Research Article
BibTex RIS Cite

Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting

Year 2025, Volume: 8 Issue: 1, 89 - 111, 28.03.2025
https://doi.org/10.35377/saucis...1560377

Abstract

This study utilizes air pollution data from the Continuous Monitoring Center of the Ministry of Environment, Urbanization, and Climate Change in Turkey to predict various pollutants using three advanced deep learning approaches: LSTM (Long Short-Term Memory), CNN (Convolutional Neural Network), and RNN (Recurrent Neural Network). Missing data in the dataset were imputed using the K-Nearest Neighbor (K-NN) algorithm to ensure data completeness. Furthermore, a data fusion technique was applied to integrate multiple pollutant enhancing the richness and reliability of the input features for modeling. The increasing air pollution issue, driven by factors such as population growth, urbanization, and industrial development, is a major environmental concern. The study evaluates these models to estimate pollutant concentrations and selects the most accurate, RNN, for forecasting air pollution over the next three years. Each prediction was assessed using performance metrics such as MAE, RMSE, and R² to ensure robust model evaluation. Visualization of the data and forecast results was achieved through methods like Box Plots, Violin Plots, and Point Scatter Graphs, making air quality information more accessible to general audiences. In terms of model performance, CNN achieved an R² of 0.88 for PM10 and 0.93 for SO2, while LSTM demonstrated an R² of 0.94 for PM10 and 0.95 for SO2. However, RNN emerged as the most accurate model, achieving an R² of 0.97 for both PM10 and SO2 forecasts. This model allows for forecasts of pollutant levels over a three-year period. The findings indicate that predictive modeling, combined with data fusion and visualization techniques, could significantly contribute to mitigating future uncertainties and enhance the comprehension of air quality patterns for non-expert audiences.

Ethical Statement

During this study, scientific research and publication ethics were followed.

Supporting Institution

This study was not supported by any institution.

Thanks

I would like to express my sincere gratitude to Assoc. Prof. Dr. Bihter Daş for her valuable contribution and guidance in the conduct of this study. The academic support and guidance she provided played a major role in the completion of this study.

