Araştırma Makalesi
BibTex RIS Kaynak Göster

EVSEL ATIK SULARIN STERİLİZASYON CİHAZI TASARIMI ve DOĞRULAMASI

Yıl 2024, Cilt: 9 Sayı: 1, 17 - 25, 25.03.2024
https://doi.org/10.57120/yalvac.1356148

Öz

Modern toplumların en büyük sorunlarından biri olan evsel atıkların çevreye verdiği zararlar göz önünde bulundurulduğunda, bu makale 'evsel atıkların sterilizasyon cihazı tasarımı' konusundaki önemli bir adımı temsil etmektedir. Bu çalışmada, bina atık sularının kanalizasyon sistemlerinde meydana gelen tıkanmalar ve mikroorganizmalardan kaynaklanan birikimler nedeniyle oluşan çevresel etkilerin azaltılması amaçlanmaktadır. Bu amaç doğrultusunda, UV ışık kullanılarak mikroorganizmaların arındırılması ve öğütücü yardımıyla katı atıkların fiziksel parçalanması gibi yenilikçi yaklaşımlar sunulmaktadır. Bu tasarımın gerçekleştirilmesiyle, şehir kanalizasyon hatlarında taşkın riski azalacak ve mikroorganizma içeren sıvı akışının çevre kirliliğine yol açması önlenecektir. Ayrıca, bina atık sularının kanalizasyona karışması, tıkanma ve taşma problemleri, arıtılmamış su tüketimine bağlı hastalık riski, kirli atık suların tarım alanlarına sızması gibi çeşitli sorunlara etkili çözümler sunulmuştur.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

TÜBİTAK 2209A Öğrenci Projesi No:1919B012102252

Teşekkür

2209/A Üniversite Öğrencileri Araştırma Projeleri Destek Programı kapsamında 1919B12102252 numaralı proje ile maddi destek sağlayan TÜBİTAK’a teşekkür ederiz.

Kaynakça

  • 1. Willke Topçu, A. (2018). Biyofilm Nedir? Biyofilm Enfeksiyonları. 1. Baskı. Türkiye Klinikleri. 1-3. Ankara.
  • 2. Welfle, A., Gilbert, P., Thornley, P. (2014). Increasing biomass resource availability through supply chain analysis. Biomass and Bioenergy 70, 249–266.
  • 3. Brown, J., Acey, C. S., Anthonj, C., Barrington, D. J., Beal, C. D., Capone, D., Winkler, I. T. (2023). The effects of racism, social exclusion, and discrimination on achieving universal safe water and sanitation in high-income countries. The Lancet Global Health, 11(4), e606-e614.
  • 4. Allen, R. M., Bennetto, H. P. (1993). Microbial fuel-cells. Appl. Biochem.Biotechnol. 39–40, 27–40
  • 5. Habermann, W., Pommer, E. (1991). Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol. 35, 128–133
  • 6. Lovley, D. R. (2008). The microbe electric: conversion of organic matter to electricity. Curr. Opin. Botechnology 19, 564–71
  • 7. Zhang, F., Brastad, K. S., He, Z. (2011). Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ. Sci. Technol. 45, 6690–6
  • 8. You, J., Greenman, J., Melhuish, C., Ieropoulos, I. (2014). Electricity generation and struvite recovery from human urine using microbial fuel cells. J. Chem. Technol. Biotechnol.
  • 9. Ieropoulos, I., Greenman, J., Melhuish, C. (2010). Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochemistry 78, 44–50
  • 10. Ieropoulos, I. et al. (2013). Waste to real energy: the first MFC powered mobile phone. Phys. Chem. Chem. Phys. 15, 15312–15316
  • 11. Ieropoulos, I., Greenman, J., Melhuish, C., Horsfield, I. (2010). EcoBot-III-A Robot with Guts. ALIFE 733–740
  • 12. Ruiz-Díez, C., Navarro-Segarra, M., Barrena, R., Gea, T., Esquivel, J. P. (2023). Optimization of UV-C pulsed radiation strategy for a high-efficiency portable water sterilizer. Environmental Technology & Innovation, 31, 103199.
  • 13. Iwaguch, S., Matsumura, K., Tokuoka, Y., Wakui, S., Kawashima, N. (2002). Sterilization system using microwave and UV light. Colloids and surfaces B: Biointerfaces, 25(4), 299-304.
  • 14. Kung Jr, L., Shaver, R. D., Grant, R. J., Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of dairy Science, 101(5), 4020-4033.
  • 15. Ibrahim, D. (2006). Microcontroller based applied digital control. John Wiley.
  • 16. Diffey, B. L. (2002). Sources and measurement of ultraviolet radiation. Methods, 28(1), 4-13.
  • 17. Hijnen, W. A. M., Beerendonk, E. F., Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: a review. Water research, 40(1), 3-22.
  • 18. Block, M. S., Rowan, B. G. (2020). Hypochlorous acid: a review. Journal of Oral and Maxillofacial Surgery, 78(9), 1461-1466.
  • 19. Ampiaw, R. E., Yaqub, M., Lee, W. (2021). Electrolyzed water as a disinfectant: A systematic review of factors affecting the production and efficiency of hypochlorous acid. Journal of Water Process Engineering, 43, 102228.
  • 20. Eryilmaz, M., Palabiyik, I. M. (2013). Hypochlorous acid-analytical methods and antimicrobial activity. Tropical journal of pharmaceutical research, 12(1), 123-126.
  • 21. Mehendale, F. V., Clayton, G., Homyer, K. M., Reynolds, D. M. (2023). HOCl vs OCl−: clarification on chlorine-based disinfectants used within clinical settings. Journal of Global Health Reports, 7, e2023052.
  • 22. Erdoğan, A. O., Zengin, G. E., Orhon, D. (2010). Türkiye'de evsel atıksu oluşum miktarları ve karakterizasyonu. İTÜDERGİSİ/e, 15(1, 3).
  • 23. ÜSTÜN, G., TIRPANCI, A. (2015). Gri suyun arıtımı ve yeniden kullanımı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2), 119-139.

