Research Article
BibTex RIS Cite

Design Tradeoffs in Full Electric, Hybrid and Full Chemical Propulsion Communication Satellite

Year 2019, , 124 - 133, 31.12.2019
https://doi.org/10.35377/saucis.02.03.654206

Abstract

Full electric propulsion system becomes popular recently and getting more common in the communication satellite industry. Full electric or hybrid propulsion selection causes results in significant reduction in satellite propellant mass. Conventional full chemical satellite propellant mass is roughly 2/3 of launch mass so this huge reduction in propellant mass changes satellite design and preferences. Depending on satellite size and launch vehicle performance, full electric satellite requires 3-4 times less propellant compared to full chemical satellite and 1-2 times less propellant compared to the hybrid system. Satellite launch mass can be reduced by 40% for full electric propulsion and 15% for hybrid propulsion hence launch cost can be decreased by 40% and 15 % with the benefit of reducing propellant mass. It is possible to extend satellite communication capacity average 30 transponders for full electric and average 10 transponders for a hybrid system by using the benefit of propellant mass reduction. It takes 4-8 months to reach geostationary orbit for full electric satellite but in a chemical propulsion satellite, it takes a few days. Satellite subjects to additional radiation due to this long trip and hence additional aging. Expected revenue loss is another issue and conventional insurance policy needs an amendment to be in line with electric propulsion technology. The development of full electric satellite lowers the cost per transponder significantly.

Thanks

We would like to thank Turksat AS for its invaluable support.

References

  • [1] D. Y. Oh and G. Santiago, "Analytic Optimization of Mixed Chemical-Electric Orbit Raising Missions." IPEC. Vol. 1. 2001.
  • [2] C. Casaregola, "Electric propulsion for station keeping and electric orbit raising on Eutelsat platforms." 30th International Symposium on Space Technology and Science, Hyogo-Kobe, Japan. 2015.
  • [3] P. Pergola, "Semianalytic Approach for Optimal Configuration of Electric Propulsion Spacecraft." IEEE Transactions on Plasma Science 43.1 (2014): 305-320.
  • [4] R. B. Horne and D. Pitchford, "Space weather concerns for all electric propulsion satellites." Space Weather 13.8 (2015): 430-433.
  • [5] A. Dutta et al., "Minimizing total radiation fluence during time-constrained electric orbit-raising." International Symposium on Space Flight Dynamics. 2012.
  • [6] J.H. Saleh et al., "Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates." Acta Astronautica 139 (2017): 141-156.
  • [7] C. R. Koppel, "Advantages of a continuous thrust strategy from a geosynchronous transfer orbit, using high specific impulse thrusters." 14th International Symposium on Space Flight Dynamics–ISSFD XIV February. 1999.
  • [8] A. Dutta et al., "Minimum-fuel electric orbit-raising of telecommunication satellites subject to time and radiation damage constraints." 2014 American Control Conference. IEEE, 2014
  • [9] O. L. De Weck, P. N. Springmann, and D. D. Chang, "A parametric communications spacecraft model for conceptual design trade studies." 21st International Communications Satellite Systems Conference and Exhibit. 2003.
  • [10] J. H. Saleh et al., "Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates." Acta Astronautica 139 (2017): 141-156.
  • [11] Q. H. Le and G. Herdrich. "Investigation of orbit rising to geo with combined chemical/electric propulsion systems" (2016).
  • [12] M. Diome et al., "Development of a Xenon Flow Controller for the PPS® 5000 Hall Thruster Unit." IEPC-2017-417, presented at the 35th International Electric Propulsion Conference, Atlanta, GA, 2017.
  • [12] A. Lotfy, W. Anis, and J. V. M. Halim, "Design PV system for a small GEO satellite and studying the effect of using different types of propulsion." Int. J. of Adv. in Appl. Sci. ISSN 2252.8814 (2019): 8814.
  • [13] İ. Öz, "Comparative Analysis of Sub GTO, GTO and Super GTO in Orbit Raising for All Electric Satellites." Sakarya University Journal of Computer and Information Sciences 1.1 (2018): 58-64.
  • [14] D. Wade, R. Gubby, and D. Hoffer, "All-electric satellites: insurance implications." New Space 3.2 (2015): 92-97.