References

  • R. Kaur and P. Pandey, "Air pollution, climate change, and human health in Indian cities: A brief review," Frontiers in Sustainable Cities, vol. 3, p. 705131, 2021. doi: 10.3389/frsc.2021.705131.
  • M. B. Khan, S. Setu, N. Sultana, S. Gautam, B. A. Begum, and M. A. Salam, "Street dust in the largest urban agglomeration: Pollution characteristics, source apportionment and health risk assessment of potentially toxic trace elements," Stochastic Environmental Research and Risk Assessment, pp. 1–20, 2023. doi: 10.1007/s00477-023-02432-1.
  • O. Isinkaralar, K. Isinkaralar, and T. N. T. Nguyen, "Spatial distribution, pollution level, and human health risk assessment of heavy metals in urban street dust at neighbourhood scale," International Journal of Biometeorology, pp. 1–13, 2024. doi: 10.1007/s00484-024-02729-y.
  • Y. Liu, T. Jin, S. Yu, and H. Chu, "Pollution characteristics and health risks of heavy metals in road dust in Ma'anshan, China," Environmental Science and Pollution Research, vol. 30, no. 15, pp. 43726–43739, 2023. doi: 10.1007/s11356-023-25303-2.
  • A. Lai, "Analysis of air pollution from vehicle emissions for the contiguous United States," Journal of Geovisualization and Spatial Analysis, 2022.
  • G. D. Oreggioni, O. Mahiques, F. Monforti-Ferrario, E. Schaaf, and M. Muntean, "The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport," Energy Policy, vol. 168, 2022. doi: 10.1016/j.enpol.2022.113021.
  • T. Li, Y. Yu, and Z. Sun, "A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence," Particle and Fibre Toxicology, vol. 19, p. 67, 2022. doi: 10.1186/s12989-022-00507-5.
  • A. Garcia, E. Santa-Helena, and A. De Falco, "Toxicological effects of fine particulate matter (PM2.5): Health risks and associated systemic injuries—Systematic Review," Water Air and Soil Pollution, vol. 234, p. 346, 2023. doi: 10.1007/s11270-023-06278-9.
  • A. Unnikrishnan and S. Rajeswari, "Forecasting daily air quality index and early warning system for estimating ambient air pollution on road networks using Gaussian models," Tehnički Glasnik, vol. 18, no. 4, pp. 549–559, 2024.
  • P. Perez, C. Menares, and C. Ramírez, "PM2.5 forecasting in Coyhaique, the most polluted city in the Americas," Urban Clim., vol. 32, p. 100608, 2020, doi: 10.1016/j.uclim.2020.100608.
  • A. Aggarwal and D. Toshniwal, "A hybrid deep learning framework for urban air quality forecasting," J. Clean. Prod., vol. 329, Art. no. 129660, 2021, doi: 10.1016/j.jclepro.2021.129660.
  • C.-J. Huang and P.-H. Kuo, “A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities,” Sensors, vol. 18, no. 7, Art. no. 7, Jul. 2018, doi: 10.3390/s18072220.
  • R. Janarthanan, P. Partheeban, K. Somasundaram, and P. Navin Elamparithi, “A deep learning approach for prediction of air quality index in a metropolitan city,” Sustainable Cities and Society, vol. 67, p. 102720, Apr. 2021, doi: 10.1016/j.scs.2021.102720.
  • S. Masmoudi, H. Elghazel, D. Taieb, O. Yazar, and A. Kallel, “A machine-learning framework for predicting multiple air pollutants’ concentrations via multi-target regression and feature selection,” Science of The Total Environment, vol. 715, p. 136991, May 2020, doi: 10.1016/j.scitotenv.2020.136991.
  • B. Liu, M. Lai, P. Zeng, and J. Chen, “Air pollutant prediction based on a attention mechanism model of the Yangtze River Delta region in frequent heatwaves,” Atmospheric Research, vol. 311, p. 107701, Dec. 2024, doi: 10.1016/j.atmosres.2024.107701.
  • H. Yang, Z. Liu, and G. Li, “A new hybrid optimization prediction model for PM2.5 concentration considering other air pollutants and meteorological conditions,” Chemosphere, vol. 307, p. 135798, Nov. 2022, doi: 10.1016/j.chemosphere.2022.135798.
  • P. A. Rani and Dr. V. Sampathkumar, “A novel artificial intelligence algorithm for predicting air quality by analysing the pollutant levels in air quality data in tamilnadu,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 5, p. 100234, Sep. 2023, doi: 10.1016/j.prime.2023.100234.
  • Q. Wu and H. Lin, “A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors,” Science of The Total Environment, vol. 683, pp. 808–821, Sep. 2019, doi: 10.1016/j.scitotenv.2019.05.288.
  • B. Zhang et al., “Air pollutant diffusion trend prediction based on deep learning for targeted season—North China as an example,” Expert Systems with Applications, vol. 232, p. 120718, Dec. 2023, doi: 10.1016/j.eswa.2023.120718.
  • J. Luo and Y. Gong, “Air pollutant prediction based on ARIMA-WOA-LSTM model,” Atmospheric Pollution Research, vol. 14, no. 6, p. 101761, Jun. 2023, doi: 10.1016/j.apr.2023.101761.
