Research Article
BibTex RIS Cite

Bireysel Isısal Memnuniyet için Yeni Bir Ölçü

Year 2020, , 1 - 10, 30.04.2020
https://doi.org/10.35377/saucis.03.01.661229

Abstract

Bu çalışma topluluk için ısısal memnuniyet standardından esinlenerek bireysel ısısal memnuniyet için yeni bir ölçü ve kişilerin ısısal konfor tercihlerini taklit etmemizi sağlayan istatistiksel bir model sunmaktadır. Yaklaşımımız, bir bireyin arzu ettiği sıcaklık değeri civarında kendilerini çevreleyen ısısal ortamdan memnun oldukları bir sıcaklık aralığına sahip oldukları gözlemine dayanır. Bina sakinlerinin bireysel ısısal tercihlerini temsil eden istatistiksel modelimizin önemli parametrelerinin normal dağılıma sahip rastgele değişkenler olduğu varsayılmıştır, böylece daha sonra gerçekleştirilmek istenebilecek benzetimler için farklı bireylerin ısısal konfor tercihleri üretilebilir hale gelecektir. Bu dağılımın değişkenleri, topluluğa ait ısısal konfor parametlerini elde etmek için birleştirildiğinde bir bina içerisindeki kabul edilebilir ısısal koşulları belirleyen standartlara çok yakın tutarlılık sağlayacak şekilde ayarlanmıştır.

References

  • [1] United States Department of Energy and United States Environmental Protection Agency Sustainable Building Technical Manual, 1996.
  • [2] P. O. Fanger, Thermal Comfort: Analysis and Applications in Environmental Engineering, New York, McGraw-Hill, 1972.
  • [3] H. Awbi, Ventilation of Buildings. London, Spon Press, 2003.
  • [4] F.C. Houghton and C. P. Yaglou, Determining Lines of Equal Comfort, ASHVE Trans., vol. 28, pp. 163-176, 1923.
  • [5] C. - E. A. Winslow, L. P. Herrington, L. P. Gagge, and A. P. Gagge, Relation Between Atmospheric Conditions, Physiological Reactions and Sensations of Pleasantness, Am. J. Hyg., vol. 26, pp. 103 – 115, 1937.
  • [6] C. P. Yaglou, A Method for Improving the Effective Temperature Index, ASHVE Trans., vol. 53, pp. 307 – 326, 1947.
  • [7] A. P. Gagge, J. A. J. Stolwijk, and Y. Nishi, An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response, ASHRAE Trans., vol. 77, pp. 01: 247 – 01:262,1971.
  • [8] P. O. Fanger, Calculation of Thermal Comfort: Introduction of a Basic Comfort Equation, ASHRAE Trans., vol. 73(2), 1967.
  • [9] P. E. McNall Jr, J. Jaax, F. H. Rohles, R. G. Nevins, and W. Springer, Thermal Comfort (Thermally Neutral) Conditions for Three Levels of Activity, ASHRAE Trans., vol. 73(1), 1967.
  • [10] R. G. Nevins, F. H. Rohles, W. Springer, and A. F. Feyerherm, A Temperature - Humidity Chart for Thermal Comfort of Seated Persons, ASHRAE Trans., vol. 72, pp. 01:283 – 01:291,1966.
  • [11] F. H. Rohles, Thermal Sensations of Sedentary Man in Moderate Temperature, Kansas, Report to the Institute for Environmental Research, Kansas State University, 1970.
  • [12] A. P. Gagge, A. C. Burton, and H. C. Bazett, A Practical System of Units for the Description of the Heat Exchange of Man with His Environment, Science, vol. 94, pp. 428 – 430, 1941.
  • [13] A. P. Gagge, A. P. Fobelets, and L. G. Berglund, A Standard Predictive Index of Human Response to the Thermal Environment, ASHRAE Trans., vol. 92, pp. 02:709 – 02:731,1986.
  • [14] ASHRAE Standard 55  2004, Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, American Society of Heating, Refrigerating and Air Conditioning Engineers, 2004.
  • [15] ISO / DIS 7730 : 2003, Ergonomics of Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Suing Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, International Organization for Standardization, 2003.
  • [16] F. H. Rohles, Temperature or Temperament: A Psychologist Looks at Thermal Comfort, ASHRAE Trans., vol. 86, pp. 01:541 – 01:551,1980.

