Araştırma Makalesi
BibTex RIS Kaynak Göster

Kaskat bir sistemin FTR sönümlemeli kanallarda HQAM performans analizi

Yıl 2022, Cilt: 11 Sayı: 2, 258 - 263, 15.04.2022
https://doi.org/10.28948/ngumuh.1034147

Öz

Bu çalışmada kaskat yapıya sahip bir sistemin dalgalanmalı iki ışınlı (fluctuating two-ray, FTR) sönümlenmeli kanallarda
altıgen karesel genlik modülasyonu (hexagonal quadrature amplitude modulation, HQAM) analizi gerçekleştirilmiştir. Yapılan
analizlerde ele alınan sistemin olasılık yoğunluk fonksiyonu (probability density function, PDF) kullanılmıştır. Sunulan hata
analizlerinde hem yaklaşık hata ifadesi hem de matematiksel olarak daha sade bir analiz için asimptotik hata ifadesi
türetilmiştir. Ele alınan sistemin performans değerlendirmeleri farklı kaskat bağlantı sayısı, sönümlenme parametre değerleri,
yansıtıcı parametre değerleri ve modülasyon seviyeleri için gerçekleştirilmiştir. Yapılan analizler sonucunda elde edilen
analitik ve asimptotik ifadelerin doğruluğu tam nümerik sonuçlarla gösterilmiştir.