  • G. I. Drewil and R. J. Al-Bahadili, “Air pollution prediction using LSTM deep learning and metaheuristics algorithms,” Measurement: Sensors, vol. 24, p. 100546, Dec. 2022, doi: 10.1016/j.measen.2022.100546.
  • “Analysis of the summer thermal comfort indices in İstanbul | International Journal of Biometeorology.” Accessed: May 10, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s00484-024-02669-7
  • A. Kshirsagar and M. Shah, “Anatomization of air quality prediction using neural networks, regression and hybrid models,” Journal of Cleaner Production, vol. 369, p. 133383, Oct. 2022, doi: 10.1016/j.jclepro.2022.133383.
  • B. Zhang et al., “Deep learning for air pollutant concentration prediction: A review,” Atmospheric Environment, vol. 290, p. 119347, Dec. 2022, doi: 10.1016/j.atmosenv.2022.119347.
  • T. D. Akinosho, M. Bilal, E. T. Hayes, A. Ajayi, A. Ahmed, and Z. Khan, “Deep learning-based multi-target regression for traffic-related air pollution forecasting,” Machine Learning with Applications, vol. 12, p. 100474, Jun. 2023, doi: 10.1016/j.mlwa.2023.100474.
  • M. Yılmaz, Y. Kara, H. C. Çulpan, G. Can, and H. Toros, “Detection and regional analysis of heatwave characteristics in İstanbul,” Sustainable Cities and Society, vol. 97, p. 104789, Oct. 2023, doi: 10.1016/j.scs.2023.104789.
  • J. González-Pardo, S. Ceballos-Santos, R. Manzanas, M. Santibáñez, and I. Fernández-Olmo, “Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain,” Science of The Total Environment, vol. 823, p. 153786, Jun. 2022, doi: 10.1016/j.scitotenv.2022.153786.
  • X. Shi, Z. Huang, Y. Dai, W. Du, and J. Cheng, “Evaluating emission reduction potential and co-benefits of CO2 and air pollutants from mobile sources: A case study in Shanghai, China,” Resources, Conservation and Recycling, vol. 202, p. 107347, Mar. 2024, doi: 10.1016/j.resconrec.2023.107347.
  • Y. Dokuz, A. Bozdağ, and B. Gökçek, “HAVA KALİTESİ PARAMETRELERİNİN TAHMİNİ VE MEKANSAL DAĞILIMI İÇİN MAKİNE ÖĞRENMESİ YÖNTEMLERİNİN KULLANILMASI,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Jan. 2020, doi: 10.28948/ngumuh.654092.
  • S. Ünaldi and N. Yalçin, “Hava Kirliliğinin Makine Öğrenmesi Tabanlı Tahmini: Başakşehir Örneği Prediction of Air Pollution based on Machine Learning Methods: A Case Study for Başakşehir, İstanbul,” p. 10.
  • P. Aksak, Ş. K. Öztürk, and Ö. Ünsal, “Kentsel Isı Adasının İklim Parametreleri ve Uzaktan Algılama Üzerinden İncelenmesi: İstanbul Kenti Örneği,” ECD, vol. 32, no. 1, Art. no. 1, Jun. 2023, doi: 10.51800/ecd.1266060.
  • Y.-C. Lin, Y.-T. Lin, C.-R. Chen, C.-Y. Lai, and Y.-B. Wang, “Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning,” Journal of Environmental Sciences, Feb. 2024, doi: 10.1016/j.jes.2024.01.057.
  • I. H. Fong, T. Li, S. Fong, R. K. Wong, and A. J. Tallón-Ballesteros, “Predicting concentration levels of air pollutants by transfer learning and recurrent neural network,” Knowledge-Based Systems, vol. 192, p. 105622, Mar. 2020, doi: 10.1016/j.knosys.2020.105622.
  • I. Jairi, S. Ben-Othman, L. Canivet, and H. Zgaya-Biau, “Enhancing air pollution prediction: A neural transfer learning approach across different air pollutants,” Environmental Technology & Innovation, vol. 36, p. 103793, Nov. 2024, doi: 10.1016/j.eti.2024.103793.
  • H. Dai, G. Huang, J. Wang, H. Zeng, and F. Zhou, “Prediction of Air Pollutant Concentration Based on One-Dimensional Multi-Scale CNN-LSTM Considering Spatial-Temporal Characteristics: A Case Study of Xi’an, China,” Atmosphere, vol. 12, no. 12, Art. no. 12, Dec. 2021, doi: 10.3390/atmos12121626.
  • Z. Wu, Y. Tian, M. Li, B. Wang, Y. Quan, and J. Liu, “Prediction of air pollutant concentrations based on the long short-term memory neural network,” Journal of Hazardous Materials, vol. 465, p. 133099, Mar. 2024, doi: 10.1016/j.jhazmat.2023.133099.
  • B. Das, Ö. O. Dursun, and S. Toraman, “Prediction of air pollutants for air quality using deep learning methods in a metropolitan city,” Urban Climate, vol. 46, p. 101291, Dec. 2022, doi: 10.1016/j.uclim.2022.101291.
  • “Prediction of SO2 and PM10 air pollutants using a deep learning-based recurrent neural network: Case of industrial city Sakarya | Elsevier Enhanced Reader.” Accessed: Dec. 05, 2022. [Online]. Available: https://reader.elsevier.com/reader/sd/pii/S2212095521002819?token=4F8C7E774AFEF62F87DEEDFCC66D0CD0E6760E1DD3BA1655B309B6F55BDB090842B65A1488055ED705E638D6699E9847&originRegion=eu-west-1&originCreation=20221203124930
  • J. Yang, L. Shi, J. Lee, and I. Ryu, “Spatiotemporal prediction of particulate matter concentration based on traffic and meteorological data,” Transportation Research Part D: Transport and Environment, vol. 127, p. 104070, Feb. 2024, doi: 10.1016/j.trd.2024.104070.
