutectic by shot peening treatments,” Appl. Surf. Sci., vol. 578, no. July 2021, p. 151910, 2022, doi: 10.1016/j.apsusc.2021.151910.
  • [13] S. Kikuchi, K. Minamizawa, J. Arakawa, H. Akebono, S. Takesue, and M. Hayakawa, “Combined effect of surface morphology and residual stress induced by fine particle and shot peening on the fatigue limit for carburized steels,” Int. J. Fatigue, vol. 168, no. July 2022, p. 107441, 2023, doi: 10.1016/j.ijfatigue.2022.107441.
  • [14] M. Ozturk, F. Husem, I. Karademir, E. Maleki, A. Amanov, and O. Unal, “Fatigue crack growth rate of AISI 4140 low alloy steel treated via shot peening and plasma nitriding,” Vacuum, vol. 207, no. September 2022, p. 111552, 2023, doi: 10.1016/j.vacuum.2022.111552.
  • [15] T. Bergelt, P. Landgraf, T. Grund, G. Bräuer, and T. Lampke, “Modelling of layer development and nitrogen distribution on different microstructures during plasma nitriding,” Surf. Coatings Technol., vol. 447, no. July, 2022, doi: 10.1016/j.surfcoat.2022.128813.
  • [16] Q. Kang, H. Fan, X. Yang, X. An, and J. Hu, “Evolution of aluminum hydroxide film during plasma nitriding and its enhancement effect,” Mater. Lett., vol. 330, no. October 2022, p. 133348, 2023, doi: 10.1016/j.matlet.2022.133348.
  • [17] M. Naeem et al., “Improved wear resistance of AISI-1045 steel by hybrid treatment of plasma nitriding and post-oxidation,” Tribol. Int., vol. 175, no. June, pp. 3–13, 2022, doi: 10.1016/j.triboint.2022.107869.
  • [18] Z. Han et al., “Composition, microstructure, and phase evolution of 17-4PH stainless steel with a work-hardened layer in the low-temperature plasma nitriding process,” Surf. Coatings Technol., vol. 451, no. September, p. 128950, 2022, doi: 10.1016/j.surfcoat.2022.128950.
  • [19] S. Qu, C. Duan, X. Hu, S. Jia, and X. Li, “Effect of shot peening on microstructure and contact fatigue crack growth mechanism of shaft steel,” Mater. Chem. Phys., vol. 274, no. April, p. 125116, 2021, doi: 10.1016/j.matchemphys.2021.125116.
  • [20] B. Podgornik and A. Kocijan, “Surface & Coatings Technology Improving the surface properties of additive-manufactured Inconel 625 by plasma nitriding ˇ,” vol. 452, no. November 2022, pp. 16–19, 2023, doi: 10.1016/j.surfcoat.2022.129130.
  • [21] A. G. Poshtahani, S. Roostaie, and M. Azadi, “Plasma nitriding effect on tribological and corrosion properties of Stellite 6 and 12 PTA weld clad hardfaced on stainless steel 410,” Results in Surfaces and Interfaces, vol. 11, no. February, p. 100108, 2023, doi: 10.1016/j.rsurfi.2023.100108.
  • [22] I. F. Ostrovski et al., “Effect of the plasma nitriding on the mechanical properties of the 18Ni300 steel obtained by selective laser melting,” Surf. Coatings Technol., vol. 466, no. June, p. 129688, 2023, doi: 10.1016/j.surfcoat.2023.129688.
  • [23] T. Das, A. Erdogan, B. Kursuncu, E. Maleki, and O. Unal, “Effect of severe vibratory peening on microstructural and tribological properties of hot rolled AISI 1020 mild steel,” Surf. Coatings Technol., vol. 403, p. 126383, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126383.
  • [24] Y. Küçük, K. M. Döleker, M. S. Gök, S. Dal, Y. Altınay, and A. Erdoğan, “Microstructure, hardness and high temperature wear characteristics of boronized Monel 400,” Surf. Coatings Technol., vol. 436, no. December 2021, 2022, doi: 10.1016/j.surfcoat.2022.128277.
  • [25] A. Erdogan, B. Kursuncu, A. Günen, M. Kalkandelen, and M. S. Gok, “A new approach to sintering and boriding of steels ‘Boro-sintering’: Formation, microstructure and wear behaviors,” Surf. Coatings Technol., vol. 386, p. 125482, Mar. 2020, doi: 10.1016/j.surfcoat.2020.125482.
  • [26] Y. Küçük, A. Erdoğan, B. Kurşuncu, and M. S. Gök, “Effects of surface roughness and counter body variables on the dry sliding wear behavior of AISI 4140 steel based on the elastoplastic flattening model,” Surf. Topogr. Metrol. Prop., vol. 11, no. 2, 2023, doi: 10.1088/2051-672X/accafe.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Azmi Erdoğan 0000-0001-8337-7919

Okan Ünal 0000-0001-6392-0398

Mustafa Gök 0000-0002-8214-2250

Soner Özdemir 0000-0003-2134-7962

Sabri Alkan 0000-0002-1052-4778

Proje Numarası 2021-FEN-CY-005
Yayımlanma Tarihi 29 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Erdoğan, A., Ünal, O., Gök, M., Özdemir, S., vd. (2024). Bilyalı dövme ve plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına etkisi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 12(2), 1126-1135. https://doi.org/10.29130/dubited.1225813
AMA Erdoğan A, Ünal O, Gök M, Özdemir S, Alkan S. Bilyalı dövme ve plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına etkisi. DÜBİTED. Nisan 2024;12(2):1126-1135. doi:10.29130/dubited.1225813
Chicago Erdoğan, Azmi, Okan Ünal, Mustafa Gök, Soner Özdemir, ve Sabri Alkan. “Bilyalı dövme Ve Plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına Etkisi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 12, sy. 2 (Nisan 2024): 1126-35. https://doi.org/10.29130/dubited.1225813.
EndNote Erdoğan A, Ünal O, Gök M, Özdemir S, Alkan S (01 Nisan 2024) Bilyalı dövme ve plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına etkisi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12 2 1126–1135.
IEEE A. Erdoğan, O. Ünal, M. Gök, S. Özdemir, ve S. Alkan, “Bilyalı dövme ve plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına etkisi”, DÜBİTED, c. 12, sy. 2, ss. 1126–1135, 2024, doi: 10.29130/dubited.1225813.
ISNAD Erdoğan, Azmi vd. “Bilyalı dövme Ve Plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına Etkisi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 12/2 (Nisan 2024), 1126-1135. https://doi.org/10.29130/dubited.1225813.
JAMA Erdoğan A, Ünal O, Gök M, Özdemir S, Alkan S. Bilyalı dövme ve plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına etkisi. DÜBİTED. 2024;12:1126–1135.
MLA Erdoğan, Azmi vd. “Bilyalı dövme Ve Plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına Etkisi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 12, sy. 2, 2024, ss. 1126-35, doi:10.29130/dubited.1225813.
Vancouver Erdoğan A, Ünal O, Gök M, Özdemir S, Alkan S. Bilyalı dövme ve plazma nitrürleme işlemlerinin AISI 4140 çeliğinin aşınma dayanımına etkisi. DÜBİTED. 2024;12(2):1126-35.