Araştırma Makalesi
BibTex RIS Kaynak Göster

Yol Aydınlatma Probleminin Çok Etmenli Ağlarda Dağıtık Çözümü

Yıl 2020, Cilt: 3 Sayı: 2, 89 - 98, 28.08.2020
https://doi.org/10.35377/saucis.03.02.716169

Öz

Bu çalışmada, verilen bir yol profili için yol aydınlatma düzeyinin istenilen değerlerde olmasını sağlayan lamba güçlerini belirleme probleminin çok etmenli sistemler üzerinde tanımlanan bir algoritma ile dağıtık çözümü ele alınmıştır. Söz konusu yol, ellişer metrelik uzunluğa sahip bölümler halinde modellenmiş ve her bir bölümün ortasında bir aydınlatma direği konumlandırılmıştır. Yapılan varsayımlar altında yol bölümlerinin aydınlanma düzeyleri, lambaların güçlerinin bir doğrusal fonksiyonu olduğu ifade edilmiştir. Aydınlatma direklerinde bulunan işlem birimlerinin kendilerine yakın olan direklerdeki işlem birimleriyle haberleşebildiği ve basit hesaplamalar yapabildiği durumda, yolun istenilen bir aydınlık seviyesine sahip olabilmesi için gerekli olan lamba gücü seviyelerinin, dağıtık olarak hesaplanabildiği gösterilmiş ve sayısal sonuçlar ile modelin ve çözümün geçerliği doğrulanmıştır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

117E204

Kaynakça

  • H. Jin, S. Jin, L. Chen, S. Cen and K. Yuan, "Research on the Lighting Performance of LED Street Lights With Different Color Temperatures," IEEE Photonics Journal, vol. 7, no. 6, pp. 1-9, 2015.
  • C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang and T. Chung, "Design of LED Street Lighting Adapted for Free-Form Roads," IEEE Photonics Journal, vol. 9, no. 1, pp. 1-13, 2017.
  • W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, New York, USA:Springer-Verlag, 1994.
  • M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Philadelphia, USA:SIAM Publishing, 2008.
  • J. Anderson, Computational Fluid Dynamics: The Basics With Applications, New York, USA:Mc-Graw-Hill Education, 1995.
  • B. Carpentieri, I. Duff, L. Giraud and M. Magolu monga Made, "Sparse Symmetric Preconditioners for Dense Linear Systems in Electromagnetism," Numerical Linear Algebra with Applications, vol. 11, pp. 753–771, 2004.
  • F. Pasqualetti, R. Carli and F. Bullo, "Distributed Estimation via Iterative Projections With Application to Power Network Monitoring," Automatica, vol. 48, no. 5, pp. 747-758, 2012.
  • D. Silvestre, J. Hespanha and C. Silvestre, "A Pagerank Algorithm Based on Asynchronous Gauss–Seidel Iterations," Proc. - 2018 American Control Conference, pp. 484–489, 2018.
  • S. Mou, J. Liu and A.S. Morse, "A Distributed Algorithm for Solving a Linear Algebraic Equation," IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 2863–2878, 2015.
  • J. Liu, S. Mou and A.S. Morse, "Asynchronous Distributed Algorithms for Solving Linear Algebraic Equations," IEEE Transactions on Automatic Control, vol. 63, no. 2, pp. 372–385, 2018.
  • J. Liu, A.S. Morse, A. Nedic and T. Başar, "Exponential Convergence of a Distributed Algorithm for Solving Linear Algebraic Equations," Automatica, vol. 83, pp. 37–46, 2017.
  • X. Wang, J. Zhou, S. Mou and M.J. Corless, "A Distributed Linear Equation Solver for Least Square Solutions," Proc. - 56th IEEE Conference on Decision and Control, pp. 5955–5960, 2017.
  • J. Liu, X. Gao and T. Başar, "A Communication-Efficient Distributed Algorithm for Solving Linear Algebraic Equations," Proc. - 7th International Conference on Network Games, Control and Optimization, pp. 62–69, 2014.
  • P. Wang, W. Ren and Z. Duan, "Distributed Algorithm to Solve a System of Linear Equations With Unique or Multiple Solutions From Arbitrary Initializations," IEEE Transactions on Control of Network Systems, vol. 6, no. 1, pp. 82-93, 2018.
  • X. Wang, S. Mou and D. Sun, "Improvement of a Distributed Algorithm for Solving Linear Equations," IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3113–3117, 2017.
  • S. Mou, Z. Lin, L. Wang, D. Fullmer and A.S. Morse, "A Distributed Algorithm for Efficiently Solving Linear Equations and its Applications," Systems & Control Letters, vol. 91, pp. 21–27, 2016.
  • B.D.O. Anderson, S. Mou, A.S. Morse and U. Helmke, "Decentralized Gradient Algorithm for Solution of a Linear Equation," Numerical Algebra, Control & Optimization, vol. 6, no. 3, pp. 319-328, 2016.
  • G. Shi, B.D.O. Anderson and U. Helmke, "Network Flows That Solve Linear Equations," IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2659-2674, 2017.
  • M. Yang and C.Y. Tang, "A Distributed Algorithm for Solving General Linear Equations Over Networks," Proc. - 54th IEEE Conference on Decision and Control, pp. 3580–3585, 2015.
  • J. Liu, X. Chen, T. Başar ve A. Nedic , "A Continuous-Time Distributed Algorithm for Solving Linear Equations," Proc. - 2016 American Control Conference, pp. 5551–5556, 2016.
  • Y. Liu, C. Lageman, B.D.O. Anderson and G. Shi, "An Arrow–Hurwicz–Uzawa Type Flow as Least Squares Solver for Network Linear Equations," Automatica, vol. 100, pp. 187-193, 2019.
  • P. Wang, S. Mou, J. Lian and W. Ren, "Solving a System of Linear Equations: From Centralized to Distributed Algorithms," Annual Reviews in Control, vol. 47, pp. 306-322, 2019.
  • GNU Octave, “GNU Octave,” 2020. [Online]. Available: https://www.gnu.org/software/ octave/. [Accessed: 15-May-2020].