  • S. Jochner, I. Markevych, I. Beck, C. Traidl-Hoffmann, J. Heinrich, and A. Menzel, “The effects of short- and long-term air pollutants on plant phenology and leaf characteristics,” Environmental Pollution, vol. 206, pp. 382–389, Nov. 2015, doi: 10.1016/j.envpol.2015.07.040.
  • S. A. Ajayi, C. A. Adams, G. Dumedah, A. O. Adebanji, and W. Ackaah, “The impact of traffic mobility measures on vehicle emissions for heterogeneous traffic in Lagos City,” Scientific African, vol. 21, p. e01822, Sep. 2023, doi: 10.1016/j.sciaf.2023.e01822.
  • S. Arslankaya and Ş. Toprak, “Using Machine Learning and Deep Learning Algorithms for Stock Price Prediction,” Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 13, no. 1, pp. 178–192, Jan. 2021, doi: 10.29137/umagd.771671.
  • D. Mengüş and B. Daş, “Actionable Data Visualization for Air Quality Data in the Istanbul Location,” Balkan Journal of Electrical and Computer Engineering, vol. 10, no. 4, Art. no. 4, Oct. 2022, doi: 10.17694/bajece.1180676.
  • R. Rabie, M. Asghari, H. Nosrati, M. Emami Niri, and S. Karimi, “Spatially resolved air quality index prediction in megacities with a CNN-Bi-LSTM hybrid framework,” Sustainable Cities and Society, vol. 109, p. 105537, Aug. 2024, doi: 10.1016/j.scs.2024.105537.
  • D. Saravanan and K. Santhosh Kumar, “Improving air pollution detection accuracy and quality monitoring based on bidirectional RNN and the Internet of Things,” Materials Today: Proceedings, vol. 81, pp. 791–796, Jan. 2023, doi: 10.1016/j.matpr.2021.04.239.
  • G. Kurnaz and A. S. Demir, “Prediction of SO2 and PM10 air pollutants using a deep learning-based recurrent neural network: Case of industrial city Sakarya,” Urban Climate, vol. 41, p. 101051, Jan. 2022, doi: 10.1016/j.uclim.2021.101051.
  • T. Bernardino, M. A. Oliveira, and J. N. Silva, “Using remotely sensed data for air pollution assessment,” Feb. 04, 2024, arXiv: arXiv:2402.06653. doi: 10.48550/arXiv.2402.06653.
  • E. Cerezuela-Escudero, J. M. Montes-Sanchez, J. P. Dominguez-Morales, L. Duran-Lopez, and G. Jimenez-Moreno, “A systematic comparison of different machine learning models for the spatial estimation of air pollution,” Appl Intell, vol. 53, no. 24, pp. 29604–29619, Dec. 2023, doi: 10.1007/s10489-023-05109-y.
  • H. S. Kim et al., “Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model,” Atmospheric Chemistry and Physics, vol. 19, no. 20, pp. 12935–12951, Oct. 2019, doi: 10.5194/acp-19-12935-2019.
  • B. Cui, M. Liu, S. Li, Z. Jin, Y. Zeng, and X. Lin, “Deep learning methods for atmospheric PM2.5 prediction: A comparative study of transformer and CNN-LSTM-attention,” Atmospheric Pollution Research, vol. 14, no. 9, p. 101833, Sep. 2023, doi: 10.1016/j.apr.2023.101833.
  • X. Qi, G. Mei, S. Cuomo, C. Liu, and N. Xu, “Data analysis and mining of the correlations between meteorological conditions and air quality: A case study in Beijing,” Internet of Things, vol. 14, p. 100127, Jun. 2021, doi: 10.1016/j.iot.2019.100127.
  • D. Qu, X. Lin, K. Ren, Q. Liu, and H. Zhang, “AirExplorer: visual exploration of air quality data based on time-series querying,” J Vis, vol. 23, no. 6, pp. 1129–1145, Dec. 2020, doi: 10.1007/s12650-020-00683-6.
  • SIM Air Quality- Station Data Download Continuous Monitoring Center. https://sim.csb.gov.tr/STN/STN_Report/StationDataDownloadNew (202 0) (accessed 2 March 2024)
  • A. Utku, “Hindistan’daki Turistik Şehirlerin İklim Değişkenlerinin Tahminine Yönelik Hibrit ConvGRU Modeli Hybrid ConvGRU Model for Prediction of Climate Variables of Touristic Cities in India”.
  • B. Baran, “Sıhhiye Bölgesi Hava Kalitesi İndeksinin Aşırı Öğrenme Makineleri ve Yapay Sinir Ağları ile Tahmini,” 2022.
  • Y. Dokuz, A. Bozdağ, and B. Gökçek, “HAVA KALİTESİ PARAMETRELERİNİN TAHMİNİ VE MEKANSAL DAĞILIMI İÇİN MAKİNE ÖĞRENMESİ YÖNTEMLERİNİN KULLANILMASI,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Jan. 2020, doi: 10.28948/ngumuh.654092.
  • K. Oğuz and M. A. Pekin, “Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini,” Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 2, pp. 201–213, Jun. 2022, doi: 10.28979/jarnas.981202.
  • B. Kotan and A. Erener, “PM10, SO2 hava kirleticilerinin çoklu doğrusal regresyon ve yapay sinir ağları ile sezonsal tahmini,” Geomatik, vol. 8, no. 2, Art. no. 2, Aug. 2023, doi: 10.29128/geomatik.1158565.
  • B. Gökçek, N. Şaşa, Y. Dokuz, and A. Bozdağ, “PM10 Parametresinin Makine Öğrenmesi Algoritmalari ile Mekânsal Analizi, Kayseri İli Örneği,” DEUFMD, vol. 24, no. 70, Art. no. 70, Jan. 2022, doi: 10.21205/deufmd.2022247008.
Year 2025, Volume: 8 Issue: 1, 89 - 111, 28.03.2025
https://doi.org/10.35377/saucis...1560377

