Research Article
BibTex RIS Cite

Extraction of Cattle Retinal Vascular Patterns with Different Segmentation Methods

Year 2024, Volume: 7 Issue: 3, 378 - 388, 31.12.2024
https://doi.org/10.35377/saucis...1509150

Abstract

In the field of animal husbandry, the process of animal identification and recognition is challenging, time-consuming, and costly. In Türkiye, the ear tagging method is widely used for animal identification. However, this traditional method has many significant disadvantages such as lost tags, the ability to copy and replicate tags, and negative impacts on animal welfare. Therefore, in some countries, biometric identification methods are being developed and used as alternatives to overcome the disadvantages of traditional methods. Retina vessel patterns are a biometric identifier with potential in biometric identification studies. Preprocessing steps and vessel segmentation emerge as crucial steps in image processing-based identification and recognition systems. In this study, conducted in the Kars region of Türkiye, a series of preprocessing steps were applied to retinal images collected from cattle. Fuzzy c-means, k-means, and level-set methods were utilized for vessel segmentation. The segmented vascular structures obtained with these methods were comparatively analyzed. As a result of the comparison, it was observed that all models successfully performed retinal main vessel structure segmentation, fine vessels were successfully identified with fuzzy c-means, and spots in retinal images were detected only by the level-set method. Evaluating the success of these methods in identification, recognition, or disease detection will facilitate the development of successful systems.

Ethical Statement

The study was approved by the Kafkas University Animal Experiments Local Ethics Committee (Protocol number: KAÜ-HADYEK/2024-123).

Supporting Institution

This work was supported by the Turkish Scientific and Technical Research Council-TÜBİTAK (Project Number: 121E349).

Project Number

121E349

Thanks

This work was supported by the Turkish Scientific and Technical Research Council-TÜBİTAK (Project Number: 121E349).