A New Measure for Individual Thermal Comfort

Year 2020, , 1 - 10, 30.04.2020
https://doi.org/10.35377/saucis.03.01.661229

Abstract

This paper introduces a new measure for individual thermal comfort, inspired by the current standards for population thermal comfort, and a statistical model allowing us to imitate individuals’ thermal comfort preferences. Our approach is based on the observation that an individual has a temperature range around his or her desired temperature point in which he or she is comfortable with the surrounding thermal environment. The crucial parameters of our statistical model, which represents the thermal characteristic of individuals of building occupants, have been assumed to be normally distributed random variables so that the thermal comfort preferences of different individuals can be generated for the further simulation purposes. When aggregated to a population’s general thermal comfort parameters, the variables of these distributions have been adjusted in such a way as to bring very close consistency with the current standards, which define the criteria for acceptable thermal conditions of human occupancy in a built environment.

References

  • [1] United States Department of Energy and United States Environmental Protection Agency Sustainable Building Technical Manual, 1996.
  • [2] P. O. Fanger, Thermal Comfort: Analysis and Applications in Environmental Engineering, New York, McGraw-Hill, 1972.
  • [3] H. Awbi, Ventilation of Buildings. London, Spon Press, 2003.
  • [4] F.C. Houghton and C. P. Yaglou, Determining Lines of Equal Comfort, ASHVE Trans., vol. 28, pp. 163-176, 1923.
  • [5] C. - E. A. Winslow, L. P. Herrington, L. P. Gagge, and A. P. Gagge, Relation Between Atmospheric Conditions, Physiological Reactions and Sensations of Pleasantness, Am. J. Hyg., vol. 26, pp. 103 – 115, 1937.
  • [6] C. P. Yaglou, A Method for Improving the Effective Temperature Index, ASHVE Trans., vol. 53, pp. 307 – 326, 1947.
  • [7] A. P. Gagge, J. A. J. Stolwijk, and Y. Nishi, An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response, ASHRAE Trans., vol. 77, pp. 01: 247 – 01:262,1971.
  • [8] P. O. Fanger, Calculation of Thermal Comfort: Introduction of a Basic Comfort Equation, ASHRAE Trans., vol. 73(2), 1967.
  • [9] P. E. McNall Jr, J. Jaax, F. H. Rohles, R. G. Nevins, and W. Springer, Thermal Comfort (Thermally Neutral) Conditions for Three Levels of Activity, ASHRAE Trans., vol. 73(1), 1967.
  • [10] R. G. Nevins, F. H. Rohles, W. Springer, and A. F. Feyerherm, A Temperature - Humidity Chart for Thermal Comfort of Seated Persons, ASHRAE Trans., vol. 72, pp. 01:283 – 01:291,1966.
  • [11] F. H. Rohles, Thermal Sensations of Sedentary Man in Moderate Temperature, Kansas, Report to the Institute for Environmental Research, Kansas State University, 1970.
  • [12] A. P. Gagge, A. C. Burton, and H. C. Bazett, A Practical System of Units for the Description of the Heat Exchange of Man with His Environment, Science, vol. 94, pp. 428 – 430, 1941.
  • [13] A. P. Gagge, A. P. Fobelets, and L. G. Berglund, A Standard Predictive Index of Human Response to the Thermal Environment, ASHRAE Trans., vol. 92, pp. 02:709 – 02:731,1986.
  • [14] ASHRAE Standard 55  2004, Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, American Society of Heating, Refrigerating and Air Conditioning Engineers, 2004.
  • [15] ISO / DIS 7730 : 2003, Ergonomics of Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Suing Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, International Organization for Standardization, 2003.
  • [16] F. H. Rohles, Temperature or Temperament: A Psychologist Looks at Thermal Comfort, ASHRAE Trans., vol. 86, pp. 01:541 – 01:551,1980.
There are 16 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Seçkin Arı 0000-0001-7556-8205

H. Ezzat Khalifa

Peter Wilcoxen

John F. Dannenhoffer Iıı

Can Işık

Publication Date April 30, 2020
Submission Date December 18, 2019
Acceptance Date March 27, 2020
Published in Issue Year 2020

Cite

IEEE S. Arı, H. E. Khalifa, P. Wilcoxen, J. F. Dannenhoffer Iıı, and C. Işık, “A New Measure for Individual Thermal Comfort”, SAUCIS, vol. 3, no. 1, pp. 1–10, 2020, doi: 10.35377/saucis.03.01.661229.

29070    The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License