DESIGN AND VALIDATION OF HOUSEHOLD WASTEWATER STERILIZATION APPARATUS

Yıl 2024, Cilt: 9 Sayı: 1, 17 - 25, 25.03.2024
https://doi.org/10.57120/yalvac.1356148

Öz

When considering the environmental impact of household waste, which is one of the major challenges of modern societies, this article represents a significant step in the field of 'design of domestic waste sterilization apparatus'. In this study, the aim is to mitigate the environmental effects caused by blockages in sewage systems due to building waste and accumulations resulting from microorganisms. Toward this objective, innovative approaches such as the use of UV light for microbial disinfection and the physical fragmentation of solid waste through a grinder are presented. The realization of this design would lead to a reduced risk of sewage overflow in urban sewage lines, thereby preventing the discharge of microorganism-laden liquids that contribute to environmental pollution. Furthermore, the proposed design offers effective solutions to various issues, including the prevention of household wastewater mixing with sewage, mitigation of problems related to blockages and overflow, reduction of disease risks associated with untreated water consumption, and prevention of contaminated wastewater infiltration into agricultural areas.

Proje Numarası

TÜBİTAK 2209A Öğrenci Projesi No:1919B012102252

Kaynakça

  • 1. Willke Topçu, A. (2018). Biyofilm Nedir? Biyofilm Enfeksiyonları. 1. Baskı. Türkiye Klinikleri. 1-3. Ankara.
  • 2. Welfle, A., Gilbert, P., Thornley, P. (2014). Increasing biomass resource availability through supply chain analysis. Biomass and Bioenergy 70, 249–266.
  • 3. Brown, J., Acey, C. S., Anthonj, C., Barrington, D. J., Beal, C. D., Capone, D., Winkler, I. T. (2023). The effects of racism, social exclusion, and discrimination on achieving universal safe water and sanitation in high-income countries. The Lancet Global Health, 11(4), e606-e614.
  • 4. Allen, R. M., Bennetto, H. P. (1993). Microbial fuel-cells. Appl. Biochem.Biotechnol. 39–40, 27–40
  • 5. Habermann, W., Pommer, E. (1991). Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol. 35, 128–133
  • 6. Lovley, D. R. (2008). The microbe electric: conversion of organic matter to electricity. Curr. Opin. Botechnology 19, 564–71
  • 7. Zhang, F., Brastad, K. S., He, Z. (2011). Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ. Sci. Technol. 45, 6690–6
  • 8. You, J., Greenman, J., Melhuish, C., Ieropoulos, I. (2014). Electricity generation and struvite recovery from human urine using microbial fuel cells. J. Chem. Technol. Biotechnol.
  • 9. Ieropoulos, I., Greenman, J., Melhuish, C. (2010). Improved energy output levels from small-scale Microbial Fuel Cells. Bioelectrochemistry 78, 44–50
