With urbanization, population, and consumption on the rise, urban waste generation is steadily increasing. Consequently, waste management systems have become integral to city life, playing a critical role in resource efficiency and environmental protection. Inadequate waste management systems can adversely affect the environment, human health, and the economy. Accurate and rapid automatic waste classification poses a significant challenge in recycling. Deep learning models have achieved successful image classification in various fields recently. However, the optimal determination of many hyperparameters is crucial in these models. In this study, we developed a deep learning model that achieves the best classification performance by optimizing the depth, width, and other hyperparameters. Our six-layer Convolutional Neural Network (CNN) model with the lowest depth and width produced a successful result with an accuracy value of 89% and an F1 score of 88%. Moreover, several state-of-the-art CNN models such as VGG19, DenseNet169, ResNet101, Xception, InceptionV3, RegnetX008, RegnetY008, EfficientNetV2S trained with transfer learning and fine-tuning. Extensive experimental work has been done to find the optimal hyperparameters with GridSearch. Our most comprehensive DenseNet169 model, which we trained with fine-tuning, provided an accuracy value of 96.42% and an F1 score of 96%. These models can be successfully used in a variety of waste classification automation.
Primary Language | English |
---|---|
Subjects | Artificial Intelligence |
Journal Section | Articles |
Authors | |
Early Pub Date | August 27, 2023 |
Publication Date | August 31, 2023 |
Submission Date | February 28, 2023 |
Acceptance Date | July 17, 2023 |
Published in Issue | Year 2023 |
The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License