Haberleşme Uyduları İtki Sistemi Tasarımında Elektrikli, Hibrit ve Kimyasal Sistemlerin Ödünleşimi

Year 2019, , 124 - 133, 31.12.2019
https://doi.org/10.35377/saucis.02.03.654206

Abstract

Elektrikli itki sistemleri son yıllarda haberleşme uydularında kullanılmakta ve gittikçe yaygınlaşmaktadır. Elektrikli itki veya hibrit itki sistemi kullanıldığında uydu yakıt mikatrında ciddi azalma olmaktadır. Klasik kimyasal itki sistemlerinde uydu fırlatma ağırlığının ortalama 2/3 ünün yakıt olduğu düşünüldüğünde, yakıt kütlesindeki bu büyük azalma uydu tasarımını ve tercihleri değiştirmektedir. Elektrikli itki sistemleri, klasik kimyasal itki sistemlerine göre uydu büyüklüğüne ve fırlatıcı performansına bağlı olarak 3-4 kat daha az, hibrit uydulara göre 1-2 kat daha az yakıta ihtiyaç duymaktadır. Bu kazanım uydu fırlatma ağırlığının azaltılmasında kullanıldığında fırlatma ağılığı elektrik itkili uydularda %40 azalmakta, hibrit itkili uydularda %15 azalmakta dolayısıyla fırlatma maliyeti %40 ve %15 oranında azalmaktadır. Yakıt kütlesinden elde edilen bu kazanım, uydu haberleşme kapasitesinin artırılmasında kullanıldığında elektrik itkili uydularda ortalama 30 yansıtıcı (transponder), hibrit itkili uydularda ise ortalama 10 yansıtıcı daha ilave edilmesinin mümkün olduğu görülmüştür. Kimyasal itkili uydularda bir kaç gün olan transfer yörüngesinden yer sabit yörüngeye çıkma süresi, elektrik itkili uydularda 4-8 ay zaman almakta bu esnada maruz kalınan radyasyon uyduya ilave yapranma getirmektedir. Bu süre içinde beklenen gelirlerden mahrum kalınmakta ve klasik uydu fırlatma sigortası kapsamında yeni düzenlemelere ihtiyaç duyulmaktadır. Elektrik itkili uyduların geliştirilmesi ile transponder başına maliyet ciddi olarak düşmektedir.

References

  • [1] D. Y. Oh and G. Santiago, "Analytic Optimization of Mixed Chemical-Electric Orbit Raising Missions." IPEC. Vol. 1. 2001.
  • [2] C. Casaregola, "Electric propulsion for station keeping and electric orbit raising on Eutelsat platforms." 30th International Symposium on Space Technology and Science, Hyogo-Kobe, Japan. 2015.
  • [3] P. Pergola, "Semianalytic Approach for Optimal Configuration of Electric Propulsion Spacecraft." IEEE Transactions on Plasma Science 43.1 (2014): 305-320.
  • [4] R. B. Horne and D. Pitchford, "Space weather concerns for all electric propulsion satellites." Space Weather 13.8 (2015): 430-433.
  • [5] A. Dutta et al., "Minimizing total radiation fluence during time-constrained electric orbit-raising." International Symposium on Space Flight Dynamics. 2012.
  • [6] J.H. Saleh et al., "Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates." Acta Astronautica 139 (2017): 141-156.
  • [7] C. R. Koppel, "Advantages of a continuous thrust strategy from a geosynchronous transfer orbit, using high specific impulse thrusters." 14th International Symposium on Space Flight Dynamics–ISSFD XIV February. 1999.
  • [8] A. Dutta et al., "Minimum-fuel electric orbit-raising of telecommunication satellites subject to time and radiation damage constraints." 2014 American Control Conference. IEEE, 2014
  • [9] O. L. De Weck, P. N. Springmann, and D. D. Chang, "A parametric communications spacecraft model for conceptual design trade studies." 21st International Communications Satellite Systems Conference and Exhibit. 2003.
  • [10] J. H. Saleh et al., "Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates." Acta Astronautica 139 (2017): 141-156.
  • [11] Q. H. Le and G. Herdrich. "Investigation of orbit rising to geo with combined chemical/electric propulsion systems" (2016).
  • [12] M. Diome et al., "Development of a Xenon Flow Controller for the PPS® 5000 Hall Thruster Unit." IEPC-2017-417, presented at the 35th International Electric Propulsion Conference, Atlanta, GA, 2017.
  • [12] A. Lotfy, W. Anis, and J. V. M. Halim, "Design PV system for a small GEO satellite and studying the effect of using different types of propulsion." Int. J. of Adv. in Appl. Sci. ISSN 2252.8814 (2019): 8814.
  • [13] İ. Öz, "Comparative Analysis of Sub GTO, GTO and Super GTO in Orbit Raising for All Electric Satellites." Sakarya University Journal of Computer and Information Sciences 1.1 (2018): 58-64.
  • [14] D. Wade, R. Gubby, and D. Hoffer, "All-electric satellites: insurance implications." New Space 3.2 (2015): 92-97.
There are 15 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

İbrahim Oz 0000-0003-4593-917X

Ü.cezmi Yılmaz 0000-0001-5886-9743

Publication Date December 31, 2019
Submission Date December 2, 2019
Acceptance Date December 18, 2019
Published in Issue Year 2019

Cite

IEEE İ. Oz and Ü. Yılmaz, “Design Tradeoffs in Full Electric, Hybrid and Full Chemical Propulsion Communication Satellite”, SAUCIS, vol. 2, no. 3, pp. 124–133, 2019, doi: 10.35377/saucis.02.03.654206.

29070    The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License