References

  • A. Allen, B. Golden, M. Taylor, D. Patterson, D. Henriksen, R. Skuce, “Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland,” Livestock Science, 116(1-3), 42-52,2008.
  • E. L. Fletcher, A. I. Jobling, K. A. Vessey, C. Luu, R. H. Guymer, P. N. Baird, “Animal models of retinal disease,” Progress in Molecular Biology and Translational Science, Elsevier, 2011, pp. 211-286.
  • D. L. Pendell, G. W. Brester, T. C. Schroeder, K. C. Dhuyvetter, G. T. Tonsor, “Animal identification and tracing in the United States,” American Journal of Agricultural Economics, 92(4), 927-940,2010.
  • Animal Biometric. (2024). Result of animal biometric in web of science [Online]. Available: https://www.webofscience.com/wos/woscc/summary/fce1ad3f-45dd-49d2-864a-32a7eea75200-9145fcaa/relevance/1.
  • B. Shavers, J. Bair, “Hiding behind the keyboard: uncovering covert communication methods with forensic analysis,” Syngress, 2016.
  • A. I. Awad, “From classical methods to animal biometrics: A review on cattle identification and tracking,” Computers and Electronics in Agriculture, 123, 423-435, 2016.
  • G. U. Barron, G. Corkery, B. Barry, F. Butler, K. McDonnell, S. Ward, “Assessment of retinal recognition technology as a biometric method for sheep identification,” Computers and Electronics in Agriculture, 60(2), 156-166, 2008.
  • H. D. Cheng, X. H. Jiang, Y. Sun, J. Wang,” Color image segmentation: advances and prospects,” Pattern Recognition, 34(12), 2259-2281, 2001.
  • S. Wali, C. Li, M. Imran, A. Shakoor, A. Basit, “Level-set Evolution for Medical Image Segmentation with Alternating Direction Method of Multipliers,” Signal Processing, 109105, 2023.
  • S. Mustafi, P. Ghosh, S. N. Mandal, “RetIS: Unique identification system of goats through retinal analysis,” Computers and Electronics in Agriculture, 185, 106127, 2021.
  • J. R. Gionfriddo, A. C. Lee, T. A. Precht, C. C. Powell, K.K Marren, S. V. Radecki, “Evaluation of retinal images for identifying individual dogs,” American Journal of Veterinary Research, 67(12), 2042-2045, 2006.
  • B. Barry, G. U. Barron, F. Butler, S. Ward, K. McDonnell, “Verification of sheep identity by means of a retinal recognition system,” Transactions of the ASABE. 2011; 54:1161-7.
  • G. Alturk, F. Karakus, “Assessment of Retinal Recognition Technology as A Biometric Identification Method in Norduz Sheep,” in International Animal Science Conference, Turkey, 2019, pp. 404.
  • M. A. Rojas-Olivares, G. Caja, S. Carné, A. A. K. Salama, N. Adell, P. Puig, “Determining the optimal age for recording the retinal vascular pattern image of lambs,” Journal of Animal Science, 90(3), 1040-1046,2012.
  • V. V. Kumari, N. Suriyaharayananm, C. T. Saranya, “Feature extraction for early detection of diabetic retinopathy,” in International Conference on Recent Trends in Information, Telecommunication and Computing, India, 2010, pp. 359-361.
  • S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. H. Romeny, J. B. Zimmerman, K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, 39(3), 355-368, 1987.
  • S. Sahu, A. K. Singh, S. P. Ghrera, M. Elhoseny, “An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE,” Optics and Laser Technology, 110, 87-98,2019.
  • M. L. Comer, E. J. Delp III, “Morphological operations for color image processing,” Journal of Electronic Imaging, 8(3), 279-289,1999.
  • J. E. Arco, J. M. Górriz, J. Ramírez, I. Álvarez, C. G. Puntonet, “Digital image analysis for automatic enumeration of malaria parasites using morphological operations,” Expert Systems with Applications, 42(6), 3041-3047,2015.
  • S. Ghosh, S. K. Dubey, “Comparative analysis of k-means and fuzzy c-means algorithms,” International Journal of Advanced Computer Science and Applications, 4(4),2013.
  • B. Sindhusaranya, M.R. Geetha, “Retinal blood vessel segmentation using root Guided decision tree assisted enhanced Fuzzy C-mean clustering for disease identification,” Biomedical Signal Processing and Control, 82, 104525,2023.
  • A. E. Hassanien, E, Emary, H. M. Zawbaa, “Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search,” Journal of Visual Communication and Image Representation, 31, 186-196,2015.
  • Y. Kumar, B. Gupta, “Retinal image blood vessel classification using hybrid deep learning in cataract diseased fundus images,” Biomedical Signal Processing and Control, 84, 104776,2023.
  • B. D. Barkana, I. Saricicek, B. Yildirim, “Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion,” Knowledge-Based Systems, 118, 165-176,2017.
  • K. Padmanaban, R. J. Kannan, “Localization of optic disc using Fuzzy C Means clustering,” in International Conference on Current Trends in Engineering and Technology (ICCTET), India,2013, pp. 184-186.
  • T. M. Kodinariya, P.R. Makwana, “Review on determining number of Cluster in K-Means Clustering,” International Journal, 1(6), 90-95,2013.
  • G. Sun, X. Liu, S. Wang, L. Gao, M. Liu, “Width measurement for pathological vessels in retinal images using centerline correction and k-means clustering,” Measurement, 139, 185-195,2019.
  • T. Zhou, S. Ruan, S. Canu, “A review: Deep learning for medical image segmentation using multi-modality fusion," Array, 3, 100004,2019.
  • Y. Li, Q. Lao, Q. Kang, Z. Jiang, S. Du, S. Zhang, K. Li, “Self-supervised anomaly detection, staging and segmentation for retinal images,” Medical Image Analysis, 87, 102805,2023.
  • T. Nazir, A. Irtaza, A. Javed, H. Malik, D. Hussain, R. A. Naqvi, “Retinal image analysis for diabetes-based eye disease detection using deep learning,” Applied Sciences, 10(18), 6185,2020.
  • S. Osher, J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, 79(1), 12-49,1988.
  • M. Khare, R. K. Srivastava, “Medical image segmentation using level set method without reinitialization,” in International Conference on Signal, Image and Video Processing, India, 2012, pp. 619.
  • P. Cihan, E. Gokce, O. Kalipsiz. "A review of machine learning applications in veterinary field." Kafkas Universitesi Veteriner Fakultesi Dergisi, 23(4), 2017. DOI: 10.9775/kvfd.2016.17281
  • P. Cihan, A. Saygili, N.E. Ozmen, M. Akyuzlu. "Identification and Recognition of Animals from Biometric Markers Using Computer Vision Approaches: A Review." Kafkas Universitesi Veteriner Fakultesi Dergisi, 29(6), 2023. DOI: 10.9775/kvfd.2023.30265
Year 2024, Volume: 7 Issue: 3, 378 - 388, 31.12.2024
https://doi.org/10.35377/saucis...1509150