Kaynakça

  • G. K. Karagiannidis, N. C. Sagias, and P. T. Mathiopoulos, N*Nakagami: A novel stochastic model for cascaded fading channels. IEEE Transactions on Communications, 55 (8), 1453-1458, 2007. doi: 10.1109/TCOMM.2007.902497.
  • K. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis, Cascaded generalized-K fading channel. IET Communications, 4 (1), 116-124, 2010. doi: 10.1049/iet-com.2009.0107
  • A.-A. A. Boulogeorgos, P. C. Sofotasios, B. Selim, S. Muhaidat, G. K. Karagiannidis, and M. Valkama, Effects of RF impairments in communications over cascaded fading channels. IEEE Transactions on Vehicular Technology, 65 (11), 8878-8894, 2016. doi: 10.1109/TVT.2016.2516901.
  • N. Hajri, N. Youssef, T. Kawabata, M. Pätzold, and W. Dahech, Statistical properties of double Hoyt fading with applications to the performance analysis of wireless communication systems. IEEE Access, 6, 19597-19609, 2018. doi: 10.1109/ACCESS.2018.2820746.
  • A. Bekkali, S. Zou, A. Kadri, M. Crisp, and R. V. Penty, Performance analysis of passive UHF RFID systems under cascaded fading channels and interference effects. IEEE Transactions on Wireless Communications, 14 (3), 1421-1433, 2015. doi: 10.1109/TWC.2014.2366142.
  • Y. Alghorani, G. Kaddoum, S. Muhaidat, S. Pierre, and N. Al-Dhahir, On the performance of multihop-intervehicular communications systems over n*Rayleigh fading channels. IEEE Wireless Communications Letters, 5 (2), 116-119, 2016. doi: 10.1109/LWC.2015.2505308.
  • E. J. Leonardo and M. D. Yacoub, Product of α–μ variates. IEEE Wireless Communications Letters, 4 (6), 637–640, 2015. doi: 10.1109/LWC.2015.2476791.
  • E. J. Leonardo and M. D. Yacoub, The product of two α-μ variates and the composite α-μ multipath–shadowing model. IEEE Transactions on Vehicular Technology, 64 (6), 2720–2725, 2015. doi: 10.1109/TVT.2014.2342611.
  • L. Kong, G. Kaddoum, and D. B. da Costa, Cascaded α-μ fading channels: reliability and security analysis. IEEE Access, 6, 41978–41992, 2018. doi: 10.1109/ACCESS.2018.2833423.
  • M. K. Simon and M-S. Alouini, Digital communication over fading channels. 2nd ed. Hoboken, New Jersey, USA: IEEE: John Wiley &Sons, Inc., 2005.
  • J. Rischke, P. Sossalla, S. Itting, F. H. P. Fitzek and M. Reisslein, 5G campus networks: a first measurement study. IEEE Access, 9, 121786-121803, 2021. doi: 10.1109/ACCESS.2021.3108423.
  • L. -H. He, Y. -L. Ban and G. Wu, Dual-band quad-polarized transmitarray for 5G mm-wave application. IEEE Access, 9, 117520-117526, 2021. doi: 10.1109/ACCESS.2021.3106949.
  • M. Bilim and N. Kapucu, Average symbol error rate analysis of QAM schemes over millimeter wave fluctuating two-ray fading channels. IEEE Access, 7, 105746-105754, 2019. doi: 10.1109/ACCESS.2019.2932147.
  • L. Rugini, Symbol error probability of hexagonal QAM. IEEE Communications Letters, 20 (8), 1523-1526, 2016. doi: 10.1109/LCOMM.2016.2574343.
  • M. K. Simon and J. G. Smith, Hexagonal multiple phase-and amplitude-shift-keyed signal sets. IEEE Transactions on Communications, 21 (10), 1108–1115, 1973. doi: 10.1109/TCOM.1973.1091549.
  • S. Hosur, M. F. Mansour, and J. C. Roh, Hexagonal constellations for small cell communication. in Proc. IEEE Global Commun. Conf. (GLOBECOM), sayfa 3270–3275, Atlanta, GA, USA, 2013. doi: 10.1109/GLOCOM.2013.6831576.
  • J. Lee, D. Yoon, and K. Cho, Error performance analysis of M-ary θ-QAM. IEEE Transactions on Vehicular Technology, 61 (3), 1423–1427, 2012. doi: 10.1109/TVT.2012.2186835.
  • P. K. Singya, N. Kumar and V. Bhatia, Impact of imperfect CSI on ASER of hexagonal and rectangular QAM for AF relaying network. IEEE Communications Letters, 22 (2), 428-431, 2018. doi: 10.1109/LCOMM.2017.2778153.
  • D. Sadhwani, R. N. Yadav and S. Aggarwal, Tighter bounds on the Gaussian Q function and its application in Nakagami-m fading channel. IEEE Wireless Communications Letters, 6 (5), 574-577, 2017. doi: 10.1109/LWC.2017.2717907.
  • N. Kumar, P. K. Singya and V. Bhatia, ASER analysis of hexagonal and rectangular QAM schemes in multiple-relay networks. IEEE Transactions on Vehicular Technology, 67 (2), 1815-1819, 2018. doi: 10.1109/TVT.2017.2758028.
  • Bilim, M., Dual-branch SC wireless systems with HQAM for beyond 5G over η-μ fading channels. Peer-to-Peer Networking and Applications, 14, 305-318, 2021. doi: 10.1007/s12083-020-00946-x.
  • Bilim, M., Different QAM Schemes analyses for ARS fading channels. Transactions on Emerging Telecommunications Technologies, 32 (1), e4119, 2021. doi: 10.1002/ett.4119.
  • Bilim M., Altıgen kareleme genlik modülasyonu kullanan MIMO TAS/MRC sistemlerin Weibull sönümlenmeli kanallardaki hata analizi değerlendirmesi. EEMKON 19, Elektrik Elektronik Mühendisliği Kongresi, sayfa 410-413, 2019, Türkiye.
  • C Özen, M Bilim HQAM Analysis of MRC Diversity Systems over Fisher-Snedecor F Channels. 29th Signal Processing and Communications Applications Conference, sayfa 1-4, 2021, Türkiye. doi: 10.1109/SIU53274.2021.9477903.
  • J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris and A. J. Goldsmith, The fluctuating two-ray fading model: statistical characterization and performance analysis. IEEE Transactions on Wireless Communications, 16 (7), 4420-4432, 2017. doi: 10.1109/TWC.2017.2698445.
  • J. Zhang, W. Zeng, X. Li, Q. Sun and K. P. Peppas, New results on the fluctuating two-ray model with arbitrary fading parameters and its applications. IEEE Transactions on Vehicular Technology, c. 67, no. 3, s. 2766-2770, 2018. doi: 10.1109/TVT.2017.2766784.
  • W. Zeng, J. Zhang, S. Chen, K. P. Peppas and B. Ai, Physical layer security over fluctuating two-ray fading channels. IEEE Transactions on Vehicular Technology, 67 (9), 8949-8953, 2018. doi: 10.1109/TVT.2018.2842126.
  • J. Zheng, J. Zhang, G. Pan, J. Cheng and B. Ai, Sum of squared fluctuating two-ray random variables with wireless applications. IEEE Transactions on Vehicular Technology, 68 (8), 8173-8177, 2019. doi: 10.1109/TVT.2019.2920533.
  • O. S. Badarneh and D. B. da Costa, Cascaded fluctuating two-ray fading channels. IEEE Communications Letters, 23 (9), 1497-1500, 2019. doi: 10.1109/LCOMM.2019.2926982.
  • G. D. Durgin, T. S. Rappaport, and D. A. de Wolf, New analytical models and probability density functions for fading in wireless communications. IEEE Transactions on Communications, 50 (6), 1005–1015, 2002. doi: 10.1109/TCOMM.2002.1010620.
  • I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products. 6th ed. New York, NY, USA: Academic, 2000.