Distributed Solution of Road Lighting Problem Over Multi-Agent Networks

Yıl 2020, Cilt: 3 Sayı: 2, 89 - 98, 28.08.2020
https://doi.org/10.35377/saucis.03.02.716169

Öz

In this study, we consider the solution of the road lighting problem by distributed algorithms over multi-agent networks where the objective is to determine the powers of the lamps that provide the desired road lighting level for a given road profile. The road is modeled as multiple road sections each with a length of 50 meters where a lighting pole is located in the middle of each section. Under given assumptions, the illumination levels of the road sections are expressed as linear functions of the powers of the lamps. When the processing units in the lighting poles can communicate wirelessly with the neighboring processing units and make simple calculations, it is shown that the power levels of the lamps that provide the desired lighting level for each road section can be calculated in a distributed manner. Finally, the model and the proposed solution has been verified by a numerical example.

Proje Numarası

117E204

Kaynakça

  • H. Jin, S. Jin, L. Chen, S. Cen and K. Yuan, "Research on the Lighting Performance of LED Street Lights With Different Color Temperatures," IEEE Photonics Journal, vol. 7, no. 6, pp. 1-9, 2015.
  • C. Sun, X. Lee, I. Moreno, C. Lee, Y. Yu, T. Yang and T. Chung, "Design of LED Street Lighting Adapted for Free-Form Roads," IEEE Photonics Journal, vol. 9, no. 1, pp. 1-13, 2017.
  • W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, New York, USA:Springer-Verlag, 1994.
  • M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Philadelphia, USA:SIAM Publishing, 2008.
  • J. Anderson, Computational Fluid Dynamics: The Basics With Applications, New York, USA:Mc-Graw-Hill Education, 1995.
  • B. Carpentieri, I. Duff, L. Giraud and M. Magolu monga Made, "Sparse Symmetric Preconditioners for Dense Linear Systems in Electromagnetism," Numerical Linear Algebra with Applications, vol. 11, pp. 753–771, 2004.
  • F. Pasqualetti, R. Carli and F. Bullo, "Distributed Estimation via Iterative Projections With Application to Power Network Monitoring," Automatica, vol. 48, no. 5, pp. 747-758, 2012.
  • D. Silvestre, J. Hespanha and C. Silvestre, "A Pagerank Algorithm Based on Asynchronous Gauss–Seidel Iterations," Proc. - 2018 American Control Conference, pp. 484–489, 2018.
  • S. Mou, J. Liu and A.S. Morse, "A Distributed Algorithm for Solving a Linear Algebraic Equation," IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 2863–2878, 2015.
  • J. Liu, S. Mou and A.S. Morse, "Asynchronous Distributed Algorithms for Solving Linear Algebraic Equations," IEEE Transactions on Automatic Control, vol. 63, no. 2, pp. 372–385, 2018.
  • J. Liu, A.S. Morse, A. Nedic and T. Başar, "Exponential Convergence of a Distributed Algorithm for Solving Linear Algebraic Equations," Automatica, vol. 83, pp. 37–46, 2017.