Abstract

Project Number

121E349

References

  • A. Allen, B. Golden, M. Taylor, D. Patterson, D. Henriksen, R. Skuce, “Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland,” Livestock Science, 116(1-3), 42-52,2008.
  • E. L. Fletcher, A. I. Jobling, K. A. Vessey, C. Luu, R. H. Guymer, P. N. Baird, “Animal models of retinal disease,” Progress in Molecular Biology and Translational Science, Elsevier, 2011, pp. 211-286.
  • D. L. Pendell, G. W. Brester, T. C. Schroeder, K. C. Dhuyvetter, G. T. Tonsor, “Animal identification and tracing in the United States,” American Journal of Agricultural Economics, 92(4), 927-940,2010.
  • Animal Biometric. (2024). Result of animal biometric in web of science [Online]. Available: https://www.webofscience.com/wos/woscc/summary/fce1ad3f-45dd-49d2-864a-32a7eea75200-9145fcaa/relevance/1.
  • B. Shavers, J. Bair, “Hiding behind the keyboard: uncovering covert communication methods with forensic analysis,” Syngress, 2016.
  • A. I. Awad, “From classical methods to animal biometrics: A review on cattle identification and tracking,” Computers and Electronics in Agriculture, 123, 423-435, 2016.
  • G. U. Barron, G. Corkery, B. Barry, F. Butler, K. McDonnell, S. Ward, “Assessment of retinal recognition technology as a biometric method for sheep identification,” Computers and Electronics in Agriculture, 60(2), 156-166, 2008.
  • H. D. Cheng, X. H. Jiang, Y. Sun, J. Wang,” Color image segmentation: advances and prospects,” Pattern Recognition, 34(12), 2259-2281, 2001.
  • S. Wali, C. Li, M. Imran, A. Shakoor, A. Basit, “Level-set Evolution for Medical Image Segmentation with Alternating Direction Method of Multipliers,” Signal Processing, 109105, 2023.
  • S. Mustafi, P. Ghosh, S. N. Mandal, “RetIS: Unique identification system of goats through retinal analysis,” Computers and Electronics in Agriculture, 185, 106127, 2021.
  • J. R. Gionfriddo, A. C. Lee, T. A. Precht, C. C. Powell, K.K Marren, S. V. Radecki, “Evaluation of retinal images for identifying individual dogs,” American Journal of Veterinary Research, 67(12), 2042-2045, 2006.
  • B. Barry, G. U. Barron, F. Butler, S. Ward, K. McDonnell, “Verification of sheep identity by means of a retinal recognition system,” Transactions of the ASABE. 2011; 54:1161-7.
  • G. Alturk, F. Karakus, “Assessment of Retinal Recognition Technology as A Biometric Identification Method in Norduz Sheep,” in International Animal Science Conference, Turkey, 2019, pp. 404.
  • M. A. Rojas-Olivares, G. Caja, S. Carné, A. A. K. Salama, N. Adell, P. Puig, “Determining the optimal age for recording the retinal vascular pattern image of lambs,” Journal of Animal Science, 90(3), 1040-1046,2012.
  • V. V. Kumari, N. Suriyaharayananm, C. T. Saranya, “Feature extraction for early detection of diabetic retinopathy,” in International Conference on Recent Trends in Information, Telecommunication and Computing, India, 2010, pp. 359-361.
  • S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. H. Romeny, J. B. Zimmerman, K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, 39(3), 355-368, 1987.
  • S. Sahu, A. K. Singh, S. P. Ghrera, M. Elhoseny, “An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE,” Optics and Laser Technology, 110, 87-98,2019.
  • M. L. Comer, E. J. Delp III, “Morphological operations for color image processing,” Journal of Electronic Imaging, 8(3), 279-289,1999.
  • J. E. Arco, J. M. Górriz, J. Ramírez, I. Álvarez, C. G. Puntonet, “Digital image analysis for automatic enumeration of malaria parasites using morphological operations,” Expert Systems with Applications, 42(6), 3041-3047,2015.