Abstract

References

  • R. Kaur and P. Pandey, "Air pollution, climate change, and human health in Indian cities: A brief review," Frontiers in Sustainable Cities, vol. 3, p. 705131, 2021. doi: 10.3389/frsc.2021.705131.
  • M. B. Khan, S. Setu, N. Sultana, S. Gautam, B. A. Begum, and M. A. Salam, "Street dust in the largest urban agglomeration: Pollution characteristics, source apportionment and health risk assessment of potentially toxic trace elements," Stochastic Environmental Research and Risk Assessment, pp. 1–20, 2023. doi: 10.1007/s00477-023-02432-1.
  • O. Isinkaralar, K. Isinkaralar, and T. N. T. Nguyen, "Spatial distribution, pollution level, and human health risk assessment of heavy metals in urban street dust at neighbourhood scale," International Journal of Biometeorology, pp. 1–13, 2024. doi: 10.1007/s00484-024-02729-y.
  • Y. Liu, T. Jin, S. Yu, and H. Chu, "Pollution characteristics and health risks of heavy metals in road dust in Ma'anshan, China," Environmental Science and Pollution Research, vol. 30, no. 15, pp. 43726–43739, 2023. doi: 10.1007/s11356-023-25303-2.
  • A. Lai, "Analysis of air pollution from vehicle emissions for the contiguous United States," Journal of Geovisualization and Spatial Analysis, 2022.
  • G. D. Oreggioni, O. Mahiques, F. Monforti-Ferrario, E. Schaaf, and M. Muntean, "The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport," Energy Policy, vol. 168, 2022. doi: 10.1016/j.enpol.2022.113021.
  • T. Li, Y. Yu, and Z. Sun, "A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence," Particle and Fibre Toxicology, vol. 19, p. 67, 2022. doi: 10.1186/s12989-022-00507-5.
  • A. Garcia, E. Santa-Helena, and A. De Falco, "Toxicological effects of fine particulate matter (PM2.5): Health risks and associated systemic injuries—Systematic Review," Water Air and Soil Pollution, vol. 234, p. 346, 2023. doi: 10.1007/s11270-023-06278-9.
  • A. Unnikrishnan and S. Rajeswari, "Forecasting daily air quality index and early warning system for estimating ambient air pollution on road networks using Gaussian models," Tehnički Glasnik, vol. 18, no. 4, pp. 549–559, 2024.
  • P. Perez, C. Menares, and C. Ramírez, "PM2.5 forecasting in Coyhaique, the most polluted city in the Americas," Urban Clim., vol. 32, p. 100608, 2020, doi: 10.1016/j.uclim.2020.100608.
  • A. Aggarwal and D. Toshniwal, "A hybrid deep learning framework for urban air quality forecasting," J. Clean. Prod., vol. 329, Art. no. 129660, 2021, doi: 10.1016/j.jclepro.2021.129660.
  • C.-J. Huang and P.-H. Kuo, “A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities,” Sensors, vol. 18, no. 7, Art. no. 7, Jul. 2018, doi: 10.3390/s18072220.
  • R. Janarthanan, P. Partheeban, K. Somasundaram, and P. Navin Elamparithi, “A deep learning approach for prediction of air quality index in a metropolitan city,” Sustainable Cities and Society, vol. 67, p. 102720, Apr. 2021, doi: 10.1016/j.scs.2021.102720.
  • S. Masmoudi, H. Elghazel, D. Taieb, O. Yazar, and A. Kallel, “A machine-learning framework for predicting multiple air pollutants’ concentrations via multi-target regression and feature selection,” Science of The Total Environment, vol. 715, p. 136991, May 2020, doi: 10.1016/j.scitotenv.2020.136991.
  • B. Liu, M. Lai, P. Zeng, and J. Chen, “Air pollutant prediction based on a attention mechanism model of the Yangtze River Delta region in frequent heatwaves,” Atmospheric Research, vol. 311, p. 107701, Dec. 2024, doi: 10.1016/j.atmosres.2024.107701.
  • H. Yang, Z. Liu, and G. Li, “A new hybrid optimization prediction model for PM2.5 concentration considering other air pollutants and meteorological conditions,” Chemosphere, vol. 307, p. 135798, Nov. 2022, doi: 10.1016/j.chemosphere.2022.135798.
  • P. A. Rani and Dr. V. Sampathkumar, “A novel artificial intelligence algorithm for predicting air quality by analysing the pollutant levels in air quality data in tamilnadu,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 5, p. 100234, Sep. 2023, doi: 10.1016/j.prime.2023.100234.
  • Q. Wu and H. Lin, “A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors,” Science of The Total Environment, vol. 683, pp. 808–821, Sep. 2019, doi: 10.1016/j.scitotenv.2019.05.288.
  • B. Zhang et al., “Air pollutant diffusion trend prediction based on deep learning for targeted season—North China as an example,” Expert Systems with Applications, vol. 232, p. 120718, Dec. 2023, doi: 10.1016/j.eswa.2023.120718.
  • J. Luo and Y. Gong, “Air pollutant prediction based on ARIMA-WOA-LSTM model,” Atmospheric Pollution Research, vol. 14, no. 6, p. 101761, Jun. 2023, doi: 10.1016/j.apr.2023.101761.
