Celiac disease; is an autoimmune digestive system disease characterized by chronic intestinal inflammation and villus antrophy and triggered by dietary gluten genetically susceptible individuals. Diagnosis is based on serological tests and small bowel biopsy. Because of the diversity in the clinical features of the disease, various patient profile and the non-standardized serological tests, it is difficult to diagnose the celiac disease. Sensitivity, specificity, positive and negative predictive values are important parameters for the accuracy of the tests and they are missing in some clinicial studies. It is difficult do standardize the tests with these missing values for clinicians. The aim of this study is to train different machine learning algorithms and to test their performance in prediction of the diagnostic accurary parameters of celiac serological tests. Decision trees are effective machine learning algorithms for predicting potential covariates with %88,7 accuracy.
machine learning diagnostic test accuracy CAD diagnosis of celiac disease celiac serological tests
Birincil Dil | İngilizce |
---|---|
Konular | Yazılım Mühendisliği (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2022 |
Gönderilme Tarihi | 27 Mart 2022 |
Kabul Tarihi | 4 Nisan 2022 |
Yayımlandığı Sayı | Yıl 2022Cilt: 5 Sayı: 1 |
The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License