  • S. Ghosh, S. K. Dubey, “Comparative analysis of k-means and fuzzy c-means algorithms,” International Journal of Advanced Computer Science and Applications, 4(4),2013.
  • B. Sindhusaranya, M.R. Geetha, “Retinal blood vessel segmentation using root Guided decision tree assisted enhanced Fuzzy C-mean clustering for disease identification,” Biomedical Signal Processing and Control, 82, 104525,2023.
  • A. E. Hassanien, E, Emary, H. M. Zawbaa, “Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search,” Journal of Visual Communication and Image Representation, 31, 186-196,2015.
  • Y. Kumar, B. Gupta, “Retinal image blood vessel classification using hybrid deep learning in cataract diseased fundus images,” Biomedical Signal Processing and Control, 84, 104776,2023.
  • B. D. Barkana, I. Saricicek, B. Yildirim, “Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion,” Knowledge-Based Systems, 118, 165-176,2017.
  • K. Padmanaban, R. J. Kannan, “Localization of optic disc using Fuzzy C Means clustering,” in International Conference on Current Trends in Engineering and Technology (ICCTET), India,2013, pp. 184-186.
  • T. M. Kodinariya, P.R. Makwana, “Review on determining number of Cluster in K-Means Clustering,” International Journal, 1(6), 90-95,2013.
  • G. Sun, X. Liu, S. Wang, L. Gao, M. Liu, “Width measurement for pathological vessels in retinal images using centerline correction and k-means clustering,” Measurement, 139, 185-195,2019.
  • T. Zhou, S. Ruan, S. Canu, “A review: Deep learning for medical image segmentation using multi-modality fusion," Array, 3, 100004,2019.
  • Y. Li, Q. Lao, Q. Kang, Z. Jiang, S. Du, S. Zhang, K. Li, “Self-supervised anomaly detection, staging and segmentation for retinal images,” Medical Image Analysis, 87, 102805,2023.
  • T. Nazir, A. Irtaza, A. Javed, H. Malik, D. Hussain, R. A. Naqvi, “Retinal image analysis for diabetes-based eye disease detection using deep learning,” Applied Sciences, 10(18), 6185,2020.
  • S. Osher, J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics, 79(1), 12-49,1988.
  • M. Khare, R. K. Srivastava, “Medical image segmentation using level set method without reinitialization,” in International Conference on Signal, Image and Video Processing, India, 2012, pp. 619.
  • P. Cihan, E. Gokce, O. Kalipsiz. "A review of machine learning applications in veterinary field." Kafkas Universitesi Veteriner Fakultesi Dergisi, 23(4), 2017. DOI: 10.9775/kvfd.2016.17281
  • P. Cihan, A. Saygili, N.E. Ozmen, M. Akyuzlu. "Identification and Recognition of Animals from Biometric Markers Using Computer Vision Approaches: A Review." Kafkas Universitesi Veteriner Fakultesi Dergisi, 29(6), 2023. DOI: 10.9775/kvfd.2023.30265
There are 34 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Article
Authors

Pınar Cihan 0000-0001-7958-7251

Ahmet Saygılı 0000-0001-8625-4842

Muhammed Akyüzlü 0009-0006-3940-520X

Nihat Eren Özmen 0000-0002-0053-3865

Celal Şahin Ermutlu 0000-0002-8923-7682

Uğur Aydın 0000-0001-5756-4841

Alican Yılmaz 0000-0001-7042-1749

Özgür Aksoy 0000-0002-4800-6079

Project Number 121E349
Early Pub Date November 29, 2024
Publication Date December 31, 2024
Submission Date July 2, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2024Volume: 7 Issue: 3

Cite

IEEE P. Cihan, A. Saygılı, M. Akyüzlü, N. E. Özmen, C. Ş. Ermutlu, U. Aydın, A. Yılmaz, and Ö. Aksoy, “Extraction of Cattle Retinal Vascular Patterns with Different Segmentation Methods”, SAUCIS, vol. 7, no. 3, pp. 378–388, 2024, doi: 10.35377/saucis...1509150.

29070    The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License