  • G. I. Drewil and R. J. Al-Bahadili, “Air pollution prediction using LSTM deep learning and metaheuristics algorithms,” Measurement: Sensors, vol. 24, p. 100546, Dec. 2022, doi: 10.1016/j.measen.2022.100546.
  • “Analysis of the summer thermal comfort indices in İstanbul | International Journal of Biometeorology.” Accessed: May 10, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s00484-024-02669-7
  • A. Kshirsagar and M. Shah, “Anatomization of air quality prediction using neural networks, regression and hybrid models,” Journal of Cleaner Production, vol. 369, p. 133383, Oct. 2022, doi: 10.1016/j.jclepro.2022.133383.
  • B. Zhang et al., “Deep learning for air pollutant concentration prediction: A review,” Atmospheric Environment, vol. 290, p. 119347, Dec. 2022, doi: 10.1016/j.atmosenv.2022.119347.
  • T. D. Akinosho, M. Bilal, E. T. Hayes, A. Ajayi, A. Ahmed, and Z. Khan, “Deep learning-based multi-target regression for traffic-related air pollution forecasting,” Machine Learning with Applications, vol. 12, p. 100474, Jun. 2023, doi: 10.1016/j.mlwa.2023.100474.
  • M. Yılmaz, Y. Kara, H. C. Çulpan, G. Can, and H. Toros, “Detection and regional analysis of heatwave characteristics in İstanbul,” Sustainable Cities and Society, vol. 97, p. 104789, Oct. 2023, doi: 10.1016/j.scs.2023.104789.
  • J. González-Pardo, S. Ceballos-Santos, R. Manzanas, M. Santibáñez, and I. Fernández-Olmo, “Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain,” Science of The Total Environment, vol. 823, p. 153786, Jun. 2022, doi: 10.1016/j.scitotenv.2022.153786.
  • X. Shi, Z. Huang, Y. Dai, W. Du, and J. Cheng, “Evaluating emission reduction potential and co-benefits of CO2 and air pollutants from mobile sources: A case study in Shanghai, China,” Resources, Conservation and Recycling, vol. 202, p. 107347, Mar. 2024, doi: 10.1016/j.resconrec.2023.107347.
  • Y. Dokuz, A. Bozdağ, and B. Gökçek, “HAVA KALİTESİ PARAMETRELERİNİN TAHMİNİ VE MEKANSAL DAĞILIMI İÇİN MAKİNE ÖĞRENMESİ YÖNTEMLERİNİN KULLANILMASI,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Jan. 2020, doi: 10.28948/ngumuh.654092.
  • S. Ünaldi and N. Yalçin, “Hava Kirliliğinin Makine Öğrenmesi Tabanlı Tahmini: Başakşehir Örneği Prediction of Air Pollution based on Machine Learning Methods: A Case Study for Başakşehir, İstanbul,” p. 10.
  • P. Aksak, Ş. K. Öztürk, and Ö. Ünsal, “Kentsel Isı Adasının İklim Parametreleri ve Uzaktan Algılama Üzerinden İncelenmesi: İstanbul Kenti Örneği,” ECD, vol. 32, no. 1, Art. no. 1, Jun. 2023, doi: 10.51800/ecd.1266060.
  • Y.-C. Lin, Y.-T. Lin, C.-R. Chen, C.-Y. Lai, and Y.-B. Wang, “Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning,” Journal of Environmental Sciences, Feb. 2024, doi: 10.1016/j.jes.2024.01.057.
  • I. H. Fong, T. Li, S. Fong, R. K. Wong, and A. J. Tallón-Ballesteros, “Predicting concentration levels of air pollutants by transfer learning and recurrent neural network,” Knowledge-Based Systems, vol. 192, p. 105622, Mar. 2020, doi: 10.1016/j.knosys.2020.105622.
  • I. Jairi, S. Ben-Othman, L. Canivet, and H. Zgaya-Biau, “Enhancing air pollution prediction: A neural transfer learning approach across different air pollutants,” Environmental Technology & Innovation, vol. 36, p. 103793, Nov. 2024, doi: 10.1016/j.eti.2024.103793.
  • H. Dai, G. Huang, J. Wang, H. Zeng, and F. Zhou, “Prediction of Air Pollutant Concentration Based on One-Dimensional Multi-Scale CNN-LSTM Considering Spatial-Temporal Characteristics: A Case Study of Xi’an, China,” Atmosphere, vol. 12, no. 12, Art. no. 12, Dec. 2021, doi: 10.3390/atmos12121626.
  • Z. Wu, Y. Tian, M. Li, B. Wang, Y. Quan, and J. Liu, “Prediction of air pollutant concentrations based on the long short-term memory neural network,” Journal of Hazardous Materials, vol. 465, p. 133099, Mar. 2024, doi: 10.1016/j.jhazmat.2023.133099.
  • B. Das, Ö. O. Dursun, and S. Toraman, “Prediction of air pollutants for air quality using deep learning methods in a metropolitan city,” Urban Climate, vol. 46, p. 101291, Dec. 2022, doi: 10.1016/j.uclim.2022.101291.
  • “Prediction of SO2 and PM10 air pollutants using a deep learning-based recurrent neural network: Case of industrial city Sakarya | Elsevier Enhanced Reader.” Accessed: Dec. 05, 2022. [Online]. Available: https://reader.elsevier.com/reader/sd/pii/S2212095521002819?token=4F8C7E774AFEF62F87DEEDFCC66D0CD0E6760E1DD3BA1655B309B6F55BDB090842B65A1488055ED705E638D6699E9847&originRegion=eu-west-1&originCreation=20221203124930
  • J. Yang, L. Shi, J. Lee, and I. Ryu, “Spatiotemporal prediction of particulate matter concentration based on traffic and meteorological data,” Transportation Research Part D: Transport and Environment, vol. 127, p. 104070, Feb. 2024, doi: 10.1016/j.trd.2024.104070.