Performance analysis of HQAM for a cascaded system over FTR fading channels

Yıl 2022, Cilt: 11 Sayı: 2, 258 - 263, 15.04.2022
https://doi.org/10.28948/ngumuh.1034147

Öz

In this study, performance analysis of a cascaded system with hexagonal quadrature amplitude modulation (HQAM) is performed over fluctuating two-ray (FTR) fading channels. The probability density function of the considered system is employed in the analysis. In the presented error analysis, both the approximate error expression and the asymptotic error expression for a simpler mathematical analysis are derived. Performance evaluations of the considered system are carried out for different number of cascade connections, fading parameter values, reflective parameter values and modulation levels. Finally, the accuracy of the analytical and asymptotic expressions obtained as a result of the analyses is shown with exact numerical results.

Kaynakça

  • G. K. Karagiannidis, N. C. Sagias, and P. T. Mathiopoulos, N*Nakagami: A novel stochastic model for cascaded fading channels. IEEE Transactions on Communications, 55 (8), 1453-1458, 2007. doi: 10.1109/TCOMM.2007.902497.
  • K. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis, Cascaded generalized-K fading channel. IET Communications, 4 (1), 116-124, 2010. doi: 10.1049/iet-com.2009.0107
  • A.-A. A. Boulogeorgos, P. C. Sofotasios, B. Selim, S. Muhaidat, G. K. Karagiannidis, and M. Valkama, Effects of RF impairments in communications over cascaded fading channels. IEEE Transactions on Vehicular Technology, 65 (11), 8878-8894, 2016. doi: 10.1109/TVT.2016.2516901.
  • N. Hajri, N. Youssef, T. Kawabata, M. Pätzold, and W. Dahech, Statistical properties of double Hoyt fading with applications to the performance analysis of wireless communication systems. IEEE Access, 6, 19597-19609, 2018. doi: 10.1109/ACCESS.2018.2820746.
  • A. Bekkali, S. Zou, A. Kadri, M. Crisp, and R. V. Penty, Performance analysis of passive UHF RFID systems under cascaded fading channels and interference effects. IEEE Transactions on Wireless Communications, 14 (3), 1421-1433, 2015. doi: 10.1109/TWC.2014.2366142.
  • Y. Alghorani, G. Kaddoum, S. Muhaidat, S. Pierre, and N. Al-Dhahir, On the performance of multihop-intervehicular communications systems over n*Rayleigh fading channels. IEEE Wireless Communications Letters, 5 (2), 116-119, 2016. doi: 10.1109/LWC.2015.2505308.
  • E. J. Leonardo and M. D. Yacoub, Product of α–μ variates. IEEE Wireless Communications Letters, 4 (6), 637–640, 2015. doi: 10.1109/LWC.2015.2476791.
  • E. J. Leonardo and M. D. Yacoub, The product of two α-μ variates and the composite α-μ multipath–shadowing model. IEEE Transactions on Vehicular Technology, 64 (6), 2720–2725, 2015. doi: 10.1109/TVT.2014.2342611.
  • L. Kong, G. Kaddoum, and D. B. da Costa, Cascaded α-μ fading channels: reliability and security analysis. IEEE Access, 6, 41978–41992, 2018. doi: 10.1109/ACCESS.2018.2833423.
  • M. K. Simon and M-S. Alouini, Digital communication over fading channels. 2nd ed. Hoboken, New Jersey, USA: IEEE: John Wiley &Sons, Inc., 2005.
  • J. Rischke, P. Sossalla, S. Itting, F. H. P. Fitzek and M. Reisslein, 5G campus networks: a first measurement study. IEEE Access, 9, 121786-121803, 2021. doi: 10.1109/ACCESS.2021.3108423.
  • L. -H. He, Y. -L. Ban and G. Wu, Dual-band quad-polarized transmitarray for 5G mm-wave application. IEEE Access, 9, 117520-117526, 2021. doi: 10.1109/ACCESS.2021.3106949.
  • M. Bilim and N. Kapucu, Average symbol error rate analysis of QAM schemes over millimeter wave fluctuating two-ray fading channels. IEEE Access, 7, 105746-105754, 2019. doi: 10.1109/ACCESS.2019.2932147.
  • L. Rugini, Symbol error probability of hexagonal QAM. IEEE Communications Letters, 20 (8), 1523-1526, 2016. doi: 10.1109/LCOMM.2016.2574343.
