Skin diseases are very common all over the world. The examination can be done by photographing the relevant area or taking a tissue sample to diagnose skin diseases. Examining tissue samples allows examination at the cellular level. This study discussed three skin diseases: lichen sclerosus, morphea, and cutaneous small vessel vasculitis (vasculitis). For this problem, which does not have an open-access dataset in the literature, a dataset consisting of histopathological images belonging to each class was created. Convolutional neural network models were created for this three-class classification problem, and their results were evaluated. In addition, in this problem where it is difficult to obtain sample images, the efficiency of transfer learning methods was evaluated with a limited number of examples. For this purpose, tests were performed with VGG16, ResNet50, InceptionV3, and EfficientNetB4 models, and the results were given. Among all the results, the accuracy value of the VGG16 model was 0.9755 and gave the best result. However, although the accuracy value was quite good, precision, recall, and f1-score metrics values were around 0.65. This shows deficiencies in how often the model correctly predicts the positive class and how well it predicts all positive examples in the dataset.
This study does not require permission from the ethics committee or any special permission. The microscopic skin images used do not contain any personal data.
The authors would like to thank Research Assistant Dr. Sümeyye Güneş Takır for creating the dataset used in this study.
Primary Language | English |
---|---|
Subjects | Computer Software |
Journal Section | Research Article |
Authors | |
Early Pub Date | June 20, 2025 |
Publication Date | June 30, 2025 |
Submission Date | November 10, 2024 |
Acceptance Date | April 12, 2025 |
Published in Issue | Year 2025Volume: 8 Issue: 2 |
The papers in this journal are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License