  • S. Jochner, I. Markevych, I. Beck, C. Traidl-Hoffmann, J. Heinrich, and A. Menzel, “The effects of short- and long-term air pollutants on plant phenology and leaf characteristics,” Environmental Pollution, vol. 206, pp. 382–389, Nov. 2015, doi: 10.1016/j.envpol.2015.07.040.
  • S. A. Ajayi, C. A. Adams, G. Dumedah, A. O. Adebanji, and W. Ackaah, “The impact of traffic mobility measures on vehicle emissions for heterogeneous traffic in Lagos City,” Scientific African, vol. 21, p. e01822, Sep. 2023, doi: 10.1016/j.sciaf.2023.e01822.
  • S. Arslankaya and Ş. Toprak, “Using Machine Learning and Deep Learning Algorithms for Stock Price Prediction,” Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 13, no. 1, pp. 178–192, Jan. 2021, doi: 10.29137/umagd.771671.
  • D. Mengüş and B. Daş, “Actionable Data Visualization for Air Quality Data in the Istanbul Location,” Balkan Journal of Electrical and Computer Engineering, vol. 10, no. 4, Art. no. 4, Oct. 2022, doi: 10.17694/bajece.1180676.
  • R. Rabie, M. Asghari, H. Nosrati, M. Emami Niri, and S. Karimi, “Spatially resolved air quality index prediction in megacities with a CNN-Bi-LSTM hybrid framework,” Sustainable Cities and Society, vol. 109, p. 105537, Aug. 2024, doi: 10.1016/j.scs.2024.105537.
  • D. Saravanan and K. Santhosh Kumar, “Improving air pollution detection accuracy and quality monitoring based on bidirectional RNN and the Internet of Things,” Materials Today: Proceedings, vol. 81, pp. 791–796, Jan. 2023, doi: 10.1016/j.matpr.2021.04.239.
  • G. Kurnaz and A. S. Demir, “Prediction of SO2 and PM10 air pollutants using a deep learning-based recurrent neural network: Case of industrial city Sakarya,” Urban Climate, vol. 41, p. 101051, Jan. 2022, doi: 10.1016/j.uclim.2021.101051.
  • T. Bernardino, M. A. Oliveira, and J. N. Silva, “Using remotely sensed data for air pollution assessment,” Feb. 04, 2024, arXiv: arXiv:2402.06653. doi: 10.48550/arXiv.2402.06653.
  • E. Cerezuela-Escudero, J. M. Montes-Sanchez, J. P. Dominguez-Morales, L. Duran-Lopez, and G. Jimenez-Moreno, “A systematic comparison of different machine learning models for the spatial estimation of air pollution,” Appl Intell, vol. 53, no. 24, pp. 29604–29619, Dec. 2023, doi: 10.1007/s10489-023-05109-y.
  • H. S. Kim et al., “Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model,” Atmospheric Chemistry and Physics, vol. 19, no. 20, pp. 12935–12951, Oct. 2019, doi: 10.5194/acp-19-12935-2019.
  • B. Cui, M. Liu, S. Li, Z. Jin, Y. Zeng, and X. Lin, “Deep learning methods for atmospheric PM2.5 prediction: A comparative study of transformer and CNN-LSTM-attention,” Atmospheric Pollution Research, vol. 14, no. 9, p. 101833, Sep. 2023, doi: 10.1016/j.apr.2023.101833.
  • X. Qi, G. Mei, S. Cuomo, C. Liu, and N. Xu, “Data analysis and mining of the correlations between meteorological conditions and air quality: A case study in Beijing,” Internet of Things, vol. 14, p. 100127, Jun. 2021, doi: 10.1016/j.iot.2019.100127.
  • D. Qu, X. Lin, K. Ren, Q. Liu, and H. Zhang, “AirExplorer: visual exploration of air quality data based on time-series querying,” J Vis, vol. 23, no. 6, pp. 1129–1145, Dec. 2020, doi: 10.1007/s12650-020-00683-6.
  • SIM Air Quality- Station Data Download Continuous Monitoring Center. https://sim.csb.gov.tr/STN/STN_Report/StationDataDownloadNew (202 0) (accessed 2 March 2024)
  • A. Utku, “Hindistan’daki Turistik Şehirlerin İklim Değişkenlerinin Tahminine Yönelik Hibrit ConvGRU Modeli Hybrid ConvGRU Model for Prediction of Climate Variables of Touristic Cities in India”.
  • B. Baran, “Sıhhiye Bölgesi Hava Kalitesi İndeksinin Aşırı Öğrenme Makineleri ve Yapay Sinir Ağları ile Tahmini,” 2022.
  • Y. Dokuz, A. Bozdağ, and B. Gökçek, “HAVA KALİTESİ PARAMETRELERİNİN TAHMİNİ VE MEKANSAL DAĞILIMI İÇİN MAKİNE ÖĞRENMESİ YÖNTEMLERİNİN KULLANILMASI,” Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, Jan. 2020, doi: 10.28948/ngumuh.654092.
  • K. Oğuz and M. A. Pekin, “Makine Öğrenme Algoritmaları ile PM10 Konsantrasyon Tahmini,” Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 2, pp. 201–213, Jun. 2022, doi: 10.28979/jarnas.981202.
  • B. Kotan and A. Erener, “PM10, SO2 hava kirleticilerinin çoklu doğrusal regresyon ve yapay sinir ağları ile sezonsal tahmini,” Geomatik, vol. 8, no. 2, Art. no. 2, Aug. 2023, doi: 10.29128/geomatik.1158565.
  • B. Gökçek, N. Şaşa, Y. Dokuz, and A. Bozdağ, “PM10 Parametresinin Makine Öğrenmesi Algoritmalari ile Mekânsal Analizi, Kayseri İli Örneği,” DEUFMD, vol. 24, no. 70, Art. no. 70, Jan. 2022, doi: 10.21205/deufmd.2022247008.
There are 59 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Article
Authors