  • 10. Ieropoulos, I. et al. (2013). Waste to real energy: the first MFC powered mobile phone. Phys. Chem. Chem. Phys. 15, 15312–15316
  • 11. Ieropoulos, I., Greenman, J., Melhuish, C., Horsfield, I. (2010). EcoBot-III-A Robot with Guts. ALIFE 733–740
  • 12. Ruiz-Díez, C., Navarro-Segarra, M., Barrena, R., Gea, T., Esquivel, J. P. (2023). Optimization of UV-C pulsed radiation strategy for a high-efficiency portable water sterilizer. Environmental Technology & Innovation, 31, 103199.
  • 13. Iwaguch, S., Matsumura, K., Tokuoka, Y., Wakui, S., Kawashima, N. (2002). Sterilization system using microwave and UV light. Colloids and surfaces B: Biointerfaces, 25(4), 299-304.
  • 14. Kung Jr, L., Shaver, R. D., Grant, R. J., Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of dairy Science, 101(5), 4020-4033.
  • 15. Ibrahim, D. (2006). Microcontroller based applied digital control. John Wiley.
  • 16. Diffey, B. L. (2002). Sources and measurement of ultraviolet radiation. Methods, 28(1), 4-13.
  • 17. Hijnen, W. A. M., Beerendonk, E. F., Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: a review. Water research, 40(1), 3-22.
  • 18. Block, M. S., Rowan, B. G. (2020). Hypochlorous acid: a review. Journal of Oral and Maxillofacial Surgery, 78(9), 1461-1466.
  • 19. Ampiaw, R. E., Yaqub, M., Lee, W. (2021). Electrolyzed water as a disinfectant: A systematic review of factors affecting the production and efficiency of hypochlorous acid. Journal of Water Process Engineering, 43, 102228.
  • 20. Eryilmaz, M., Palabiyik, I. M. (2013). Hypochlorous acid-analytical methods and antimicrobial activity. Tropical journal of pharmaceutical research, 12(1), 123-126.
  • 21. Mehendale, F. V., Clayton, G., Homyer, K. M., Reynolds, D. M. (2023). HOCl vs OCl−: clarification on chlorine-based disinfectants used within clinical settings. Journal of Global Health Reports, 7, e2023052.
  • 22. Erdoğan, A. O., Zengin, G. E., Orhon, D. (2010). Türkiye'de evsel atıksu oluşum miktarları ve karakterizasyonu. İTÜDERGİSİ/e, 15(1, 3).
  • 23. ÜSTÜN, G., TIRPANCI, A. (2015). Gri suyun arıtımı ve yeniden kullanımı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2), 119-139.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Raziye Lökcü 0009-0000-5121-2933

Ahmet Can Alataş 0009-0000-6807-8267

Merdan Özkahraman 0000-0002-3501-6497

Bekir Aksoy 0000-0001-8052-9411

Proje Numarası TÜBİTAK 2209A Öğrenci Projesi No:1919B012102252
Erken Görünüm Tarihi 18 Mart 2024
Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 13 Kasım 2023
Kabul Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 1

Kaynak Göster

APA Lökcü, R., Alataş, A. C., Özkahraman, M., Aksoy, B. (2024). EVSEL ATIK SULARIN STERİLİZASYON CİHAZI TASARIMI ve DOĞRULAMASI. Yalvaç Akademi Dergisi, 9(1), 17-25. https://doi.org/10.57120/yalvac.1356148

http://www.yalvacakademi.org/