  • X. Wang, J. Zhou, S. Mou and M.J. Corless, "A Distributed Linear Equation Solver for Least Square Solutions," Proc. - 56th IEEE Conference on Decision and Control, pp. 5955–5960, 2017.
  • J. Liu, X. Gao and T. Başar, "A Communication-Efficient Distributed Algorithm for Solving Linear Algebraic Equations," Proc. - 7th International Conference on Network Games, Control and Optimization, pp. 62–69, 2014.
  • P. Wang, W. Ren and Z. Duan, "Distributed Algorithm to Solve a System of Linear Equations With Unique or Multiple Solutions From Arbitrary Initializations," IEEE Transactions on Control of Network Systems, vol. 6, no. 1, pp. 82-93, 2018.
  • X. Wang, S. Mou and D. Sun, "Improvement of a Distributed Algorithm for Solving Linear Equations," IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3113–3117, 2017.
  • S. Mou, Z. Lin, L. Wang, D. Fullmer and A.S. Morse, "A Distributed Algorithm for Efficiently Solving Linear Equations and its Applications," Systems & Control Letters, vol. 91, pp. 21–27, 2016.
  • B.D.O. Anderson, S. Mou, A.S. Morse and U. Helmke, "Decentralized Gradient Algorithm for Solution of a Linear Equation," Numerical Algebra, Control & Optimization, vol. 6, no. 3, pp. 319-328, 2016.
  • G. Shi, B.D.O. Anderson and U. Helmke, "Network Flows That Solve Linear Equations," IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2659-2674, 2017.
  • M. Yang and C.Y. Tang, "A Distributed Algorithm for Solving General Linear Equations Over Networks," Proc. - 54th IEEE Conference on Decision and Control, pp. 3580–3585, 2015.
  • J. Liu, X. Chen, T. Başar ve A. Nedic , "A Continuous-Time Distributed Algorithm for Solving Linear Equations," Proc. - 2016 American Control Conference, pp. 5551–5556, 2016.
  • Y. Liu, C. Lageman, B.D.O. Anderson and G. Shi, "An Arrow–Hurwicz–Uzawa Type Flow as Least Squares Solver for Network Linear Equations," Automatica, vol. 100, pp. 187-193, 2019.
  • P. Wang, S. Mou, J. Lian and W. Ren, "Solving a System of Linear Equations: From Centralized to Distributed Algorithms," Annual Reviews in Control, vol. 47, pp. 306-322, 2019.
  • GNU Octave, “GNU Octave,” 2020. [Online]. Available: https://www.gnu.org/software/ octave/. [Accessed: 15-May-2020].
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer), Elektrik Mühendisliği, Otomasyon Mühendisliği
Bölüm Makaleler
Yazarlar

Onur Cihan 0000-0002-5729-2417

Proje Numarası 117E204
Yayımlanma Tarihi 28 Ağustos 2020
Gönderilme Tarihi 7 Nisan 2020
Kabul Tarihi 21 Mayıs 2020
Yayımlandığı Sayı Yıl 2020Cilt: 3 Sayı: 2

Kaynak Göster

IEEE O. Cihan, “Distributed Solution of Road Lighting Problem Over Multi-Agent Networks”, SAUCIS, c. 3, sy. 2, ss. 89–98, 2020, doi: 10.35377/saucis.03.02.716169.

Cited By

GraParT: A MATLAB Toolbox for Partitioning Directed Graphs
Sakarya University Journal of Computer and Information Sciences
https://doi.org/10.35377/saucis...901776

    Sakarya University Journal of Computer and Information Sciences in Applied Sciences and Engineering: An interdisciplinary journal of information science