  • M. K. Simon and J. G. Smith, Hexagonal multiple phase-and amplitude-shift-keyed signal sets. IEEE Transactions on Communications, 21 (10), 1108–1115, 1973. doi: 10.1109/TCOM.1973.1091549.
  • S. Hosur, M. F. Mansour, and J. C. Roh, Hexagonal constellations for small cell communication. in Proc. IEEE Global Commun. Conf. (GLOBECOM), sayfa 3270–3275, Atlanta, GA, USA, 2013. doi: 10.1109/GLOCOM.2013.6831576.
  • J. Lee, D. Yoon, and K. Cho, Error performance analysis of M-ary θ-QAM. IEEE Transactions on Vehicular Technology, 61 (3), 1423–1427, 2012. doi: 10.1109/TVT.2012.2186835.
  • P. K. Singya, N. Kumar and V. Bhatia, Impact of imperfect CSI on ASER of hexagonal and rectangular QAM for AF relaying network. IEEE Communications Letters, 22 (2), 428-431, 2018. doi: 10.1109/LCOMM.2017.2778153.
  • D. Sadhwani, R. N. Yadav and S. Aggarwal, Tighter bounds on the Gaussian Q function and its application in Nakagami-m fading channel. IEEE Wireless Communications Letters, 6 (5), 574-577, 2017. doi: 10.1109/LWC.2017.2717907.
  • N. Kumar, P. K. Singya and V. Bhatia, ASER analysis of hexagonal and rectangular QAM schemes in multiple-relay networks. IEEE Transactions on Vehicular Technology, 67 (2), 1815-1819, 2018. doi: 10.1109/TVT.2017.2758028.
  • Bilim, M., Dual-branch SC wireless systems with HQAM for beyond 5G over η-μ fading channels. Peer-to-Peer Networking and Applications, 14, 305-318, 2021. doi: 10.1007/s12083-020-00946-x.
  • Bilim, M., Different QAM Schemes analyses for ARS fading channels. Transactions on Emerging Telecommunications Technologies, 32 (1), e4119, 2021. doi: 10.1002/ett.4119.
  • Bilim M., Altıgen kareleme genlik modülasyonu kullanan MIMO TAS/MRC sistemlerin Weibull sönümlenmeli kanallardaki hata analizi değerlendirmesi. EEMKON 19, Elektrik Elektronik Mühendisliği Kongresi, sayfa 410-413, 2019, Türkiye.
  • C Özen, M Bilim HQAM Analysis of MRC Diversity Systems over Fisher-Snedecor F Channels. 29th Signal Processing and Communications Applications Conference, sayfa 1-4, 2021, Türkiye. doi: 10.1109/SIU53274.2021.9477903.
  • J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris and A. J. Goldsmith, The fluctuating two-ray fading model: statistical characterization and performance analysis. IEEE Transactions on Wireless Communications, 16 (7), 4420-4432, 2017. doi: 10.1109/TWC.2017.2698445.
  • J. Zhang, W. Zeng, X. Li, Q. Sun and K. P. Peppas, New results on the fluctuating two-ray model with arbitrary fading parameters and its applications. IEEE Transactions on Vehicular Technology, c. 67, no. 3, s. 2766-2770, 2018. doi: 10.1109/TVT.2017.2766784.
  • W. Zeng, J. Zhang, S. Chen, K. P. Peppas and B. Ai, Physical layer security over fluctuating two-ray fading channels. IEEE Transactions on Vehicular Technology, 67 (9), 8949-8953, 2018. doi: 10.1109/TVT.2018.2842126.
  • J. Zheng, J. Zhang, G. Pan, J. Cheng and B. Ai, Sum of squared fluctuating two-ray random variables with wireless applications. IEEE Transactions on Vehicular Technology, 68 (8), 8173-8177, 2019. doi: 10.1109/TVT.2019.2920533.
  • O. S. Badarneh and D. B. da Costa, Cascaded fluctuating two-ray fading channels. IEEE Communications Letters, 23 (9), 1497-1500, 2019. doi: 10.1109/LCOMM.2019.2926982.
  • G. D. Durgin, T. S. Rappaport, and D. A. de Wolf, New analytical models and probability density functions for fading in wireless communications. IEEE Transactions on Communications, 50 (6), 1005–1015, 2002. doi: 10.1109/TCOMM.2002.1010620.
  • I. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products. 6th ed. New York, NY, USA: Academic, 2000.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Caner Özen Bu kişi benim 0000-0002-2728-706X