Damla Mengus 0000-0002-6706-0230

Bihter Daş 0000-0002-2498-3297

Early Pub Date March 27, 2025
Publication Date March 28, 2025
Submission Date October 3, 2024
Acceptance Date January 9, 2025
Published in Issue Year 2025Volume: 8 Issue: 1

Cite

APA Mengus, D., & Daş, B. (2025). Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting. Sakarya University Journal of Computer and Information Sciences, 8(1), 89-111. https://doi.org/10.35377/saucis...1560377
AMA Mengus D, Daş B. Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting. SAUCIS. March 2025;8(1):89-111. doi:10.35377/saucis.1560377
Chicago Mengus, Damla, and Bihter Daş. “Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting”. Sakarya University Journal of Computer and Information Sciences 8, no. 1 (March 2025): 89-111. https://doi.org/10.35377/saucis. 1560377.
EndNote Mengus D, Daş B (March 1, 2025) Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting. Sakarya University Journal of Computer and Information Sciences 8 1 89–111.
IEEE D. Mengus and B. Daş, “Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting”, SAUCIS, vol. 8, no. 1, pp. 89–111, 2025, doi: 10.35377/saucis...1560377.
ISNAD Mengus, Damla - Daş, Bihter. “Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting”. Sakarya University Journal of Computer and Information Sciences 8/1 (March 2025), 89-111. https://doi.org/10.35377/saucis. 1560377.
JAMA Mengus D, Daş B. Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting. SAUCIS. 2025;8:89–111.
MLA Mengus, Damla and Bihter Daş. “Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting”. Sakarya University Journal of Computer and Information Sciences, vol. 8, no. 1, 2025, pp. 89-111, doi:10.35377/saucis. 1560377.
Vancouver Mengus D, Daş B. Comparative Analysis of Data Visualization and Deep Learning Models in Air Quality Forecasting. SAUCIS. 2025;8(1):89-111.


INDEXING & ABSTRACTING & ARCHIVING


 31045 31044  31046 31047 

31043 28939 28938


29070    The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License