Mehmet Bilim 0000-0003-2518-3125

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 10 Aralık 2021
Kabul Tarihi 28 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 2

Kaynak Göster

APA Özen, C., & Bilim, M. (2022). Kaskat bir sistemin FTR sönümlemeli kanallarda HQAM performans analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 258-263. https://doi.org/10.28948/ngumuh.1034147
AMA Özen C, Bilim M. Kaskat bir sistemin FTR sönümlemeli kanallarda HQAM performans analizi. NÖHÜ Müh. Bilim. Derg. Nisan 2022;11(2):258-263. doi:10.28948/ngumuh.1034147
Chicago Özen, Caner, ve Mehmet Bilim. “Kaskat Bir Sistemin FTR sönümlemeli Kanallarda HQAM Performans Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, sy. 2 (Nisan 2022): 258-63. https://doi.org/10.28948/ngumuh.1034147.
EndNote Özen C, Bilim M (01 Nisan 2022) Kaskat bir sistemin FTR sönümlemeli kanallarda HQAM performans analizi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 2 258–263.
IEEE C. Özen ve M. Bilim, “Kaskat bir sistemin FTR sönümlemeli kanallarda HQAM performans analizi”, NÖHÜ Müh. Bilim. Derg., c. 11, sy. 2, ss. 258–263, 2022, doi: 10.28948/ngumuh.1034147.
ISNAD Özen, Caner - Bilim, Mehmet. “Kaskat Bir Sistemin FTR sönümlemeli Kanallarda HQAM Performans Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/2 (Nisan 2022), 258-263. https://doi.org/10.28948/ngumuh.1034147.
JAMA Özen C, Bilim M. Kaskat bir sistemin FTR sönümlemeli kanallarda HQAM performans analizi. NÖHÜ Müh. Bilim. Derg. 2022;11:258–263.
MLA Özen, Caner ve Mehmet Bilim. “Kaskat Bir Sistemin FTR sönümlemeli Kanallarda HQAM Performans Analizi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 11, sy. 2, 2022, ss. 258-63, doi:10.28948/ngumuh.1034147.
Vancouver Özen C, Bilim M. Kaskat bir sistemin FTR sönümlemeli kanallarda HQAM performans analizi. NÖHÜ Müh. Bilim. Derg. 2022;11(2):258-63.

download